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Abstract: Erich Hecke (1936) introduced the groug$Aq) = (ST : & = T9 = 1) generated by two linear-fractional transformations

S(z) = *71 andT (z) = z+)\ In this paper, we discuss the action of hecke grddipk;) on real quadratic fields. In particular, we explore
the orbits ofQ(,/m) \ Q whereQ(,/m)\ Q is the disjoint union of)*(,/n) = {# ra,c#0,b= a—g” €7 | (a,b,c) =1} forn=k?m.
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1 Introduction If o = %ﬁ € Q*(y/n) and its conjugat@ have opposite
signs thena is called an ambiguous numbed] [ The set
In 1936 Erich Hecke 7] introduced the group$i(A)  of ambiguous numbers i0*(,/n) is denoted byQ;(/n)
generated by two I|near fractional transformatlonsand|Q1(\/_)| has been determined it][as a function of
S(Z) _— andT( ) = . Hecke showed thaﬂ( ) n. Since Q (\/—) _ Q*(\/ﬁ) U %(@*(\/ﬁ) and for
dlscrete if and only n‘?\ /\q = Zcos( M, qeN,q>3or n £ 0(mod 4
A > 2. Hecke groupH(Aq) is |somorph|c to the free Q™ (y/n) ={a(ab,c) € Q*(/n) | c=0(mod 2)} are
product of two finite cyclic group of order 2 amfland it  two H-subsets of)(/m) \ Q.

has a presentation The results of 12] are extended in13] to all non-square
n = Omod 4) and was proved that
H(Ag) = (ST: S =TI=1) =CpxCq (\/—) Q™ (yn) U Q*(vV4n), where

The first few of these groups ak&(A3) = PSL(2,Z), the TV =(@ (\/T‘_‘T) \Q (‘/TZT))UQ (\{*ﬁ)' Moreover
_ L@ _ T4l the proper  H-subsets of Q*(y/n) or
modular  group, H(As) = (ST:S=T%=1), p .
HA B 1+\/§ q Q (vn) = Q%(y/n) U Q*~(v4n) according as
(As) = 2( 6) and  n = 0(mod 4) or n= 0(mod 4) have been discovered. As
H(d) =H(V3) = (ST :S Tz— 1). It was proved we denote the number ofi-orbits of Q*~(\/4p) by
that the action ofH = {xy: x" = y' = 1), where e~ (4n) and the number oH-orbits of Q'(/p) by
X(2) = 5 andy(2) = 57775, on the rational projective on(p). In a recent paperlf], H-orbits of Q*~(,/4p),

line QU {«} is transitive F12]-2 The3 action of the p E 1(mod 4) have been found for the case

modular group G = (X.y:xXB=y’=1), where (P ¢ (V)| oy, = [Q1(vAP). In this paper

X/(Z) =5 and y(Z) = #l' on the real quadratic fields We d|scuss the case whenever

has been discussed i8,9,11] and [10]. |( ) |amb+|(f) lamb < | Q5™ (v/2D)).

Letn=k’m, k € N andmis a square free positive integer. atyn 2-n

ThenQ(y/m)\ Q is a disjoint union of We tabulate the actions oo, = =~ with b = ==, of
x,y and their combinations in Table 1 and we cite the

a+ /i a2_ following results for later reference.
Q*(vn)={ ‘a,c£0,b= €Z|(ab,c)=1}. Lemma 1.1 [11] Let m be a square-free positive integer.
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Table 1: The action of elements ¢ ona = 21 @' (/)

a a b c
X(@) = 7 -a g 2b
V(@) = a5ty —a—c S 2(2a+b+0)
V(a)= 49 | _3a-2b—c | 2a+b+c datdbic
Oy)k(a) =a+k a+ke 2ka+b+K2c c
YX(a) =55 a—2b b —da+4b+c
() e ff’a> 3a—2b—c =faidbic 2(—2a+b+c)
9 (@) = 1-%g a—2kb b —4ka+4k2b+c
(y*x)* k a—kc 2ka+b+k2c c
Then

Qi(vm )| = 2t(m) + 43T 1(m — &) where 1(m)
stands for the number of positive divisorsrofand | /m|
is the largest integer less thg/m.

Lemma 1.2 [9] Let p = 1(mod 4). ThenQ*(,/P) splits
into at least twoG-orbits, namely,(,/p)¢ and (1+‘f)
under the action o&.

Lemma 1.3 [11] Let n be square free positive integer.

Then [Q1*(vA)| = 21"(n) + 435V 7(n — a2) where
7”(u) denotes those divisors of which are divisible by

Lemma 1.4 [12] Let a € Q"(v/n). Thena™ = (@)" if
and only if there exists an elemefitin a" such that

X(B) = B.

2 Types ofG-orbits of Q*(,/p) and H-orbits
of Q" (/P)

2. This circuit induces an element

g= O (xy2 ) ()™

of H and fixes a particular vertex of a square lying on the
circuit and hence the ambiguous length of this circuit is
given by 2n; +np+ N3+ ...+ ny)

The following example and figure 2, both are the best

xy7 ()

xy(et)

y(e)

yi(e
o

xy*(a) x(c) e
(et
L yx(en) o)

Fig. 1: The coset diagram for the actionidfona € Q" (,/n)

V(o)

description of the above definition and remark.

Example 2.3. By the circuit of the type
(20,11,15,20,12,11,29) we mean the circuit (see figure 2)
induces an element
h = (xy)2(xy?) (xy®) (xy)? (xy®) (xy?) (xy)? of H which fixes
vertex Y. Let I = L. (xy)%(l1) = 27 — 1y,
) (2) = 5L =13, (9°)(la) = 2L = 1,
(9)2(la) = f =I5, (P¥)(s) = LT = I,
(xy?)(le) == -Zzﬁ =17 (9)?2(7) = land the
ambiguous length of this circuit is
22+1+1+24+14+1+2).

The following four results have been taken froid] for

We start this section by describing the closed paths

(circuits) for the action of groupl (A1) (see p] and figure
1).

Definition 2.1. If ng,np, N3, Nng,...,
positive integers and

ng is a sequence of

ij=0,1,2i #ij41 (1 =1,2,...,k=1),i1 # ik
Then by a circuit of the type
(nli17n2i27n3i37n4i47"'7nkik)

we shall mean the circuit (counter clockwise) in whigh

j=1,2,3,...,ksquares havig vertices outside the circuit.
Remark 2.2. 1. Since it is immaterial with which
ambiguous number otr™ the circuit begins, we can

express type of the orbit in Definition 2.1. by any of the

following k-equivalent forms

Fig. 2: Orbit of I; = *7 andh(ly) = Iy

our convenience in section 3.

(MigsM2igs s i) = (M2ins Nig s Ny > My ) Theorem 2.4.Letn = 1(mod 8). ThenQ" (,/n) splits into
= ...(Nig, Miy s ooy N2 _,) (1)  fourH-subsets. In particula(r@)H, (f——rl‘)H, (1+—2ﬁ)H and
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(/MM are at least fouH-orbits of Q" (/).
Remark 2.5.1t can be easily seen that

1.0 (p) = og(p) whenp = 1(mod 4).
2.06(4p) =20g(p) if p=1, or5(mod 8) such thap—1
is not a perfect square
3.06(4p) = 206(p) + 2 if p=5(mod 8) such thatp— 1
is a perfect square
Theorem 2.6.Let p= 1(mod 4. Then
1lon(p) =20g(p) if p=1(mod 8).
2.04(p) = 0a(p) + 1 if p=5(mod 8) such thatp— 1 is
not a perfect square.
3.01(p) =20c(p)+1if p=5(mod 8) such thap—1is
a perfect square.
Remark 2.7.Let p= 1 or 5mod 8) such thatp— 1 is a
perfect square. Then the number%M’ and
EWVPIEVR are contained in (YP)H and ()M
respectively. Also the number%;—\/l_ are contained in
()"

. +\/T)
. Similarly the numbers:jﬁ are contained in

(1%\/5)”' and ;14;\/%/—2 are contained in (—P)H
respectively.

Lemma 28. Let n = O(mod 4). Then
Q3™ (V)| = 2(Qf* (vA)]). Whereas ifn # 0(mod 4)
Q1™ (van)| = 2(]Qi(v)| - Q7" (V).

3 H-orbits of Q*~(\/4p) with of{"(4p) > 4

Let p = 1(mod 4). If
(V) amp + () amp = 10;" (V4P then we have
05 (P) = 2. 1 | (/D) amo + | (X0)" |a> < Q3™ (vED)],
then we have the following results

Lemma 3.1.Let p=1(mod 4). Then

1o n @" = o for all

a € Q™ (VAD\((P)NU DM,
2(a)" N (—a)" = @ for all a € Q™ (/4p)\(2)H
(L))

at+,/p —at+p .
Proof. By [9] we know that—¢~, — 2~ are contained

in (,P" or (X2)H where ¢ # O(mod 2) and

CVP VP are contained in(Z2)H or (ZR)H
where a # 0(mod 2). Hence by Lemma .4. we have

(@t n  (@H = @ for all
s 1 1

a € Q™ (vAD)\((yP)M U () U (=)

The 2nd part directly follows from Theorem 3[13].

U

In the following lemma we use
Q" (vP) =Q(/PUQ (/D)
Lemma 3.2. Let p = 1(mod 4). Then

=32 € Q(/p) or Q*(vAP)\Q"(y/P) according as
p= 1(mod 8) orn=5(mod 8) for p > 13.
Proof. The proof is straightforward. [

Lemma 3.3.Let p=5(mod 8) such thatp— 1 is a perfect
square. If

(@~ (VEAD\Q" (VPN (P! U (YDH) # 0, then
either qu/ﬁ or Ztim c
Q™ (VE\Q" (VPI\(VPH U (L2 D).

Proof. Using Remark 27, (/p)amb™ U (¥2),mbH =
P E0 < a < [yl
Q™ (VE\Q" (VPN (VP! U (X)) # 0, then

eitherp—1 is not power of two or is power of 2. In first
case p— 1 is not power of two then there exists

R e (@ (vARNQ" (VPN ((vPM U (D)), if

p— 1 is power of 2 thernp— 4 is not power of 2. Thus

tzrlrere exists
S8 e @ (VA\Q(VAN(VPM U (D))
O

Corollary 3.4. Let p = 5(mod 8) such thatp—1 is a
perfect square. If

(@™ (/EAP\Q" (PN (DM U (L)H) £ 0, then
+

(VP U ()H U (FR)H U (BB U (FB)H U
(EP)H € @*(v/Ap) or (yP)! u(!—f)Huﬁ—f’)Hu
(ZRP)H U (LR H G (PR C @ (v/4p).

Proof. The proof is straightforward and follows by
Lemma 33. (]

Lemma 3.5.Let p= 1(mod 8) such thatp— 1 is a perfect
square. Ther@Q@*~(,/4p) splits into at least siH-orbits

for p > 17.
Proof. Using Remark Z,
+ +
(R U (e = {578, 2.0 < a < [P}
1 1 + + +1
and( +\/—)an~bu( +\/T))arrb - a:zz\/r)v sfa\Z/r_Jv i\_-\i_/\ﬁ/Jr) .
EYA

a = 3..,lvp - 1L Also

and

(yp)" U (!—?)“ C Q(VAD\Q"(/P)
1 1
(JrT\ﬁ))H U (JrT\ﬁ))H C Qm/(\/ﬁ)- .
For p > 17 we have atleast four mote¢-orbits namely
(_1Z‘m)H, (1+8‘/T))H, (3+8‘/_p)H and(_3+‘/—p)'* contained
in Q"(,/p) since otherwise[,/p] = 4 and hence
-1 1 3 3 1 1

70 R S and P e (R U ().
Hence For p > 17,

“1+yP L+yP 3tyP g

Z "8 8

3+8\/ﬁ 4 (1+2\/r’)H U (1+4‘/_p)H. This shows Q" (\/p)

contains at least sik-orbits.

By Corollary 34 we have sixH-orbits either(\/Tﬁ)H U
1 ~1 1 -1

(L) u( zyﬁ)“u(H;f’)“u( ;fﬁf’)Hu( ;qlﬁ’w or

- +
(V)P U (D) U (BR)H U (ZZRB)H U (ZR)H
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(=ZP)H contained inQ*(v/4p)\Q""(,/P). Thus we

have at least twelvE -orbits. O

Lemma 3.6.Let p=5(mod 8) such thatp— 1 is a perfect
square. TherQ*~(y/4p) splits into at least siH-orbits
forp> 13

Proof Using Lemma 2., “5/2 € Q*~(/4p)\Q"" (/7).
Also (¥B)H U (L)H ¢ Q*”(\/4_p)\Q”“(\/—p). For

1

Remark 3.11.It can be easily seen by Theorent2and
Remark 25 that

1.257 and 761 are the only primgs= 1(mod 8) and
p < 2011 such thaby (p) = 12.

2.401 and 1601 are the only primps= 1(mod 8) and
p < 2011 such thatoy(p) > 12: For p = 401,

Q"(/P) splits into twentyH-orbits, namely,(@)”,

1 -1 1 -1
(R)H, (LR (VR (L RyH (LR

)
p > 13 ﬂ%‘/ﬁ ¢ (@) (‘ﬁf)H otherwise for (l+\/ﬁ)H (*1+\/5)H (Hﬁ)H (*1+\/5)H (1+ﬂ3)H
VT3 DN \/—3 +14p <)== ) {73 ) {73 =10 )
p =13 % S (T U (L5 ) hence (—~ ba (*1+\/ﬁ)H (1+\/ﬁ)H (*1+\/5)H (1+\/5)H (1+W)H
exists and contained r@ (\/_)\@””(\/_). Thus _ﬁo\/—p H —112\/5 H 363+\/r> H25 %
VBVH | (VPYH | U (ZEAH (——)" ()" and(=~)".
(*7) (%7) ( ji ) (—= D= For p = 1601, Q"(,/p) splits into twenty eight
Q" (vAp)\ Q" (/P) and (Z3P)H C Q(/P). Hence  H_orbits, namely(¥2)H, (XB)H, (LB (LyB)H
we have eighH-orbits. D 1Py 1t yPrH 1P ~1+/P\H
(—=)" (=57 (=) (=5)5
Example 3.7.Let p = 37. By Theorem 2.40Q*™(\/4p) (CEByH, (B, (RH (B
splits in at least six H-orbits, namely, —14+P\H 1+VP\H [ —1+/P\H 1+f H /1+/P\H
it (st (Lot (LB (st o <gaty (D ), (S, B, (o
G DM (g, (N, () and(S. BT e s
By Theorem 28, |(\/—7) lawp = 36 and (—13-5\/—p)H (3+\/’pgli5(—3+\/‘) (3+\/_)H (3-55)/5)H
(283 H | 4p, = 24. By Lemma 1.1|Q;(V/37)| = 124 L B et ey
(—e9- )" and(—ggg5 )"

and by Lemma B, |Q;*(v/37)| = 56. Using Theorem
2.8, |(@1N(\/148)| = 2(124 — 56) = 136. Since
(X2 | + [(L)H |y = 72 < 136. Therefore by

Lemmas 2 and 33 at least four moréH-orbits exists
which are(EyET)H . Also [(25f3T)H |y, = 16. Here the

sum of cardinalities of all six orblts is 144. Therefore we

conclude thaQ*~(1/148) splits into exactly sixH-orbits.

Example 3.8.Let p = 577. ThenQ*~(y/4p) splits into
fourteen H-orbits, namely, (22)M,(220)H, (”T‘/?W)H,

(1—&-\/?5:77) , ( 1+?\’/5_77) , ( 1+\45_77)H, (1+\é5_77)H,
14+B77\H —14+V/577\H —1+/577\H 3+V/577\H
(=3=)7, (=297, (=)0, (=)0

(342\4?777)H, (7349\1/5777)H and( 734:\7/1577)H_

We conclude this paper with the following remarks.
Remark 3.9. Let p = 5(mod 8) such thatp—1 is a
perfect square. Then

3.The primesp = 5(mod 8) and p < 2011 such that
oH(p) = 9 are
101,197,269,389,557,677,701,1301, 1613 1949 and
1973.

4.1901 is the only primg = 5(mod 8) and p < 2011
such thaoy (p) > 12.

5.37,349,373 709,757,829,877,997,1213 and 1861
are the primep = 5(mod 8) and p < 2011 such that

ot (p) = 9.

4 Conclusion

We have explored the action of hecke group
H(As) = (ST :S$=T*=1), on the subset®(,/m)\ Q
of the real quadratic fields and different types of the orbits
are introduced. TheH-orbits of Q*~(y/4p) with
o/ (4p) > 4 are investigated and the classification of
H-orbits is given depending upon the nature of prime

1. p =1 or 5mod 16) according as p<2011,using modulararithmetic.

lv/P] =0or 2mod 4).

2. LetY = {222 € Q*(yP) i ¢ = 1,|,/p/%} and
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