Connected Resolving Partitions in Unicyclic Graphs

Imran Javaid* and Muhammad Salman
Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan 60800, Pakistan

Received: 29 Jun. 2014, Revised: 30 Sep. 2014, Accepted: 3 Oct. 2014
Published online: 1 Jan. 2015

Abstract

A k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ is resolving if for every two distinct vertices u and v of a connected graph G, there is a set S_{i} in Π so that the minimum distance between u and a vertex of S_{i} is different from the minimum distance between v and a vertex of S_{i}. A resolving partition Π is said to be connected if each subgraph $<S_{i}>$ induced by $S_{i}(1 \leq i \leq k)$ is connected in G. In this paper, we investigate the minimum connected resolving partitions in unicyclic graphs. Also, modified sharp lower and upper bounds for the connected partition dimension of unicyclic graphs are provided.

Keywords: partition dimension, connected partition dimension, unicyclic graphs 2010 Mathematics Subject Classification: 05C12

1 Introduction

Partition dimension was firstly studied by Chartrand, Salehi and Zhang in [5,6] perhaps as a variation of metric dimension. Resolving sets and resolving partitions have since been widely investigated $[2,4,6,9,10,12,13,16,17$, $18,19,20$] and arise in many diverse areas including network discovery and verification [1], strategies for the Mastermind game [7,8], robot navigation [14] and connected joins in graphs [19].

For the vertices u and v in a connected graph G, the distance $d(u, v)$ is the length of a shortest path between u and v in G. For an ordered set $W=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ of vertices in a connected graph G and a vertex v of G, the k-vector $\quad c_{W}(v)=\left(d\left(v, v_{1}\right), d\left(v, v_{2}\right), \ldots, d\left(v, v_{k}\right)\right)$ is referred to as the code of v with respect to W. The set W is called a resolving set for G if all the vertices of $V(G) \backslash W$ have distinct codes. A resolving set containing a minimum number of vertices is called a minimum resolving set or a metric basis for G. The number of elements in a metric basis of G is called the metric dimension of G, and is denoted by $\operatorname{dim}(G)[2,3]$.

For a set S of vertices of G and a vertex v of G, the distance $d(v, S)$ between v and S is defined as $d(v, S)=\min \{d(v, x): x \in S\}$. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ and a vector v of G, the code of v with respect to Π is defined as the k-vector $c_{\Pi}(v)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. The partition Π is called a resolving partition for G if the distinct vertices
of G have distinct codes with respect to Π. The minimum k for which there is a resolving k-partition of $V(G)$ is the partition dimension of G, denoted by $p d(G)[5,6]$.

A resolving partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ is said to be a connected resolving partition if the subgraph $<S_{i}>$ induced by each subset $S_{i}(1 \leq i \leq k)$ is connected in G. The minimum k for which there is a connected resolving k-partition of $V(G)$ is the connected partition dimension of G, denoted by $\operatorname{cpd}(G)$. A connected resolving partition of $V(G)$ containing $\operatorname{cpd}(G)$ elements is called a minimum connected resolving partition (or cr-partition) of $V(G)$. If G is a non-trivial connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, then the n-partition $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$, where $S_{i}=\left\{v_{i}\right\}$ for $1 \leq i \leq n$, is a connected resolving partition for G. Thus, $\operatorname{cpd}(G)$ is defined for every non-trivial connected graph G. Indeed, every connected resolving partition of a connected graph is a resolving partition. Thus, if G is a connected graph of order $n \geq 2$, then

$$
2 \leq p d(G) \leq c p d(G) \leq n
$$

Moreover, $\operatorname{pd}(G)=\operatorname{cpd}(G)$ if and only if G contains a minimum resolving partition that is connected [16, 17].

For any $S \subseteq V(G)$, if $d(x, S) \neq d(y, S)$, then we say that the set S separates two distinct vertices x and y of G. If a class of a partition Π separates two distinct vertices x and y, then we say that Π separates x and y. From these definitions, it can be observed that the property of a given partition Π of the vertices of a graph G to be a resolving

[^0]partition of G can be verified by investigating the pairs of vertices in the same class. Indeed, every vertex $x \in S_{i}(1 \leq$ $i \leq k)$ is at distance 0 from S_{i}, but is at a distance different from zero from any other class S_{j} with $j \neq i$. It follows that $x \in S_{i}$ and $y \in S_{j}$ are separated either by S_{i}, or by S_{j} for every $i \neq j$.

A connected graph with exactly one cycle is called a unicyclic graph. The metric dimension of unicyclic graphs was studied by Poisson and Zhang in [15]. We adopt the terminology, used in [15], to study the connected partition dimension of unicyclic graphs: The graph $G=G\left[G_{1}, G_{2}, u, v\right]$ obtained from G_{1} and G_{2} by identifying u and v is called an identification graph, where G_{1} and G_{2} are non-trivial connected graphs with $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Therefore $u=v$ in G and we name the vertex $u=v$, the joint in G. The identification is said to be of type- 1 if an end vertex of a path is identified with a vertex of degree two of a cycle in a graph, or an end vertex of a path is identified with a vertex of degree 1 of a graph, otherwise identification is said to be of type-2. A unicyclic graph can be obtained by the addition of a single edge between two vertices of a tree. Also a unicyclic graph that is not a cycle can be obtained from a cycle and one or more trees by identifying some specified vertices on the cycle and on the trees.

Unicyclic graphs first time, in the context of connected partition dimension, were considered by Javaid in [11]. Together with some basic results, he proved the following major results for the partition dimension of unicyclic graphs:

Lemma 1.[11] Let $G=G\left[G_{1}, G_{2}, u, v\right]$ be an identification graph of type-2. Then $\operatorname{cpd}(G) \leq \operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-1$.
Theorem 1.[11] Let G be a unicyclic graph of type-2 with unique cycle C of order n. Then

$$
4 \leq \operatorname{cpd}(G) \leq 3+\sum_{i=1}^{k} \operatorname{cpd}\left(T_{i}\right)-k
$$

where Ti is a subtree of G rooted at the vertex $u_{i}(1 \leq i \leq k)$ of the cycle C.
Theorem 2.[11] Let T be a tree which is not a path and e is an edge. Then

$$
\operatorname{cpd}(T)-2 \leq \operatorname{cpd}(T+e) \leq \operatorname{cpd}(T)+1
$$

We investigate that the bounds for the connected partition dimension of unicyclic graphs provided by Javaid are not tight. In this paper, we reconsider the unicyclic graphs in the context of connected partition dimension and, together with some basic results, we provide modified sharp bounds for the connected partition dimension of unicyclic graphs.

2 Results

The following result gives the connected partition dimension of an identification graph of type-1.

Lemma 2.Let $G=G\left[G_{1}, G_{2}, u, v\right]$ be an identification graph of type-1, where G_{1} be any non-trivial connected graph and G_{2} is a path on $n \geq 2$ vertices. Then $\operatorname{cpd}(G)=\operatorname{cpd}\left(G_{1}\right)$.

Proof.Let $\operatorname{cpd}\left(G_{1}\right)=k$ with connected resolving partitions $\Pi_{1}=\left\{S_{1} S_{2}, \ldots, S_{k}\right\}$ of $V\left(G_{1}\right)$. Since connected partition dimension of a graph is 2 if and only if the graph is a path [17], we have $\operatorname{cpd}\left(G_{2}\right)=2$ with connected resolving partition $\Pi_{2}=\left\{U_{1}, U_{2}\right\}$. Let v be the joint in G such that $v \in S_{k}$ and $v \in U_{1}$. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}^{\prime}=S_{k} \cup V\left(G_{2}\right)\right\}$ be a partition of $V(G)$ of cardinality $\operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-2$, then any two distinct vertices v_{1} and v_{2} of $V(G)$ have different codes with respect to Π as shown in the following three cases:
Case A. If $v_{1}, v_{2} \in V\left(G_{1}\right)$, then since $c_{\Pi_{1}}\left(v_{1}\right) \neq c_{\Pi_{1}}\left(v_{2}\right)$ and $d\left(v_{i}, S_{k}\right)=d\left(v_{i}, S_{k}^{\prime}\right)$ for $i=1,2$, we have $c_{\Pi}\left(v_{1}\right) \neq c_{\Pi}\left(v_{2}\right)$.
Case B. If $v_{1}, v_{2} \in V\left(G_{2}\right)$, then $v, v_{1}, v_{2} \in S_{k}^{\prime}$ and $c_{\Pi}\left(v_{i}\right)=c_{\Pi_{1}}(v)+\left(d\left(v_{i}, v\right), d\left(v_{i}, v\right)\right.$,
$\ldots, 0)$ for $i=1,2$. Since $d\left(v_{1}, v\right) \neq d\left(v_{2}, v\right)$, we have $c_{\Pi}\left(v_{1}\right) \neq c_{\Pi}\left(v_{2}\right)$.
Case C. If $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$, then $v_{2} \in S_{k}^{\prime}$ and we have the following two subcases:
Subcase C_{1}. If v is identified with a vertex of degree two of a cycle in G_{1}, then since the vertices of a cycle are divided into at least three classes, it is easy to see that v_{1} and v_{2} are at different distance from a class containing the vertices of the cycle, which implies that $c_{\Pi}\left(v_{1}\right) \neq c_{\Pi}\left(v_{2}\right)$. Subcase C_{2}. If v is identified with a vertex of degree one of G_{1}, then $d\left(v_{1} S_{i}\right)<d\left(v_{2}, S_{i}\right)(1 \leq i \leq k-1)$, which yields that $c_{\Pi}\left(v_{1}\right) \neq c_{\Pi}\left(v_{2}\right)$.

Thus, it is concluded that Π is a connected resolving partition of $V(G)$ and hence

$$
\operatorname{cpd}(G) \leq \operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-2 .
$$

Now, if $\operatorname{cpd}(G) \nsupseteq \operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-2$, then $\operatorname{cpd}(G)<\operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-2$. Since $\operatorname{cpd}\left(G_{2}\right)=2$, this implies that $\operatorname{cpd}(G)<\operatorname{cpd}\left(G_{1}\right)=k$. This suggest that there exists a connected resolving partition of $V\left(G_{1}\right)$ with cardinality less than the cardinality of Π_{1}, which is a contradiction. Therefore $\operatorname{cpd}(G) \geq \operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)-2$ and hence $\operatorname{cpd}(G)=\operatorname{cpd}\left(G_{1}\right)$.

The following result gives the sharp upper and lower bounds for the connected partition dimension of an identification graph of type-2.

Lemma 3.Let $G=G\left[G_{1}, G_{2}, u, v\right]$ be an identification graph of type-2. Then
$\max \left\{\operatorname{cpd}\left(G_{1}\right), \operatorname{cpd}\left(G_{2}\right)\right\} \leq \operatorname{cpd}(G) \leq \operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)$.
Moreover, both bounds are sharp.
Proof.Let $\operatorname{cpd}\left(G_{1}\right)=k$ with connected resolving partitions $\Pi_{1}=\left\{S_{1} S_{2}, \ldots, S_{k}\right\}$ of $V\left(G_{1}\right)$ and $\operatorname{cpd}\left(G_{2}\right)=l$
with connected resolving partition $\Pi_{2}=\left\{U_{1}, U_{2}, \ldots, U_{l}\right\}$ of $\quad V\left(G_{2}\right)$ Then, clearly, $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}, U_{1}, U_{2}, \ldots, U_{l}\right\} \quad$ is a connected resolving partition of $V(G)$ of cardinality $\operatorname{cpd}\left(G_{1}\right)+\operatorname{cpd}\left(G_{2}\right)$.

For the lower bound, there is no loss of generality in assuming that $\max \left\{\operatorname{cpd}\left(G_{1}\right)\right.$,
$\left.\operatorname{cpd}\left(G_{2}\right)\right\}=\operatorname{cpd}\left(G_{2}\right)=l . \quad$ Now, if $\operatorname{cpd}(G) \nsupseteq \max \left\{\operatorname{cpd}\left(G_{1}\right), \operatorname{cpd}\left(G_{2}\right)\right\}$, then $\operatorname{cpd}(G)<l$, which implies that a connected partition of $V\left(G_{2}\right)$ with the partite sets fewer than the partite sets of Π_{2} resolves all the vertices of G_{2}, which is a contradiction. Hence

$$
\operatorname{cpd}(G) \geq \max \left\{\operatorname{cpd}\left(G_{1}\right), \operatorname{cpd}\left(G_{2}\right)\right\} .
$$

G_{1}

G_{2}

Fig. 1: G_{1} : The complete graph K_{4} and G_{2} : The tree T.

For sharpness, consider the graphs G_{1} and G_{2} shown in Figure 1, which are the complete graph K_{4} and the tree T, respectively. Also consider a path P_{n} on $n \geq 2$ vertices with an end vertex y and a star $S_{1, n-1}$ with the vertex z adjacent to $n-1$ vertices $z_{1}, z_{1}, \ldots, z_{n-1}$ each of degree one. Then, note that, $\operatorname{cpd}\left(G_{1}\right)=4$, with connected resolving partition $\{\{u\},\{v\},\{w\},\{x\}\} ; \operatorname{cpd}\left(G_{2}\right)=3$ with a connected resolving partition, say $\{\{1,2,3,4\},\{5,6\},\{7\}\} ; \operatorname{cpd}\left(P_{n}\right)=2$ with a connected resolving partition, say $\left\{\{y\}, V\left(P_{n}\right) \backslash\{y\}\right\}$ and $\operatorname{cpd}\left(s_{1, n-1}\right)=n-1$ with a connected resolving partition, say $\left\{\left\{z, z_{1}\right\},\left\{z_{2}\right\}, \ldots,\left\{z_{n-1}\right\}\right\}$ [17]. Now, if $G=G\left[G_{1}, P_{n}, x, y\right]$ and $G^{\prime}=G^{\prime}\left[G_{2}, S_{1, n-1}, 5, z\right]$ are the identification graphs of type-2, then one can easily see that the connected partitions $\left\{\{u\},\{v\},\{w\},\{x\} \cup V\left(P_{n}\right)\right\}$ and $\left\{\{1,2,3,4\},\{5=z, 6\},\{7\},\left\{z_{1}\right\},\left\{z_{2}\right\}, \ldots,\left\{z_{n-1}\right\}\right\}$ of $V(G)$ and $V\left(G^{\prime}\right)$, respectively, are the minimal connected resolving partitions, which implies that $\operatorname{cpd}(G)=4=\max \left\{\operatorname{cpd}\left(G_{1}\right), \operatorname{cpd}\left(P_{n}\right)\right\}$ and $\operatorname{cpd}\left(G^{\prime}\right)=n+2=\operatorname{cpd}\left(G_{2}\right)+\operatorname{cpd}\left(S_{1, n-1}\right)$.

Let G be a unicyclic graph with unique cycle C. Let $u_{1}, u_{2}, \ldots, u_{k}$ be the vertices of C at which the subtrees of G are rooted. Let $T_{1}^{i}, T_{2}^{i}, \ldots, T_{\lambda_{i}}^{i}$ be the subtrees of G rooted at u_{i}, where λ_{i} denotes the number of subtrees rooted at u_{i}. Then G is said to be unicyclic graph of type-1 if and only if $\lambda_{i}=1$ for every i and $T_{1}^{i}=T_{i}$ is a path. Otherwise, G is unicyclic graph of type-2. The following result was proved for the connected partition dimension of unicyclic graphs of type-1 in [11].

Theorem 3.[11] Let G be a unicyclic graph of type-1, then $\operatorname{cpd}(G)=3$.

The following definitions, given in [3], will be used in the proof of next results. A vertex of degree at least three in a graph G will be called a major vertex of G. An end vertex u of G is said to be a terminal vertex of a major vertex v of G if $d(u, v)<d(u, w)$ for every other major vertex w of G. The terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex of G is an exterior major vertex if it has positive terminal degree. Let $\sigma(G)$ denotes the sum of the terminal degrees of the major vertices of G, and let $\operatorname{ex}(G)$ denotes the number of exterior major vertices of G.

Theorem 4.Let G be a unicyclic graph of type-2 with unique cycle C of order n. Then

$$
4 \leq \operatorname{cpd}(G) \leq 3+\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}}\left(\sigma\left(T_{j}^{i}\right)-e x\left(T_{j}^{i}\right)\right)+\sum_{i=1}^{k} \lambda_{i}
$$

where λ_{i} is the number of subtrees $T_{1}^{i}, T_{2}^{i}, \ldots, T_{\lambda_{i}}^{i}$ of G rooted at each vertex $u_{i}(1 \leq i \leq k \leq n)$ of the cycle C.

Proof.For the upper bound, first we assume that $k=1$. Then there are λ_{1} subtrees $T_{1}^{1}, T_{2}^{1}, \ldots, T_{\lambda_{1}}^{1}$ of G rooted at u_{1}. Let $G_{1}^{1}=G_{1}^{1}\left[C, T_{1}^{1}, u_{1}, v_{1}^{1}\right]$ be an identification graph of type-2, where v_{1}^{1} is a vertex of degree one in T_{1}^{1}. Then, since $\operatorname{cpd}(C)=3$ [17], we have $\operatorname{cpd}\left(G_{1}^{1}\right) \leq 3+\operatorname{cpd}\left(T_{1}^{1}\right)$, by Lemma 3. Let $G_{2}^{1}=G_{2}^{1}\left[G_{1}^{1}, T_{2}^{1}, u_{1}, v_{2}^{1}\right]$ be an identification graph of type-2, where v_{2}^{1} is a vertex of degree one in T_{2}^{1}. Then, again by Lemma 3, we have $\operatorname{cpd}\left(G_{2}^{1}\right) \leq 3+\operatorname{cpd}\left(T_{1}^{1}\right)+\operatorname{cpd}\left(T_{2}^{1}\right)$. Now, by continuing this identification process λ_{1} times, if $G_{\lambda_{1}}^{1}=G_{\lambda_{1}}^{1}\left[G_{\lambda_{1}-1}^{1}, T_{\lambda_{1}}^{1}, u_{1}, v_{\lambda_{1}}^{1}\right]$ is an identification graph of type-2, where $v_{\lambda_{1}}^{1}$ is a vertex of degree one in $T_{\lambda_{1}}^{1}$. Then, $\operatorname{cpd}\left(G_{\lambda_{1}}^{1}\right) \leq 3+\sum_{j=1}^{\lambda_{1}} \operatorname{cpd}\left(T_{j}^{1}\right)$, by Lemma 3 .

For $k=2$, there are λ_{2} subtrees $T_{1}^{2}, T_{2}^{2}, \ldots, T_{\lambda_{2}}^{2}$ of G rooted at u_{2}. Let $G_{1}^{2}=G_{1}^{2}\left[G_{\lambda_{1}}^{1}, T_{1}^{2}, u_{2}, v_{1}^{2}\right]$ be an identification graph of type-2, where v_{1}^{2} is a vertex of degree one in T_{1}^{2}. Then, $\operatorname{cpd}\left(G_{1}^{2}\right) \leq 3+\sum_{j=1}^{\lambda_{1}} \operatorname{cpd}\left(T_{j}^{1}\right)+\operatorname{cpd}\left(T_{1}^{2}\right)$, by Lemma 3. Let $G_{2}^{2}=G_{2}^{2}\left[G_{1}^{2}, T_{2}^{2}, u_{2}, v_{2}^{2}\right]$ be an identification graph of type-2, where v_{2}^{2} is a vertex of degree one in T_{2}^{2}. Then, again by Lemma 3, we have $\operatorname{cpd}\left(G_{2}^{2}\right) \leq 3+\sum_{j=1}^{\lambda_{1}} \operatorname{cpd}\left(T_{j}^{1}\right)+\operatorname{cpd}\left(T_{1}^{2}\right)+\operatorname{cpd}\left(T_{2}^{2}\right)$. Now, by continuing this identification process λ_{2} times, if $G_{\lambda_{2}}^{2}=G_{\lambda_{2}}^{2}\left[G_{\lambda_{2}-1}^{2}, T_{\lambda_{2}}^{2}, u_{2}, v_{\lambda_{2}}^{2}\right]$ is an identification graph of type-2, where $v_{\lambda_{2}}^{2}$ is a vertex of degree one in $T_{\lambda_{2}}^{2}$. Then, $\operatorname{cpd}\left(G_{\lambda_{2}}^{2}\right) \leq 3+\sum_{j=1}^{\lambda_{1}} \operatorname{cpd}\left(T_{j}^{1}\right)+\sum_{j=1}^{\lambda_{2}} \operatorname{cpd}\left(T_{j}^{2}\right)$, by Lemma 3.

Similarly, by continuing this process up to the k th stage, let $G=G_{\lambda_{k}}^{k}=G_{\lambda_{k}}^{k}\left[G_{\lambda_{k}-1}^{k}\right.$,
$\left.T_{\lambda_{k}}^{k}, u_{k}, v_{\lambda_{k}}^{k}\right]$ be an identification graph of type-2, where $v_{\lambda_{k}}^{k}$ is a vertex of degree one in $T_{\lambda_{k}}^{k}$. Then, $\operatorname{cpd}(G) \leq 3+\sum_{i=1}^{k-1} \sum_{j=1}^{\lambda_{i}} \operatorname{cpd}\left(T_{j}^{i}\right)+\sum_{j=1}^{\lambda_{k}-1} \operatorname{cpd}\left(T_{j}^{k}\right)+\operatorname{cpd}\left(T_{\lambda_{k}}^{k}\right)$, by Lemma 3. This implies that $\operatorname{cpd}(G) \leq 3+\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}} \operatorname{cpd}\left(T_{j}^{i}\right)$. Since for any tree T which is not a path, $\operatorname{cpd}(T)=\sigma(T)-e x(T)+1$ [17], we have

$$
\operatorname{cpd}(G) \leq 3+\sum_{i=1}^{k} \sum_{j=1}^{\lambda_{i}}\left(\sigma\left(T_{j}^{i}\right)-e x\left(T_{j}^{i}\right)\right)+\sum_{i=1}^{k} \lambda_{i}
$$

For the lower bound, it is a routine exercise to see that $\operatorname{cpd}(G)<4$ would be possible only if G is a unicycle graph of type-1 or G is not a unicyclic graph.

We call a path of order $n \geq 2$ rooted at a (an exterior) major vertex, say v, in a tree, a stem of the tree for v. The following is a useful proposition, and may be is of independent interest.

Proposition 1.Let T be a tree which is not a path and e is an edge. Then (1) $\sigma(T+e) \geq \sigma(T)-2$ and (2) ex $(T+$ $e) \leq e x(T)+2$.
Proof.Let u and v be two distinct non-adjacent vertices of T such that $e=u v$ in $T+e$.
(1) One can easily see that $\sigma(T+e)=\sigma(T)-2$ if and only if u and v are the terminal vertices. Otherwise, $\sigma(T+$ e) $>\sigma(T)-2$.
(2) It is straightforward to see that $e x(T+e)=e x(T)+2$ if and only if u and v are the non-terminal (non-major) vertices belonging to two different stems (a) for the same exterior major vertex having at least three stems, or (b) for two distinct exterior major vertices having at least two stems. Otherwise, $e x(T+e) \leq e x(T)+1$.

In [17], it was shown that $\operatorname{cpd}(G) \geq \sigma(G)-e x(G)+1$ for any non-trivial connected graph G. The next result shows that how the connected partition dimension is changed when a single edge is added to a tree T.

Theorem 5.Let T be a tree which is not a path and e is an edge. Then

$$
\operatorname{cpd}(T)-4 \leq \operatorname{cpd}(T+e) \leq \operatorname{cpd}(T)+1 .
$$

Proof.Since $\operatorname{cpd}(G) \geq \sigma(G)-\operatorname{ex}(G)+1$ and $\operatorname{cpd}(T)=\sigma(T)-e x(T)+1$ [17], so by Proposition 1, we have $\operatorname{cpd}(T+e) \geq \sigma(T+e)-e x(T+e)+1 \geq \operatorname{cpd}(T)-4$.

For the upper bound, suppose that T contains p exterior major vertices v_{1}, v_{2}, \ldots,
v_{p}. For each i with $1 \leq i \leq p$, let $u_{1}^{i}, u_{2}^{i}, \ldots, u_{k_{i}}^{i}$ be the
terminal vertices of v_{i}. For each i with $1 \leq i \leq p$, let S_{j}^{i} be the stem for v_{i} in T for all $1 \leq j \leq k_{i}$ and let x_{j}^{i} be a vertex in S_{j}^{i} that is adjacent to v_{i}. Then let P_{j}^{i} be the $x_{j}^{i}-u_{j}^{i}$ path in S_{j}^{i} for all $1 \leq i \leq p$ and $1 \leq j \leq k_{i}$. Let $U=\left\{v_{1}, u_{1}^{1}, u_{1}^{2}, \ldots, u_{1}^{p}\right\}$ and let T_{1} be the subtree of T of smallest size such that T_{1} contains U. Let $U_{0}=V\left(T_{1}\right)$ and $U_{j}^{i}=V\left(P_{j}^{i}\right)$ for all $1 \leq i \leq p$ and $2 \leq j \leq k_{i}$. Define a partition $\quad \Pi \quad$ of $\quad V(T) \quad$ by $\Pi=\left\{U_{0}, U_{j}^{i} ; 1 \leq i \leq p\right.$ and $\left.2 \leq j \leq k_{i}\right\}$. Then Π is connected and resolving as was shown in [17]. It is noted that the vertices in one class are separated by more than one class. Let C denotes the unique cycle in $T+e$ and let $e=u v$ in $T+e$, where u and v are two distinct vertices of T. We consider the following two cases:
Case 1. If C contains at least two major vertices, then the connected resolving partition Π for T is also a connected resolving partition for $T+e$. So $c p d(T+e) \leq c p d(T)$.
Case 2. If C contains only one major vertex, say x, then there are two subcases.
Subcase 1a. If u and v belong to two different stems for x, then the connected resolving partition Π for T is also a connected resolving partition for $T+e$. So $\operatorname{cpd}(T+e) \leq \operatorname{cpd}(T)$.
Subcase lb. If u and v are the non-terminal vertices belonging to the same stem for x having at least three vertices, then we define a new partition by putting any vertex of that stem other than the major vertex in a new class. This will be a connected resolving partitions for $T+e$. So $\operatorname{cpd}(T+e) \leq|\Pi|+1 \leq \operatorname{cpd}(T)+1$. Hence, by summarizing all the above discission, we have

$$
\operatorname{cpd}(T)-4 \leq \operatorname{cpd}(T+e) \leq \operatorname{cpd}(T)+1
$$

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'Ak and L. S. Ram, Network discovery and verification, IEEE J. on Selected Area in Communication, 24(12)(2006) 2168-2181.
[2] P. S. Buczkowski, G. Chartrand, C. Poisson and P.Zhang, On k-dimensional graphs and their basis, Periodica Math. Hung., 46(1)(2003) 9-15.
[3] G. Chartrand, L. Eroh, M. A. Johnson and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Disc. Appl. Math., 105(2000) 99-113.
[4] G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimension of a graph, Preprint
[5] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math., 59(2000) 45-54.
[6] G. Chartrand, E. Salehi and P. Zhang, On the partition dimension of a graph, Congress. Numer., 131(1998) 55-66.
[7] W. Goddard, Mastermind revisited, J. Combin. Math. Combin. Comput., 51(2004) 215-220.
[8] W. Goddard, Static mastermind, J. Combin. Math. Combin. Comput., 47(2003) 225-236.
[9] F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin., 2(1976) 191-195.
[10] M. Imran, S. A. Bokhary, A. Q. Baig, Families of rotationally symmetric plane graphs graphs with constant metric dimension, Southeast Asian Bulletin of Mathematics 36(2012) 663-675.
[11] I. Javaid, On the connected partition dimension of unicyclic graphs J. Comb. Math. Comb. Comp., 65(2008) 71-77.
[12] I. Javaid, M. N. Azhar and M. Salman, Metric dimension and determining number of Cayley graphs, World Applied Sciences Journal, 18(12)(2012) 1800-1812.
[13] I. Javaid, N. K. Raja, M. Salman and M. N. Azhar, The partition dimension circulant graphs, World Applied Sciences Journal, 18(12)(2012) 1705-1717.
[14] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs. Discrete Appl. Math., 70(1996) 217-229.
[15] C. Poisson and P. Zhang, The metric dimension of unicyclic graphs, J. Comb. Math. Comb. Comp., 40(2002) 17-32.
[16] V. Saenpholphat and P. Zhang, Conditional resolvability in graphs: A survey, IJMMS, 38(2004) 1997-2017.
[17] V. Saenpholphat and P. Zhang, Connected partition dimension of graphs, Discuss. Math. Graph Theory, 22(2002) 305-323.
[18] M. Salman, I. Javaid and M. A. Chaudhry, Resolvability in circulant graphs, Acta. Math. Sinica, English Series, 28(9)(2012) 1851-1864.
[19] A. Sebő and E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2004) 383-393.
[20] P. J. Slater, Leaves of trees, Congr. Numer., 14(1975) 549559.

[^0]: * Corresponding author e-mail: ijavaidbzu@gmail.com

