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Abstract: Transmuted probability distribution corresponding to a strbution function G(x) is defined as
F(X) = (1+A)G(X) —AG(x)%; |A| < 1. In this paper we study some general properties of thertratesl probability distribution
function in relation to the base distributi@(x). In particular the transmuted exponentiated Fré¢f&F ) distribution is studied in
detail. The different methods of estimation of parameteixchsas, weighted least squares and the maximum likelihotchages of
this distribution are studied. Finally, a real time datalgsia is performed for this distribution and it is found thhts class is more
flexible class and it shown that tHeEF distribution is much better fit for data’s originally fittechéh analysed using Fréchet or
Exponentiated Fréchet distribution.
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1 Introduction and Literature

A random variable is said to have transmuted distribution if its cumulativetidbution (cdf) is given by

F(X) = (1+2)G(Xx) —AG(x)? [A] <1 (1)
whereG(x) is the cumulative distribution function of the base randa@riable. By differentiation of1) yields,
f(x) =g(x)[(1+A) = 2AG(x)] ()

wheref (x) andg(x) are the corresponding probability density functions witimeilative distribution functionk (x) and
G(x) respectively. This is the quadratic rank transmutation ,nsdied extensively in Shaw et. al][ Observe that at
A = 0 we have the distribution of the base random variable.

1.1 Transmutation Map

In this subsection we demonstrate transmuted probabilgtirilution. LetF and G be the cumulative distribution
functions, of two distributions with a common suppo#t™. The general rank transmutation as given by Shaw etlal. |
is defined as

GRr(U) = G(F(u)).

Note that the inverse cumulative distribution functiorodk®own as quantile function is defined as

F~1(u) = infuer{F(x) > u} for ue[0,1].
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The functionGr(u) map the unitinterval = [0, 1] into itself, and under suitable assumptions are mutuatgageand they
satisfyGr(0) = 0 andGgr(1) = 1. A Quadratic Rank Transmutation M&QRT M) is defined as

Gr(U) =u+Au(l—u),|A[ <1, 0<u<], ©))
from which it follows that the cumulative distribution futh@ns satisfy the relationship
F(X) = (1+A)G(x) — AG(x)? 4)
whenG(x) is absolutely continuous on differentiation g {/ields,
FO) =g()[(1+A) —2AG(x)] Q)

where f(x) and g(x) are the corresponding probability density functions aiséed with cumulative distribution
functionsF (x) andG(x) respectively. An extensive information about the quadnathk transmutation map is given in
Shaw et. al. J]. Observe that aAh = 0 we have the distribution of the base random variable. THewWag Lemma
proved that the functiofi(x) given in () satisfies the property of probability density function.

Lemma 1.1.f(x) given in () is a well defined probability density function.
Proof. Rewriting f (x) asf(x) = g(x)[(1 — A (2G(x) — 1))] we observe that(x) is non-negative. Also,

Jfx)dx= [ (1+A)g(x)dx—2A [ g(x)dx
7 7

B
—1FA-A
=1

Hencef(x) is a well defined probability density function. We céllx) the transmuted probability density function
with base densitg(x). Further properties of the transmuted distribution is istddh Section 2.

Also many authors have worked with the generalization of semll-known distributions. Aryal and Tsokog][
defined the transmuted generalized extreme value distiband they studied some basic mathematical charactsristi
of transmuted Gumbel probability distribution and it haemebserved that the transmuted Gumbel can be used to model
climate data. Also Aryal and Tsoko8][presented a new generalization of Weibull distributiolezhthe transmuted
Weibull distribution.

Recently, Aryal #] proposed and studied the various structural propertieghef transmuted Log-Logistic
distribution. Khan and King §] introduced the transmuted modified Weibull distributiorhieh extends recent
development on transmuted Weibull distribution by Aryaladt [3] and they also studied the mathematical properties
and maximum likelihood estimation of the unknown paranset8ubsequently, Elbatal and Ary#l [presented on the
Transmuted additive Weibull distribution. Also, Elbatal] [studied the Transmuted Modified Inverse Weibull
distribution. Merovci 8] introduced the Transmuted Rayleigh distribution, Tranted generalized Rayleigh distribution
[9], and Transmuted Lindley distributionl(]. Elbatal and Elgarhy 11] studied the Transmuted Quasi Lindley
distribution.

Here we make an attempt to establish a generalization fooleqtiated Fréchet distribution. Fréchet distributias
introduced by a French mathematician named Maurice Ft&tB&8-1973) who had identified before one possible limit
distribution for the largest order statistic ihd] . The Fréchet distribution has been shown to be useful fedeting and
analysis of several extreme events ranging from accetéfifgetesting to earthquakes, floods, rain fall, sea cusramnd
wind speeds. Therefore Fréchet distribution is well sbitecharacterize random variables of large features. &aftins
of the Fréchet distribution in various fields given in Havlpl3] showed that it is an important distribution for modeling
the statistical behavior of materials properties for aetgrof engineering applications. Nadarajah and K&t fliscussed
the sociological models based on Fréchet random varidblether, Zaharim et. al1f] applied Fréchet for analyzing the
wind speed data. Mubarak€)] studied the Fréchet progressive type-Il censored déatahimomial removals. The Fréchet
distribution is a special case of the generalized extrerue\gistribution. This type-1l extreme value distributi@fréchet)
case is equivalent to taking the reciprocal of values frontaadard Weibull distribution. The cumulative distributio
function (CDF) and probability density function (PDF) for&€het distribution are given by

9\B
X

Fx0,8)=e  ,x>0,68>0 B >0.

where the paramet@ > 0 determines the shape of the distribution &nd 0 is the scale parameter. And

f(x,0,8) = g <9>B+1e(§)ﬁ

X
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Recently, a new three parameter distribution, named aseqi@mted Fréchet (EF) distribution has been introduged b
Nadarajah and Kotzl[7] as a generalization of the standard Fréchet distribufidve exponentiated Fréchet distribution
is considered to be one of the newest model of lifetime modélsre are over fifty applications ranging from accelerated
life testing through to earthquakes, floods, horse raciaigfall, queues in supermarkets, sea currents, wind spsedls
track race records (Kotz and NadarajaR]). We define the new distribution by the cumulative disttibo function

a
(8 B
G(x,0,B,0)=1— ll—e , x>0 (6)
where the shape parameter- 0. The corresponding probability density function is givosn
@ @
g(x,0,B,a) = apefx HPe 1-e x> 0. (7)

In this article we present a new generalization of Expometi Fréchet distribution called the Transmuted
Exponentiated FréchéT EF) distribution. We will derive the subject distribution ugithe quadratic rank transmutation
map given in 8) Shaw et. al. I]. The present paper is organized as follows. The Exporteuditigréchet distribution is
introduced in Section 3. Various aging properties are atadiad. In Section 4 we discuss the statistical properties
include quantile functions, moments, moment generatingtian. The distribution of the order statistics is expesss
Section 5. Reliability characteristics of the distributiz studied in Section 6. The least squares and weightetl leas
squares estimators of the parameters offtB& distribution are introduced in Section 7. In Section 8 we kygd the
maximum likelihood estimation to estimate the unknown peaters. A simulation study has been conducted at Section
9 and a real time applications are shown in Section 10. Weleda®ur study by observing that tA€&EF is a better fit

for data’s originally fitted and analysed using Fréchetxpd@hentiated Fréchet distribution.

2 General Properties

In this section we study the properties of the transmutedabbe in relation to the base random variable. Many
characteristics of the transmuted distribution functi@mssured by the behaviour of the baseline distributiontfoimc
The next theorem shows the relationship between momenthdatransmuted distribution once the baseline moments
exists.

Theorem 2.1.Let ®(X) be a non-degenerate measurable function of the randonbleXawith transmuted distribution
as in @). If Ep(®(X)) denotes| ®(X)f(x)dx, then
8%

Er (®(X)) = (1+A)Eg(®(X)) — 2A Eg[®(X)G(X)] (8)
Proof. F
oorem®) Er(@(X)) = [ @(X)[(1+A)g(X) ~ 2Ag(x)G(x)]dx
5
= (1+/\)EG(®(X))—2/\;¢>(X)g(x)G(x)dx
— (1+2)Es(®(X)) — 2A Eg[®(X)G(X)]

Corollary 2.1. If Lg(t) denotes the Laplace transform of the base distribu@oithen the Laplace transform of the
transmuted distributioF is,
Le(t) = (1+A)La(t) — 2AEgle X'G(X)]; |t| < L.

Corollary 2.2 If l(F) = [X f(x)dx thent;(F) = (14 A) K (G) — 2AEg[X"G(X)].

Theorem 2.2.ForA > 0,
(i). If F is a convex distribution function implies th@tis also a convex distribution function.
(ii). Conversely, ifG is a convex distribution theR is convex if and only if,

22 g%(x)

0= "4

, forall x € .7,
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where dg(%
g(x
g0 =4
Proof. Let F be a convex distribution function. Then by definition, for> 0, f/(x) > 0 which in turn implies

(1+ Mg (X) — 2A g (X)G(x) — 2Ag*(x) > O

oI t0 s agi

9(x)
: )
S dgx) >2 a0

=dg(x)>0foralxe.7.

Hence proving (i). To prove (ii) observe th@tis a convex distribution function implieg(x) > 0 for all x € .. Hence
from (i) it follows thatF is a convex distribution function if and only if
3
F(x) > 2)\/g (x).
g

Hence the result.

The next few result studies the ageing properties of thestrarted distributior () in relation toG(x). One of the
characteristic in reliability analysis is the hazard ratadtion (HF). For an absolutely continuous general transmuted
distribution it is defined by

f (1+2)g(x) — 2AG(x)g(x

o =1-F = 1—(1+2)G(X) +AG(x)2 ©

The following results are now immediate.

Theorem 2.3.For A < 0 (A > 0) the transmuted distributidR(x) has a increasing failure rate distribution (decreasing
failure rate distribution) if and only i65(x) is an increasing failure rate distribution (decreasinlyfairate distribution).

Proof. From ©)

(10)

hro = ha(X) {1 AGK) }

16k

where hg(X) = % andG(x) = 1— G(x).

The result follows by observing th%lJr %} is increasing whenever far < 0, A = 1.

Hence the result.
Hence it is evident that in general the transmuted distidbufunctions do not behave in a similar manner as the base

distribution. Hence it is of interest to study the transndudestributions on specifying the base distribution. Mated by
this fact, we look into particular transmuted distribuson

3 Transmuted Exponentiated Fiéchet Distribution

In this section we introduce the Transmuted FréqieEF) distribution. Now combining & and (/) we have the
cumulative distribution function of Transmuted Exponeted Fréchet distribution

()
1+A[1-e (11)

whereA is the transmuted parameter. The corresponding probadéitsity function is given by
"
frer(x.6.8,0,2) = apePx Fe 7 x(q(x)?
X [(1 —A)+2A (q(x))“]

—
PS>}

Free (% 6,8.0,A) = [1— (1—e
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Fig. 1: Probability density function of Transmuted Exponentigfeéichet distribution fof = 1 and different values of, o andf3

(¢ B
fTEF(Xaevﬁvaa)\) :(1_)‘)GBGBX_(1+ﬁ)e ( ) (q(x))a_l
(¢ B
+2Aaﬁeﬁx—<1+ﬁ>e( ) (q(x))%a—t (12)

It is observed that the Transmuted Fréchet distributiamigxtended model to analyse data from complex situations
and it generalizes some of the widely used distributionsifsiance wheif8 = 1 it reduces to transmuted exponentiated
inverted exponential distribution as discussed in Elbetahl. [L9]. The exponentiated Fréchet distribution is clearly a
special case fok = 0. Whenf3 = A = 1 anda = 0.5 then the resulting distribution is an inverted exponéudigtribution
with parameteif. Figure 1 illustrates some of the possible shapes of theghitity density function of a Transmuted
Exponentiated Fréchet distribution for selected valdgh@®parametera, 3,A and for6 = 1.

4 Statistical Properties
This section is devoted to studying statistical propeniethe (TEF) distribution, more specifically quantile function,
moments and moment generating function.

4.1 Quantile Function and Random Number Generation

We present a method for simulating from fhEF distribution (L1). The quantile function corresponding tblj is

Q(u) =F *(u)
—Fl
o) inlis <()\—1)+ ()\+1)2—4)\u> 13)

Qe

2A

Simulating theT EF random variable is straight forward process. Udbe a uniform variate on the unit interval (0,1).
Thus, by means of the inverse transformation method, weid@enthe random variabl¥ is given by

-1
1 B

_ 2_ a
x— 0 1_<(A 1)+ g+1) 4)\u> |

which follows (12), that isX ~ TEF(8,,a,A). This process is explained in Section 9 through a simulatiody.
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4.2 Skewness and Kurtosis

In this subsection we present the shortcomings of the clalskurtosis measure are well-known. There are many heavy
tailed distributions for which this measure is infinite. 8dyecomes uninformative precisely when it needs to be. The
Bowley skewness (Kenney and Keepin2@)]) is one of the earliest skewness measures defined by
Qo.75—2Qo5+ Qo.25

Qo.75— Qo.25

and the Moors Kurtosis (see Mooil]) based on octiles is defined by

S =

K Qo.875— Qo.625— Qo375+ Qo.125
u — .
Qo.75— Qo.25

WhereQ(u) represents the quantile function.

4.3 Moments

In this subsection we discus$ moment forTEF distribution. Moments are necessary and important in aayssical
analysis, especially in applications. It can be used toystiuiel most important features and characteristics of ailoligion
(e.g., central tendency, dispersion, skewness and ks)ytosi

Theorem 4.1.If X hasTEF (6,8, a,)), then thert™ moment ofX () is given by the following

W= i(—l)l’efaﬂr@‘%)r(l—%) Rl PN ] (14)

Proof. Let X be a random variable with density functiot2f. Ther!" ordinary moment of th¢TEF) distribution is
given by

P OL L
+2/\a36ﬁ/x“p*le [1_e ] dx (15)

/6\B a-1 " (e B
ll—e(Y) } :j;(_ni(“j‘l)e () (16)

substituting from 16) into (15) we get

Setting

= 20 -1 a($)”
+2A Y (—1)] ( )aBGB XB-le dx. (17)
3 /

let (j+1) (2)° =t, we get
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where,
- foen () e ()

Which completes the proof.

Based on the first four moments of tAd&F distribution, the coefficient of variation, the measureskéwness and
kurtosis of theT EF distribution can be obtained according to the followingtien

CVrer = K2y (18)
H1
o 3
MSrer — Hs 3#1#2;2% (19)
(M2 — pil2
and , .
Ha — ALy Uz + 6T Ho — 37
MKrgr = (20)
(b2 — pf(6)]2
4.4 Moment Generating Function
In this subsection we derived the moment generating funafd EF distribution.
Theorem 4.2.1f X hasTEF distribution, then the moment generating functddr(t) has the following form.
Mx() = 3 5 (-6 1+ ) B 5 K() @)
X = | — [ —
rZOjZO r! B

where,

<= |a-n (72 ()]

Proof. We start with the well known definition of the moment genemgfiunction given by

Mx (t) = je‘ free (X)dx
0
= Sy frer (o= 3 ik
=3 3 LDt g

o
Il
o

X

[am ()2 ()

which completes the proof.

5 Distribution of the Order Statistics

In fact, the order statistics have many applications irakglity and life testing. The order statistics arise in thedy of
reliability of a system. LeXy, X, ..., X, be a simple random sample frohieF (6, 3, a, A, x) with cumulative distribution
function and probability density function as ifil) and (L2), respectively. LeX1.n) < X < ... < Xy denote the

(@© 2014 NSP
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order statistics obtained from this sample. In reliabllitgrature,X;;.,) denote the lifetime of atn—i +1)— out— of—n
system which consists efindependent and identical components. Then the pifigf ,1 <i <nis given by

1

i Trn P %Ol R-Fx @I i (x @) (22)

fi:n(x) =
where® = (6, 3,a,A). Also, the joint pdf ofXj.q), X(j:n)y @and 1<i < j <nis

fi:jn(Xi,Xj) =C [F(xi)]ifl[F (XJ) _ F(Xi)]jfi’l
< (1= o)™ 106 0) 05

where
n!
(=D i)
We defined the first order statisti&ﬁ@i) = Min(Xy, Xa,..., Xn), the last order statistics a8y = Max(Xq, X2, ..., Xn) and
median ordeXp,, 1 .

5.1 Distribution of Minimum , Maximum and Median

Let Xg, Xp,..., Xn be independently identically distributed order randomalaes from the transmuted Exponentiated
Fréchet distribution having first, last and median ordebjbility density function are given by the following

fn(X) =n[1—F(x, ®)]" f(x, ®)

=n{1-[1-n%] [1+AnE)] }n_l

x aBOPx P (1) he

x[(1=2)+2Ahg, | (24)

fren(X) =N [F (X, @)] " f (X, @)

=n{[1-n¢,] [1+ AR }n_l

X aBOFX M) (1 hyhe [(1_A)+2Ahgn)} (25)

and

(2m+1)!
mim!

frng 10(X) = (F()™(1— F (%)™ (%)
:% {[1= o] [ 0]}

] o))
x aBOPX P (1= himea)T L

x[(1=2)+22h, | (26)

g
h<s> = (1 — ef(%> )

where
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5.2 Joint Distribution of the it and jt" Order Satistics
The joint distribution of thé!" and j'" order statistics from transmuted Exponentiated Fréchee( distribution is
fisin(%, 1) =C [F06))" ™ [F () — F ()]~
X [1=F(xp)]" (%) F(x))
—c{[1-ng)| [1+an] }'_1
x{ [1=ng| [1+Ane) | - [2-n%)] [1+Ang)] }j_i_l
x {1— {1— hf’n} {1+Ah;’j)} }n_j

AP (g )he [(1— A)+2) hg)}

—(14B) —
P (1 ng)ne {(1—/\)+2)\hf’j)} @27)

6 Reliability Characteristics

The reliability function(RF) of the transmuted Exponentiated Fréchet distributioreisodled byFter (X) also known as
the survivor function and is defined as

Frer(x) =1—Frer(X)

)

It is important to note thaF g (X) + Frer (X) = 1. For the Transmuted Exponentiated FrédAeEF) distribution the
hazard function is given by

PS>}

:1—

(28)

_ frer(¥)
hree(x) = TEF(X)
hrer (X) = Ai(%&?@) (29)
where,
W= (a,B,G,)\),
P o a-1
A(w) = aBePx 1Ple (%) {1—e(x) ] ,
B(w) — {(1—/\)+2)\ (1_6_(%5)1 ,
and

S 1| S

Figure 2 illustrates the behaviour of the hazard rate fonotif a transmuted Exponentiated Fréchet distribution for
the different choices of parametérsa, 3 and fixing8 = 1.
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Jaks 05 g1 pons ; o —
1 : 3 4 5

Fig. 2: Hazard rate function of Transmuted Exponentiated Frédisgtibution for@ = 1 and different values of, a andf3

Theorem 6.1.If a = 8 = A =1, then the failure rate is increasingdf< 0 and is decreasing § > O.

Proof. If o = 6 = A =1 then

><|I—‘

h(x) =

'!2

B( )1+B
el

)

Theorem 6.2.If B = a = 1 then the failure rate is monotonically decreasing for bloth 0 andA > 0.

which is increasing foff < 0 and is decreasing f¢ > 0.

Proof. If 8 = a = 1 then we have (Figure 3)

It can be easily verified thdi(x) is decreasing for both < 0 andA > 0. Note that

h(0) = and h(c) =0

The cumulative hazard function of the transmuted Expoatedi Fréchet distribution is denoted bigr(x) and is
defined as

NTIA NOAAN
X X

(%) (%)
HTEF(x):—In 1-11-e 1+A[1-e (30)

Similar to the hazard rate function, we can also illustrageliehaviour of the cumulative hazard rate function foredéht
choices of parameters.

7 Least Squares and Weighted Least Squares Estimators

In this section we provide the regression based estimatdteainknown parameters of the transmuted Exponentiated
Fréchet distribution which was originally suggested bya8wVenkatraman and Wilso2%)] to estimate the parameters
of beta distributions. It can be used some other cases algpadSeYy,Ys, ..., Y, is a random sample of sizefrom a

distribution functionG(.) and suppos¥(;); i = 1,2,...,n denotes the ordered sample. The proposed method uses the
distribution of G(Y;)). For a sample of sizen, we have E(G(Y;j))) = 7t V((G(Y(j) = % and
(@© 2014 NSP
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Fig. 3: Hazard rate function of Transmuted Exponentiated Frédis&tibution fora = =1

Cov(G(Y(j)),G(Y)) = % for j <k, see Johnson, Kotz and Balakrishn@8][ Using the expectations and the

variances, two variants of the least squares methods caseloe u
Method 1 (Least Squares Estimators)Obtain the estimators by minimizing

i (G(Yn') - #1)2 (31)

=1

with respect to the unknown parameters. Therefore in cag@bfdistribution the least squares estimator®g8, o and
A, sayGLSE BLSE O <, and/\LSE respectively, can be obtained by minimizing

3 {f-ero foe g om0}

where,

N(j) = {(1 A)+22e % (1+§X+“>1)}

with respect tdd, 3, a andA.

Method 2 (Weighted Least Squares Esimators) The weighted least squares estimators can be obtained by
minimizing
n J 2
W (G(Y- — —) (32)
121 W hi1
with respect to the unknown parameters, where

1 ~ (n+1)2(n+2)

Wj =

Therefore in case ofTEF distribution the weighted least squares estimators &f3,a0 and A, say,
B\NLSE ﬁWLSE, awLse, and)\WLSE respectively, can be obtained by minimizing

5 wf [1-eo [ 224 - g}

where,
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P(j)= [(1—-A)+2 e P01+ m)
a+1

with respect to the unknown parameters only.

8 Estimation and Inference

In this section, we determine the maximum likelihood estes@MLESs) of the parameters of tHEEF distribution from
complete samples only. L&, X5, ..., X, be a random sample of sitsfrom TEF (6,3, a,A) is given by

LogL =nloga + nlogf3 +nBlog6
n n

—(1+B) S logx; — 0F § x.P

@+ 3 loon 67 3 x

+Ha—1) ibg {Le (wﬂi
+§ilog [(1—)\)+2)\ (1_e<x(9i)>ﬂ)a]

The log-likelihood can be maximized either directly or bylviimg the non-linear likelihood equations obtained by
differentiating 83). The components of the score vector are given by

(33)

o \P\ (o) o (34)
ZABa(le(X(i))) ;(W) i_)ﬂ

ZA(le(X?))ﬁ) alog(le(x(ei))ﬁ) (35)
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B
dlLogL n n 6 6
=—+nlogb - logx og| — —
BB J Zi ? Zi g<x<i>> <X<i>>

B
(1—A)+2A 1—e_<%>

(36)

where,

and

— =0. (37)

o B
(1-A)+2A 1—e7<%)

We can find the estimates of the unknown parameters by maxilikefihood method by setting the above non-linear
equations 34) and @7) to zero and solve them simultaneously. Therefore, we hawsé mathematical package to get
the MLE of the unknown parameters. This has been explaimeddih simulation study and a real time data analysis in
the following sections. Also, all the second order derxegiexist. Thus we have the inverse dispersion matrix isxgye

g 0 Vse Veg Vea VS/\
Blon||B]| Vo Vg Vaa Var (38)
9 g Vae Vaﬁ Voror Va)\
A Vie V)\B Vaa Vax

Voo Vop Voa Vea
vio_g| Ve Vea Vi

aa VaA

Vi

where s s
9%LogL 9%LogL 9%LogL
V99—72_7VBB_TEZQ_7VGG T:g},VA ZZT)?zg—
9L 9%Lo 0°LogL _ d%LogL _ 0¢LogL
Vag = aaae vVaﬁ dadp ,Veg — 969p » Vor = 9009

By solving th|s inverse dlspersuon matrix these solutiornil$ yield asymptotic variance and covariances of these ML
estimators for/\ ) aandB Using @38), we approximate 10@ — a)% confidence intervals foA,3,6 and a are

determined respecnvely as
% Vgg, B:l:Zy\/VE , CY:l:Zy \/Vgg and A ﬂ:Zy\/VA

wherez, is the upper 10pthe percentile of the standard normal distribution.
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9 Simulation Study

Here a simulation study to determine the biases, standaidtibens, and Root Mean Squared Errors(RSMES) of the
estimators discussed in previous section is presentedoW&der a simulate sample of sizes- 50,100, 150,200 for the
initial values of@ = 1.25,a = 0.75, 3 = 1.5 andA = 0.4. For each combination @, 6,a, A,andn we performed 100
replications of the simulation. The results are presentéible 1.

Examining from Table 1, we observe that as the sample sizeases, biases, standard deviations and RSMBs of

B, 0 andA decrease steadily.

Table 1: Mean, Bias,Standard Deviation and RSMBEPotr, 8 andA Based on 100 Replications for Transmuted ExponentiatedHet”
distribution obtained usinlylaximumLikelihood method

Sample Sizén) Parameter Estimates Mean Bias Standard Deviation RSME
] 1.590291 0.340291 1.560374 2.22248620

50 a 0.913857 0.163857 1.105894 1.43035176
B 1.767180 0.267180 0.914291 1.98758547

A 0.619600 0.219600 0.416374 0.74534361

0 1.445665 0.195665 2.120037 2.55725595

100 a 0.689613 0.060387 0.412042 0.80227600
B 1.666431 0.166431 0.626099 1.77906600

A 0.555016 0.155016 0.455785 0.71637200

0 1.752899 0.502899 4.948343 5.2265015

150 a 0.824261 0.074261 1.902299 2.06453875
B 1.836286 0.336286 0.724880 1.97286495

A 0.571191 0.171191 0.289819 0.63986206

0 1.79253 0.54253 4.27201 4.61330057
200 a 0.647814 0.102186 1.154068 1.318464614
E 1.753049 0.253049 0.837058 1.940852968
A 0.477469 0.077469 0.414893 0.631196067

10 Data Analysis

In this section we will analyse a real data set to explain fhgr@priateness of the transmuted Exponentiated Fréchet
distribution for modelling wind speed data. We will providemparison of the results with the Fréchet and exponewtiat
Fréchet distribution. Note that Fréchet distributionaisub-model of both the transmuted Exponentiated Féchtt an
Exponentiated Fréchet distribution.

The data used for the present study were obtained from ayygalblished book at Permerhatian Cuaca Harian Pusat
Pengajian Sosial, Pembangunan & Persekitaran (PPSPR)|tiIFakins Sosial, & Kemanusiaan (FSSK), Universiti
Kebangsaan Malaysia (UKM) during the year 2004 to 2006, dahat. al.[L5]. The data observation was done by
positioning a rotating cup type anemometer on the statiawpien spaces free of obstacle at 3 meters height up on the
Cameron Highland, Malaysia. Wind speeds were observeq é@seconds and averaged over 5 minutes period. The
5-minutes averaged data were further averaged over oneAioiine end of each hour, the hourly mean wind speed was
calculated and stored sequentially in a permanent memargwkedge of the statistical properties of wind speed is
essential for predicting the energy output of a wind enemgwersion system.

We fit the data into Fréchet distribution, Exponentiate@chet distribution, Transmuted Exponentiated Fréchet
distribution and made comparison with the estimated patemealues. The results are presented in Table 2.

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 3, 379-394 (2014)www.naturalspublishing.com/Journals.asp NS P 393

Table 2: Estimated Parameters of Fréchet, Exponentiated Fraddetransmuted Exponentiated Fréchet Distributions

Year Distribution Parameter Estimates Log-likelihood
B 6 a A

2004 Fréchet 3.251 1.569 —-10.811
Exponentiated Fréchet 23.4546 579241  1.00154 ~7.19111x 10%®
Transmuted Exponentiated Fréchet 1.12663 4.64288  18.64D.720222 —9.32402

2005 Fréchet 3.000 1.262 —13333
Exponentiated Fréchet 93.4345 9.24088  1.01293 —2.81892x 1072
Transmuted Exponentiated Fréechet  28.15 1.59569 0.162686380465 —1.12647

2006 Fréchet 1.9226 1.024 —19.4303
Exponentiated Fréchet 90.5402  9.7208 1.003 —2.4794x 101
Transmuted Exponentiated Fréchet  1.9135 3.4811 9.88677386037 —6.65192

Transmuted Exponentiated Fréchet distribution fits thbjesut data better than the 2-parameter Fréchet and
Exponentiated Fréchet distribution. The Kolmogorov-8rov test confirms that with test statistics for the year 21304
0.113489, for 2005 is 0.186626 and for 2006 is 0.170071.8fae for all the 3 years the wind speed data fits well for
transmuted Exponentiated Fréchet distribution.

11 Conclusions

In the present paper, we have proposed a new generalizatitimee cExponentiated Fréchet distribution called the
transmuted Exponentiated Fréchet distribution. Theribision of interest is generated by using the general rank
transmutation map and taking Exponentiated Fréchetilision as the base distribution. Maximum Likelihood
estimation method is used to estimate the parameters edolhe reliability behaviour of the subject distributian i
studied. We have studied the Malaysian wind speed data &disped in the literature to show the usefulness of the
transmuted Exponentiated Fréchet distribution and madmparison with Fréchet and exponentiated Fréchet
distribution. The Kolmogorov-Smirnov test revealed thed transmuted Exponentiated Fréchet distribution fitd fuel

the Malaysian wind speed data. We are hoping that the pretehy will help as a reference and serve to enhance future
research in this direction.

Acknowledgments

The authors wish to express their sincere gratitude to tleeaes for their valuable comments.

References

[1] W.T Shah and I.R Buckley, The alchemy of probability distitions: beyond Gram-Charlier expansions, and a skese#c-normal
distribution from a rank transmutation map. arXiv prepanXiv:0901.0434. (2009).

[2] G.R Aryal and C.P Tsokos, On the transmuted extreme \diktebution with application. Nonlinear Analysis: ThgpMethods &
Applications71, 1401-1407 (2009).

[3] G.R Aryal and C.P Tsokos, Transmuted Weibull distribati A Generalization of the Weibull Probability Distribati. European
Journal of Pure & Applied Mathematic4(2), 89-102 (2011).

[4] G.R Aryal, Transmuted log-logistic distribution. Joat of Statistics Applications & Probabilit@(1), 11-20 (2013).

[5]M.S Khan and R. King, Transmuted Modified Weibull distriton: A Generalization of the Modified Weibull Probability
Distribution. European Journal of Pure & Applied Matherosit6(1), 66-88 (2013).

[6] I. Elbatal and G. Aryal, On the Transmuted Additive Welldistribution. Austrian Journal of Statistié(2), 117-132 (2013).

[7]1. Elbatal, Transmuted Modified Inverse Weibull distriiton: A generalization of the modified Inverse Weibull pabbity
distribution. International Journal of Mathematical Areh4(8), 2229-5046 (2013).

[8] F. Merovci, Transmuted Rayleigh distribution. Austaal Journal of Statistic42(1), 21-31 (2013).

[9] F. Merovci, Transmuted generalized Rayleigh distridmit Journal of Statistics Applications & Probabil2y3), 1-12 (2013).

[10] F. Merovci, Transmuted Lindley distribution. Intetimnal Journal of Open Problems in Computer Science & Matt&sn6
(2013).

(@© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

394 %N S\ |. ELBATAL et. al. : Transmuted Exponentiated Fréchet Bisttion:...

[11] I. Elbatal and M. Elgarhy, Transmuted Quasi Lindleytdimition: A Generalization of the Quasi Lindley distriburt. International
Journal of Pure Applied Science and Technol@gy2), 59-70 (2013).

[12] M. Fréchet, Sur la loi de probabilite delecart maximuknnales de la societe Polonaise de Mathemat&@3-116 (1927).

[13] D.G Harlow, Applications of the Fréchet distributifumction. International Journal of Materials and Produetfihologyl7(5),
482-495 (2002).

[14] S. Nadarajah and S. Kotz, Sociological models basedr@chet random variables. Quality & Quant#2(1)89-95 (2008).

[15] A. Zaharim, S.K Najid, A.M Razali and K. Sopian, Analggi Malaysian wind speed data using statistical distrilbutio
Proceedings of the'IASME/WSEAS International conference on energy & enviremt Cambridge, UK (2009).

[16] M. Mubarak, Parameter estimation based on the Fr&Riwgressive Type Il censored data with binomial removalgrhational
Journal of Quality, Statistics and Reliabili2p12(2011).

[17] S. Nadarajah and S. Kotz, The Exponentiated Fréclsétilolition. Interstat Electronic Journal 1-7 (2003).

[18] S. Kotz and S. Nadarajah, Extreme value distributibmgperial College Press,Londdry (2000).

[19] I. Elbatal, Transmuted Generalized Inverted Expoia¢distribution. Economic Quality Contro8(2) 128-133 (2014).

[20] J.F Kenney, Mathematics of Statistics. D. Van Nostr&athpany Inc, Toronto (2013).

[21] J. Moors, A quantile alternative for kurtosis. The &fatian,42(1)(1988).

[22] J.J Swain, S. Venkatraman and J.R Wilson, Least-squasgmation of distribution functions in Johnson’s tratisih system.
Journal of Statistical Computation and Simulatigf(4)271-297 (1988).

[23] N.L Johnson, S. Kotz and N. Balakrishnan, Continuousariate distributions. John Wiley & Sons, New Yot1994).

(@© 2014 NSP
Natural Sciences Publishing Cor.



	Introduction and Literature
	General Properties
	Transmuted Exponentiated Frêchet Distribution
	Statistical Properties
	Distribution of the Order Statistics
	Reliability Characteristics
	Least Squares and Weighted Least Squares Estimators
	Estimation and Inference
	Simulation Study
	Data Analysis
	Conclusions

