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Abstract: Transmuted probability distribution corresponding to a distribution function G(x) is defined as
F(x) = (1+ λ )G(x)− λG(x)2; |λ | ≤ 1. In this paper we study some general properties of the transmuted probability distribution
function in relation to the base distributionG(x). In particular the transmuted exponentiated Frêchet(T EF) distribution is studied in
detail. The different methods of estimation of parameters such as, weighted least squares and the maximum likelihood estimates of
this distribution are studied. Finally, a real time data analysis is performed for this distribution and it is found thatthis class is more
flexible class and it shown that theT EF distribution is much better fit for data’s originally fitted and analysed using Frêchet or
Exponentiated Frêchet distribution.
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1 Introduction and Literature

A random variableX is said to have transmuted distribution if its cumulative distribution (cdf) is given by

F(x) = (1+λ )G(x)−λ G(x)2
, |λ | ≤ 1 (1)

whereG(x) is the cumulative distribution function of the base random variable. By differentiation of (1) yields,

f (x) = g(x) [(1+λ )−2λ G(x)] (2)

where f (x) andg(x) are the corresponding probability density functions with cumulative distribution functionsF(x) and
G(x) respectively. This is the quadratic rank transmutation map, studied extensively in Shaw et. al. [1]. Observe that at
λ = 0 we have the distribution of the base random variable.

1.1 Transmutation Map

In this subsection we demonstrate transmuted probability distribution. Let F and G be the cumulative distribution
functions, of two distributions with a common support ‘S ’. The general rank transmutation as given by Shaw et. al. [1]
is defined as

GR(u) = G(F−1(u)).

Note that the inverse cumulative distribution function also known as quantile function is defined as

F−1(u) = in fx∈R{F(x)≥ u} f or u ∈ [0,1].
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The functionGR(u) map the unit intervalI = [0,1] into itself, and under suitable assumptions are mutual inverses and they
satisfyGR(0) = 0 andGR(1) = 1. A Quadratic Rank Transmutation Map(QRT M) is defined as

GR(u) = u+λ u(1− u), |λ | ≤ 1, 0≤ u ≤ 1, (3)

from which it follows that the cumulative distribution functions satisfy the relationship

F(x) = (1+λ )G(x)−λ G(x)2 (4)

whenG(x) is absolutely continuous on differentiation of (4) yields,

f (x) = g(x)[(1+λ )−2λ G(x)] (5)

where f (x) and g(x) are the corresponding probability density functions associated with cumulative distribution
functionsF(x) andG(x) respectively. An extensive information about the quadratic rank transmutation map is given in
Shaw et. al. [1]. Observe that atλ = 0 we have the distribution of the base random variable. The following Lemma
proved that the functionf (x) given in (5) satisfies the property of probability density function.

Lemma 1.1. f (x) given in (5) is a well defined probability density function.
Proof. Rewriting f (x) as f (x) = g(x)[(1−λ (2G(x)−1))] we observe thatf (x) is non-negative. Also,

∫
S

f (x)dx =
∫
S

(1+λ )g(x)dx−2λ
∫
S

g(x)dx

= 1+λ −λ
= 1

Hence f (x) is a well defined probability density function. We callf (x) the transmuted probability density function
with base densityg(x). Further properties of the transmuted distribution is studied in Section 2.

Also many authors have worked with the generalization of some well-known distributions. Aryal and Tsokos [2]
defined the transmuted generalized extreme value distribution and they studied some basic mathematical characteristics
of transmuted Gumbel probability distribution and it has been observed that the transmuted Gumbel can be used to model
climate data. Also Aryal and Tsokos [3] presented a new generalization of Weibull distribution called the transmuted
Weibull distribution.

Recently, Aryal [4] proposed and studied the various structural properties ofthe transmuted Log-Logistic
distribution. Khan and King [5] introduced the transmuted modified Weibull distribution which extends recent
development on transmuted Weibull distribution by Aryal et. al. [3] and they also studied the mathematical properties
and maximum likelihood estimation of the unknown parameters. Subsequently, Elbatal and Aryal [6] presented on the
Transmuted additive Weibull distribution. Also, Elbatal [7] studied the Transmuted Modified Inverse Weibull
distribution. Merovci [8] introduced the Transmuted Rayleigh distribution, Transmuted generalized Rayleigh distribution
[9], and Transmuted Lindley distribution [10]. Elbatal and Elgarhy [11] studied the Transmuted Quasi Lindley
distribution.

Here we make an attempt to establish a generalization for Exponentiated Frêchet distribution. Frêchet distributionwas
introduced by a French mathematician named Maurice Frêchet (1878-1973) who had identified before one possible limit
distribution for the largest order statistic in [12] . The Frêchet distribution has been shown to be useful for modeling and
analysis of several extreme events ranging from accelerated life testing to earthquakes, floods, rain fall, sea currents and
wind speeds. Therefore Frêchet distribution is well suited to characterize random variables of large features. Applications
of the Frêchet distribution in various fields given in Harlow [13] showed that it is an important distribution for modeling
the statistical behavior of materials properties for a variety of engineering applications. Nadarajah and Kotz [14] discussed
the sociological models based on Frêchet random variables. Further, Zaharim et. al. [15] applied Frêchet for analyzing the
wind speed data. Mubarak [16] studied the Frêchet progressive type-II censored data with binomial removals. The Frêchet
distribution is a special case of the generalized extreme value distribution. This type-II extreme value distribution(Frêchet)
case is equivalent to taking the reciprocal of values from a standard Weibull distribution. The cumulative distribution
function (CDF) and probability density function (PDF) for Frêchet distribution are given by

F(x,θ ,β ) = e
−( θ

x )
β

, x > 0, θ > 0, β > 0.

where the parameterβ > 0 determines the shape of the distribution andθ > 0 is the scale parameter. And

f (x,θ ,β ) =
β
θ

(
θ
x

)β+1

e
−( θ

x )
β
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Recently, a new three parameter distribution, named as Exponentiated Frêchet (EF) distribution has been introduced by
Nadarajah and Kotz [17] as a generalization of the standard Frêchet distribution. The exponentiated Frêchet distribution
is considered to be one of the newest model of lifetime models. There are over fifty applications ranging from accelerated
life testing through to earthquakes, floods, horse racing, rainfall, queues in supermarkets, sea currents, wind speedsand
track race records (Kotz and Nadarajah [18]). We define the new distribution by the cumulative distribution function

G(x,θ ,β ,α) = 1−


1− e

−( θ
x )

β



α

, x > 0 (6)

where the shape parameterα > 0. The corresponding probability density function is givenby

g(x,θ ,β ,α) = αβ θ β x−(1+β ) e
−( θ

x )
β

1− e

−( θ
x )

β



α−1

,x > 0. (7)

In this article we present a new generalization of Exponentiated Frêchet distribution called the Transmuted
Exponentiated Frêchet(T EF) distribution. We will derive the subject distribution using the quadratic rank transmutation
map given in (3) Shaw et. al. [1]. The present paper is organized as follows. The Exponentiated Frêchet distribution is
introduced in Section 3. Various aging properties are also studied. In Section 4 we discuss the statistical properties
include quantile functions, moments, moment generating function. The distribution of the order statistics is expressed in
Section 5. Reliability characteristics of the distribution is studied in Section 6. The least squares and weighted least
squares estimators of the parameters of theTEF distribution are introduced in Section 7. In Section 8 we employed the
maximum likelihood estimation to estimate the unknown parameters. A simulation study has been conducted at Section
9 and a real time applications are shown in Section 10. We conclude our study by observing that theTEF is a better fit
for data’s originally fitted and analysed using Frêchet or Exponentiated Frêchet distribution.

2 General Properties

In this section we study the properties of the transmuted variable in relation to the base random variable. Many
characteristics of the transmuted distribution function is assured by the behaviour of the baseline distribution function.
The next theorem shows the relationship between moments forthe transmuted distribution once the baseline moments
exists.

Theorem 2.1.Let Φ(X) be a non-degenerate measurable function of the random variableX with transmuted distribution
as in (4). If EF(Φ(X)) denotes

∫
S

Φ(X) f (x)dx, then

EF(Φ(X)) = (1+λ )EG(Φ(X))−2λ EG[Φ(X)G(X)] (8)

Proof. From (5)
EF(Φ(X)) =

∫
S

Φ(X)[(1+λ )g(x)−2λ g(x)G(x)]dx

= (1+λ )EG(Φ(X))−2λ
∫
S

Φ(X)g(x)G(x)dx

= (1+λ )EG(Φ(X))−2λ EG[Φ(X)G(X)]

Corollary 2.1. If LG(t) denotes the Laplace transform of the base distributionG; then the Laplace transform of the
transmuted distributionF is,

LF(t) = (1+λ )LG(t)−2λ EG[e
−XtG(X)]; |t|< 1.

Corollary 2.2. If µr(F) =
∫

xr f (x)dx thenµr(F) = (1+λ )µr(G)−2λ EG[X rG(X)].

Theorem 2.2.For λ > 0,
(i). If F is a convex distribution function implies thatG is also a convex distribution function.
(ii). Conversely, ifG is a convex distribution thenF is convex if and only if,

f (x)≥
2λ g3(x)

g′(x)
, f or all x ∈ S ,
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where

g′(x) =
dg(x)

dx
.

Proof. Let F be a convex distribution function. Then by definition, forλ > 0, f ′(x)> 0 which in turn implies

(1+λ )g′(x)−2λg′(x)G(x)−2λ g2(x)> 0

⇔
g′(x)
g(x)

f (x)> 2λ g2(x)

⇔ g′(x)> 2
g3(x)
f (x)

⇒ g′(x)> 0 f or all x ∈ S .

Hence proving (i). To prove (ii) observe thatG is a convex distribution function impliesg′(x) > 0 for all x ∈ S . Hence
from (i) it follows thatF is a convex distribution function if and only if

f (x) ≥
2λ g3(x)

g′(x)
.

Hence the result.
The next few result studies the ageing properties of the transmuted distributionF(x) in relation toG(x). One of the

characteristic in reliability analysis is the hazard rate function(HF). For an absolutely continuous general transmuted
distribution it is defined by

hT D =
f

1−F
=

(1+λ )g(x)−2λ G(x)g(x)
1− (1+λ )G(x)+λ G(x)2 (9)

The following results are now immediate.

Theorem 2.3.For λ < 0 (λ > 0) the transmuted distributionF(x) has a increasing failure rate distribution (decreasing
failure rate distribution) if and only ifG(x) is an increasing failure rate distribution (decreasing failure rate distribution).

Proof. From (9)

hT D = hG(x)

[
1+

λ G(x)
1−λ G(x)

]
(10)

where,hG(x) =
g(x)
G(x)

andG(x) = 1−G(x).

The result follows by observing that
[
1+ λ G(x)

1−λ G(x)

]
is increasing whenever forλ ≤ 0, λ = 1.

Hence the result.

Hence it is evident that in general the transmuted distribution functions do not behave in a similar manner as the base
distribution. Hence it is of interest to study the transmuted distributions on specifying the base distribution. Motivated by
this fact, we look into particular transmuted distributions.

3 Transmuted Exponentiated Fr̂echet Distribution

In this section we introduce the Transmuted Frêchet(T EF) distribution. Now combining (6) and (7) we have the
cumulative distribution function of Transmuted Exponentiated Frêchet distribution

FTEF(x,θ ,β ,α,λ ) =


1−


1− e

−( θ
x )

β



α


1+λ


1− e

−( θ
x )

β



α
 (11)

whereλ is the transmuted parameter. The corresponding probability density function is given by

fT EF(x,θ ,β ,α,λ ) = αβ θ β x−(1+β ) e
−( θ

x )
β

×(q(x))α−1

×
[
(1−λ )+2λ (q(x))α]
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Fig. 1: Probability density function of Transmuted ExponentiatedFrêchet distribution forθ = 1 and different values ofλ , α andβ
.

where,q(x) =

(
1− e

−( θ
x )

β)

fT EF(x,θ ,β ,α,λ ) =(1−λ )αβ θ β x−(1+β ) e
−( θ

x )
β

(q(x))α−1

+2λ αβ θ β x−(1+β ) e
−( θ

x )
β

(q(x))2α−1 (12)

It is observed that the Transmuted Frêchet distribution isan extended model to analyse data from complex situations
and it generalizes some of the widely used distributions. For instance whenβ = 1 it reduces to transmuted exponentiated
inverted exponential distribution as discussed in Elbatalet. al. [19]. The exponentiated Frêchet distribution is clearly a
special case forλ = 0. Whenβ = λ = 1 andα = 0.5 then the resulting distribution is an inverted exponential distribution
with parameterθ . Figure 1 illustrates some of the possible shapes of the probability density function of a Transmuted
Exponentiated Frêchet distribution for selected values of the parametersα,β ,λ and forθ = 1.

4 Statistical Properties

This section is devoted to studying statistical propertiesof the (T EF) distribution, more specifically quantile function,
moments and moment generating function.

4.1 Quantile Function and Random Number Generation

We present a method for simulating from theTEF distribution (11). The quantile function corresponding to (11) is

Q(u) =F−1(u)

=θ



− ln


1−

(
(λ −1)+

√
(λ +1)2−4λ u
2λ

) 1
α






−1
β

(13)

Simulating theTEF random variable is straight forward process. LetU be a uniform variate on the unit interval (0,1).
Thus, by means of the inverse transformation method, we consider the random variableX is given by

X = θ



− ln


1−

(
(λ −1)+

√
(λ +1)2−4λ u
2λ

) 1
α






−1
β

,

which follows (12), that isX ∼ TEF(θ ,β ,α,λ ). This process is explained in Section 9 through a simulationstudy.
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4.2 Skewness and Kurtosis

In this subsection we present the shortcomings of the classical kurtosis measure are well-known. There are many heavy
tailed distributions for which this measure is infinite. So,it becomes uninformative precisely when it needs to be. The
Bowley skewness (Kenney and Keeping, [20]) is one of the earliest skewness measures defined by

SK =
Q0.75−2Q0.5+Q0.25

Q0.75−Q0.25
,

and the Moors Kurtosis (see Moors [21]) based on octiles is defined by

Ku =
Q0.875−Q0.625−Q0.375+Q0.125

Q0.75−Q0.25
.

WhereQ(u) represents the quantile function.

4.3 Moments

In this subsection we discussrth moment forT EF distribution. Moments are necessary and important in any statistical
analysis, especially in applications. It can be used to study the most important features and characteristics of a distribution
(e.g., central tendency, dispersion, skewness and kurtosis).
Theorem 4.1.If X hasT EF(θ ,β ,α,λ ), then therth moment ofX (µr) is given by the following

µ ′
r =

∞

∑
j=0

(−1) jθ r(1+ j)
−
(

1− r
β

)
Γ (1−

r
β
)

[
(1−λ )

(
α −1

j

)
+2λ

(
2α −1

j

)]
(14)

Proof. Let X be a random variable with density function (12). Therth ordinary moment of the(T EF) distribution is
given by

µ ′
r = E(X r) =

∞∫

0

xr f (x)dx

µ ′
r =(1−λ )αβ θ β

∞∫

0

xr−β−1 e
−( θ

x )
β

1− e

−( θ
x )

β



α−1

dx

+2λ αβ θ β
∞∫

0

xr−β−1e
−( θ

x )
β

1− e

−( θ
x )

β



2α−1

dx (15)

Setting 
1− e

−( θ
x )

β



α−1

=
∞

∑
j=0

(−1) j
(

α −1
j

)
e
− j( θ

x )
β

(16)

substituting from (16) into (15) we get

µ ′
r =(1−λ )

∞

∑
j=0

(−1) j
(

α −1
j

)
αβ θ β

∞∫

0

xr−β−1 e
−( j+1)( θ

x )
β

dx

+2λ
∞

∑
j=0

(−1) j
(

2α −1
j

)
αβ θ β

∞∫

0

xr−β−1 e
−( j+1)( θ

x )
β

dx. (17)

let ( j+1)
(θ

x

)β
= t, we get

µ ′
r =

∞

∑
j=0

(−1) jθ r(1+ j)
−
(

1− r
β

)
Γ (1−

r
β
)×K( j)
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where,

K( j) =

[
(1−λ )

(
α −1

j

)
+2λ

(
2α −1

j

)]

Which completes the proof.

Based on the first four moments of theT EF distribution, the coefficient of variation, the measures ofskewness and
kurtosis of theTEF distribution can be obtained according to the following relation

CVTEF =

√
µ2

µ1
−1 (18)

MST EF =
µ3−3µ1µ2+2µ3

1

[µ2− µ2
1]

3
2

(19)

and

MKT EF =
µ4−4µ1µ3+6µ2

1µ2−3µ4
1

[µ2− µ2
1(θ )]2

(20)

4.4 Moment Generating Function

In this subsection we derived the moment generating function of TEF distribution.

Theorem 4.2.If X hasT EF distribution, then the moment generating functionMX (t) has the following form.

MX (t) =
∞

∑
r=0

∞

∑
j=0

tr

r!
(−1) jθ r(1+ j)−(1− r

β )Γ (1−
r
β
)×K( j) (21)

where,

K( j) =

[
(1−λ )

(
α −1

j

)
+2λ

(
2α −1

j

)]

Proof. We start with the well known definition of the moment generating function given by

MX (t) =
∞∫
0

etx fT EF(x)dx

=
∞
∑

r=0

tr

r! x
r fT EF(x)dx =

∞
∑

r=0

tr

r! µ ′
r

=
∞
∑

r=0

∞
∑
j=0

tr

r! (−1) jθ r(1+ j)−(1− r
β )Γ (1− r

β )

×

[
(1−λ )

(
α −1

j

)
+2λ

(
2α −1

j

)]

which completes the proof.

5 Distribution of the Order Statistics

In fact, the order statistics have many applications in reliability and life testing. The order statistics arise in the study of
reliability of a system. LetX1, X2, ..., Xn be a simple random sample fromT EF(θ ,β ,α,λ ,x) with cumulative distribution
function and probability density function as in (11) and (12), respectively. LetX(1:n) ≤ X(2:n) ≤ ... ≤ X(n:n) denote the
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order statistics obtained from this sample. In reliabilityliterature,X(i:n) denote the lifetime of an(n− i+1)− out− of− n
system which consists ofn independent and identical components. Then the pdf ofX(i:n) ,1≤ i ≤ n is given by

fi:n(x) =
1

β (i,n− i+1)
[F(x,Φ)]i−1 [1−F(x,Φ)]n−i f (x,Φ) (22)

whereΦ = (θ ,β ,α,λ ). Also, the joint pdf ofX(i:n), X( j:n) and 1≤ i ≤ j ≤ n is

fi: j:n(xi,x j) =C [F(xi)]
i−1 [F(x j)−F(xi)]

j−i−1

× [1−F(x j)]
n− j f (xi) f (x j) (23)

where

C =
n!

(i−1)!( j− i−1)!(n− j)!

We defined the first order statisticsX(1) = Min(X1, X2, ..., Xn), the last order statistics asX(n) = Max(X1,X2, ...,Xn) and
median orderXm+1 .

5.1 Distribution of Minimum , Maximum and Median

Let X1, X2, ..., Xn be independently identically distributed order random variables from the transmuted Exponentiated
Frêchet distribution having first, last and median order probability density function are given by the following

f1:n(x) =n [1−F(x,Φ)]n−1 f (x,Φ)

=n
{

1−
[
1− hα

(1)

][
1+λ hα

(1)

]}n−1

× αβ θ β x−(1+β )
(1) (1− h(1))h

α−1
(1)

×
[
(1−λ )+2λ hα

(1)

]
(24)

fn:n(x) =n
[
F(x(n),Φ)

]n−1
f (x(n),Φ)

=n
{[

1− hα
(n)

][
1+λ hα

(n)

]}n−1

× αβ θ β x−(1+β )
(n) (1− h(n))h

α−1
(n)

[
(1−λ )+2λ hα

(n)

]
(25)

and

fm+1:n(x̃) =
(2m+1)!

m!m!
(F(x̃))m(1−F(x̃))m f (x̃)

=
(2m+1)!

m!m!

{[
1− hα

(m+1)

][
1+λ hα

(m+1)

]}m

×
{

1−
[
1− hα

(m+1)

][
1+λ hα

(m+1)

]}m

× αβ θ β x−(1+β )
(m+1) (1− h(m+1))h

α−1
(m+1)

×
[
(1−λ )+2λ hα

(m+1)

]
(26)

where

h(s) =


1− e

−

(
θ

x(s)

)β

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5.2 Joint Distribution of the ith and jth Order Statistics

The joint distribution of theith and jth order statistics from transmuted Exponentiated Frêchet (TEF) distribution is

fi: j:n(xi,x j) =C [F(xi)]
i−1 [F(x j)−F(xi)]

j−i−1

× [1−F(x j)]
n− j f (xi) f (x j)

=C
{[

1− hα
(i)

][
1+λ hα

(i)

]}i−1

×
{[

1− hα
( j)

][
1+λ hα

( j)

]
−
[
1− hα

(i)

][
1+λ hα

(i)

]} j−i−1

×
{

1−
[
1− hα

( j)

][
1+λ hα

( j)

]}n− j

×αβ θ β x−(1+β )
(i) (1− h(i))h

α−1
(i)

[
(1−λ )+2λ hα

(i)

]

×αβ θ β x−(1+β )
( j) (1− h( j))h

α−1
( j)

[
(1−λ )+2λ hα

( j)

]
(27)

6 Reliability Characteristics

The reliability function(RF) of the transmuted Exponentiated Frêchet distribution is denoted byFTEF(x) also known as
the survivor function and is defined as

FT EF(x) =1−FTEF(x)

=1−


1−


1− e

−( θ
x )

β



α


1+λ


1− e

−( θ
x )

β



α


(28)

It is important to note thatFT EF(x)+FTEF(x) = 1. For the Transmuted Exponentiated Frêchet(T EF) distribution the
hazard function is given by

hT EF(x) =
fT EF(x)

1−FTEF(x)

hT EF(x) =
A(ω)×B(ω)

C(ω)
(29)

where,
ω = (α,β ,θ ,λ ),

A(ω) = αβ θ β x−(1+β )e−(
θ
x )

β
[
1− e−(

θ
x )

β
]α−1

,

B(ω) =

[
(1−λ )+2λ

(
1− e−(

θ
x )

β
)α]

,

and

C(ω) = 1−

[
1−

(
1− e−(

θ
x )

β
)α]


1+λ


1− e

−( θ
x )

β



α


Figure 2 illustrates the behaviour of the hazard rate function of a transmuted Exponentiated Frêchet distribution for
the different choices of parametersλ ,α,β and fixingθ = 1.
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Fig. 2: Hazard rate function of Transmuted Exponentiated Frêchetdistribution forθ = 1 and different values ofλ , α andβ
.

Theorem 6.1.If α = θ = λ = 1, then the failure rate is increasing ifβ < 0 and is decreasing ifβ > 0.

Proof. If α = θ = λ = 1 then

h(x) =
2β
(1

x

)1+β

(
e(

1
x )

β
−1

)

which is increasing forβ < 0 and is decreasing forβ > 0.

Theorem 6.2.If β = α = 1 then the failure rate is monotonically decreasing for bothλ < 0 andλ > 0.

Proof. If β = α = 1 then we have (Figure 3)

h(x) =
θ
x2


 1(

e(
θ
x )−1

) +
λ(

e(
θ
x )−λ

)




It can be easily verified thath(x) is decreasing for bothλ < 0 andλ > 0. Note that

h(0) = ∞ and h(∞) = 0

The cumulative hazard function of the transmuted Exponentiated Frêchet distribution is denoted byHT EF(x) and is
defined as

HT EF(x) =− ln

∣∣∣∣∣∣


1−


1− e

−( θ
x )

β



α


1+λ


1− e

−( θ
x )

β



α

∣∣∣∣∣∣

(30)

Similar to the hazard rate function, we can also illustrate the behaviour of the cumulative hazard rate function for different
choices of parameters.

7 Least Squares and Weighted Least Squares Estimators

In this section we provide the regression based estimators of the unknown parameters of the transmuted Exponentiated
Frêchet distribution which was originally suggested by Swain, Venkatraman and Wilson [22] to estimate the parameters
of beta distributions. It can be used some other cases also. SupposeY1,Y2, ...,Yn is a random sample of sizen from a
distribution functionG(.) and supposeY(i); i = 1,2, ...,n denotes the ordered sample. The proposed method uses the

distribution of G(Y(i)). For a sample of sizen, we have E(G(Y( j))) = j
n+1, V ((G(Y( j))) =

j(n− j+1)
(n+1)2(n+2)

and
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Fig. 3: Hazard rate function of Transmuted Exponentiated Frêchetdistribution forα = β = 1
.

Cov(G(Y( j)),G(Y(k))) =
j(n−k+1)

(n+1)2(n+2)
; for j < k, see Johnson, Kotz and Balakrishnan [23]. Using the expectations and the

variances, two variants of the least squares methods can be used.
Method 1 (Least Squares Estimators). Obtain the estimators by minimizing

n

∑
j=1

(
G(Y( j)−

j
n+1

)2

(31)

with respect to the unknown parameters. Therefore in case ofT QL distribution the least squares estimators ofθ ,β ,α and
λ , sayθ̂LSE , β̂LSE , α̂LSE , andλ̂LSE respectively, can be obtained by minimizing

n

∑
j=1

{[
1− e−θx( j)

[
1+

θx( j)

α +1

]]
×N( j)−

j
n+1

}2

where,

N( j) =

[
(1−λ )+2λ e−θx( j)(1+

θx( j)

α +1
)

]

with respect toθ ,β ,α andλ .

Method 2 (Weighted Least Squares Esimators). The weighted least squares estimators can be obtained by
minimizing

n

∑
j=1

w j

(
G(Y( j)−

j
n+1

)2

(32)

with respect to the unknown parameters, where

w j =
1

V (G(Y( j)))
=

(n+1)2(n+2)
j(n− k+1)

Therefore, in case ofT EF distribution the weighted least squares estimators ofθ ,β ,α and λ , say,
θ̂W LSE , β̂WLSE , α̂W LSE , andλ̂WLSE respectively, can be obtained by minimizing

n

∑
j=1

w j

{[
1− e−θx( j)

[
1+

θx( j)

α +1

]]
×P( j)−

j
n+1

}2

where,
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P( j) =

[
(1−λ )+2λ e−θx( j)(1+

θx( j)

α +1
)

]

with respect to the unknown parameters only.

8 Estimation and Inference

In this section, we determine the maximum likelihood estimates(MLEs) of the parameters of theTEF distribution from
complete samples only. LetX1,X2, ...,Xn be a random sample of sizen from TEF(θ ,β ,α,λ ) is given by

LogL =n logα + n logβ + nβ logθ

−(1+β )
n

∑
i=1

logx(i)−θ β
n

∑
i=1

x−β
(i)

+(α −1)
n

∑
i=1

log


1− e

−

(
θ

x(i)

)β


+
n

∑
i=1

log


(1−λ )+2λ


1− e

−

(
θ

x(i)

)β


α


(33)

The log-likelihood can be maximized either directly or by solving the non-linear likelihood equations obtained by
differentiating (33). The components of the score vector are given by

∂LogL
∂θ = nβ

θ −β θ β−1
n
∑

i=1
x−β

i +β (α −1)
n
∑

i=1

e
−

(
θ

x(i)

)β (
θ

x(i)

)β−1

x(i)


1−e

−

(
θ

x(i)

)β



+
n
∑

i=1

2λ β α


1−e

−

(
θ

x(i)

)β


α−1

e
−

(
θ

x(i)

)β (
θ

x(i)

)β−1

x(i)


(1−λ )+2λ


1−e

−

(
θ

x(i)

)β



α


,

(34)

∂LogL
∂α = n

α +
n
∑

i=1
log


1− e

−

(
θ

x(i)

)β


+
n
∑

i=1

2λ


1−e

−

(
θ

x(i)

)β



α

log


1−e

−

(
θ

x(i)

)β

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
(1−λ )+2λ


1−e

−

(
θ

x(i)

)β
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α


,

(35)
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∂LogL
∂β

=
n
β
+ n logθ −

n

∑
i=1

logx(i)−
n

∑
i=1

log

(
θ

x(i)

)(
θ

x(i)

)β

+(α −1)
n

∑
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log
(

θ
x(i)

)
e
−

(
θ

x(i)

)β (
θ

x(i)

)β


1− e

−

(
θ

x(i)

)β


+2λ α
n

∑
i=1

Q(x(i))
(1−λ )+2λ


1− e

−

(
θ

x(i)

)β


α

,

(36)

where,

Q(x(i)) =


1− e

−

(
θ

x(i)

)β


α−1

log

(
θ

x(i)

)
e
−

(
θ

x(i)

)β (
θ

x(i)

)β

and

∂LogL
∂λ

=
n

∑
i=1

2


1− e

−

(
θ

x(i)

)β


α

−1


(1−λ )+2λ


1− e

−

(
θ

x(i)

)β


α

= 0. (37)

We can find the estimates of the unknown parameters by maximumlikelihood method by setting the above non-linear
equations (34) and (37) to zero and solve them simultaneously. Therefore, we have to use mathematical package to get
the MLE of the unknown parameters. This has been explained through simulation study and a real time data analysis in
the following sections. Also, all the second order derivatives exist. Thus we have the inverse dispersion matrix is given by




θ̂
β̂
α̂
λ̂


∼ N







θ
β
α
λ


 ,




V̂θθ V̂θβ V̂θα V̂θλ
V̂β θ V̂β β V̂β α V̂β λ
V̂αθ V̂αβ V̂αα V̂αλ
V̂λ θ V̂λ β V̂λ α V̂λ λ





 (38)

V−1 =−E




Vθθ Vθβ Vθα Vθλ
Vβ β Vβ α Vβ λ

Vαα Vαλ
Vλ λ




where
Vθθ = ∂ 2LogL

∂θ2 , Vβ β = ∂ 2LogL
∂β 2 , Vαα = ∂ 2LogL

∂α2 , Vλ λ = ∂ 2LogL
∂λ 2

Vαθ = ∂ 2LogL
∂α∂θ , Vαβ = ∂ 2LogL

∂α∂β , Vθβ = ∂ 2LogL
∂θ∂β , Vθλ = ∂ 2LogL

∂θ∂λ

By solving this inverse dispersion matrix these solutions will yield asymptotic variance and covariances of these ML
estimators for̂λ , θ̂ , α̂and β̂ . Using (38), we approximate 100(1− α)% confidence intervals forλ ,β ,θ and α are
determined respectively as

θ̂ ± z γ
2

√
V̂θθ , β̂ ± z γ

2

√
V̂β β , α̂ ± z γ

2

√
V̂αα and λ̂ ± z γ

2

√
V̂λ λ

wherezγ is the upper 100γ the percentile of the standard normal distribution.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


392 I. ELBATAL et. al. : Transmuted Exponentiated Frêchet Distribution:...

9 Simulation Study

Here a simulation study to determine the biases, standard deviations, and Root Mean Squared Errors(RSMEs) of the
estimators discussed in previous section is presented. We consider a simulate sample of sizesn = 50,100,150,200 for the
initial values ofθ = 1.25,α = 0.75,β = 1.5 andλ = 0.4. For each combination ofβ , θ ,α, λ ,andn we performed 100
replications of the simulation. The results are presented in Table 1.

Examining from Table 1, we observe that as the sample size increases, biases, standard deviations and RSMEs ofθ̂ ,
β̂ , α̂ andλ̂ decrease steadily.

Table 1: Mean, Bias,Standard Deviation and RSME ofθ , α, β andλ Based on 100 Replications for Transmuted Exponentiated Frˆechet
distribution obtained usingMaximumLikelihood method

Sample Size(n) Parameter Estimates Mean Bias Standard Deviation RSME

θ̂ 1.590291 0.340291 1.560374 2.22248620

50 α̂ 0.913857 0.163857 1.105894 1.43035176

β̂ 1.767180 0.267180 0.914291 1.98758547

λ̂ 0.619600 0.219600 0.416374 0.74534361

θ̂ 1.445665 0.195665 2.120037 2.55725595

100 α̂ 0.689613 0.060387 0.412042 0.80227600

β̂ 1.666431 0.166431 0.626099 1.77906600

λ̂ 0.555016 0.155016 0.455785 0.71637200

θ̂ 1.752899 0.502899 4.948343 5.2265015
150 α̂ 0.824261 0.074261 1.902299 2.06453875

β̂ 1.836286 0.336286 0.724880 1.97286495

λ̂ 0.571191 0.171191 0.289819 0.63986206

θ̂ 1.79253 0.54253 4.27201 4.61330057

200 α̂ 0.647814 0.102186 1.154068 1.318464614

β̂ 1.753049 0.253049 0.837058 1.940852968

λ̂ 0.477469 0.077469 0.414893 0.631196067

10 Data Analysis

In this section we will analyse a real data set to explain the appropriateness of the transmuted Exponentiated Frêchet
distribution for modelling wind speed data. We will providecomparison of the results with the Frêchet and exponentiated
Frêchet distribution. Note that Frêchet distribution isa sub-model of both the transmuted Exponentiated Fêchet and
Exponentiated Frêchet distribution.

The data used for the present study were obtained from a yearly published book at Permerhatian Cuaca Harian Pusat
Pengajian Sosial, Pembangunan & Persekitaran (PPSPP), Fakulti Sains Sosial, & Kemanusiaan (FSSK), Universiti
Kebangsaan Malaysia (UKM) during the year 2004 to 2006, Zaharim et. al.[15]. The data observation was done by
positioning a rotating cup type anemometer on the station inopen spaces free of obstacle at 3 meters height up on the
Cameron Highland, Malaysia. Wind speeds were observed every 10 seconds and averaged over 5 minutes period. The
5-minutes averaged data were further averaged over one hour. At the end of each hour, the hourly mean wind speed was
calculated and stored sequentially in a permanent memory. Knowledge of the statistical properties of wind speed is
essential for predicting the energy output of a wind energy conversion system.

We fit the data into Frêchet distribution, Exponentiated Frêchet distribution, Transmuted Exponentiated Frêchet
distribution and made comparison with the estimated parameter values. The results are presented in Table 2.
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Table 2: Estimated Parameters of Frêchet, Exponentiated Frêchetand Transmuted Exponentiated Frêchet Distributions

Year Distribution Parameter Estimates Log-likelihood

β̂ θ̂ α̂ λ̂
Frêchet 3.251 1.569 −10.811

2004
Exponentiated Frêchet 23.4546 5.79241 1.00154 −7.19111×1018

Transmuted Exponentiated Frêchet 1.12663 4.64288 10.6478 0.720222 −9.32402

Frêchet 3.000 1.262 −13.333
2005

Exponentiated Frêchet 93.4345 9.24088 1.01293 −2.81892×1072

Transmuted Exponentiated Frêchet 28.15 1.59569 0.1626630.380465 −1.12647

Frêchet 1.9226 1.024 −19.4303
2006

Exponentiated Frêchet 90.5402 9.7208 1.003 −2.4794×1071

Transmuted Exponentiated Frêchet 1.9135 3.4811 9.88677 0.386237 −6.65192

Transmuted Exponentiated Frêchet distribution fits the subject data better than the 2-parameter Frêchet and
Exponentiated Frêchet distribution. The Kolmogorov-Smirnov test confirms that with test statistics for the year 2004is
0.113489, for 2005 is 0.186626 and for 2006 is 0.170071. There fore for all the 3 years the wind speed data fits well for
transmuted Exponentiated Frêchet distribution.

11 Conclusions

In the present paper, we have proposed a new generalization of the Exponentiated Frêchet distribution called the
transmuted Exponentiated Frêchet distribution. The distribution of interest is generated by using the general rank
transmutation map and taking Exponentiated Frêchet distribution as the base distribution. Maximum Likelihood
estimation method is used to estimate the parameters involved. The reliability behaviour of the subject distribution is
studied. We have studied the Malaysian wind speed data set published in the literature to show the usefulness of the
transmuted Exponentiated Frêchet distribution and make comparison with Frêchet and exponentiated Frêchet
distribution. The Kolmogorov-Smirnov test revealed that the transmuted Exponentiated Frêchet distribution fits well for
the Malaysian wind speed data. We are hoping that the presentstudy will help as a reference and serve to enhance future
research in this direction.
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[13] D.G Harlow, Applications of the Frêchet distributionfunction. International Journal of Materials and Product Technology17(5),

482-495 (2002).
[14] S. Nadarajah and S. Kotz, Sociological models based on Frêchet random variables. Quality & Quantity42(1)89-95 (2008).
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