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Abstract: This paper investigates the qualitative behavior of vinéection model with multitarget cells in vivo. The infeatioate is
given by Crowley-Martin functional response. By assumingt the virus attack classes of uninfected target cells, we study a viral
infection model of dimensionr2+ 1 with discrete delay. To describe the latent period for thetacted target cells with viruses to
begin producing viruses, two types of discrete delay arerparated into the model. The basic reproduction nunitpesf the model

is defined which determines the dynamical behaviors of théeldtilizing Lyapunov functionals and LaSalle’s invar principle,
we have proven that iRy < 1 then the uninfected steady state is globally asymptdéyisshble, and iRy > 1 then the infected steady
state is globally asymptotically stable.
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1 Introduction Model (1)-(3) is based on the assumption that, once
the virus contacts a target cell, the cell begins producing
Mathematical modelling of virus dynamics has becomenew virus particles. More realistic models incorporate the
an important area of research].[ The interatcion of the delay between the time of viral entry into the target cell
virus and target cells has been formulated as ordinaryand the time the production of new virus particles,
differential equations in several works (see ed, [3], modeled with discrete time delay using functional
[4], [5], [14], [12, [6], [30] and [7]). The basic differential equations. Many researchers have devoted
mathematical model describing the dynamics of viral their effort in developing various mathematical models of

infection is given by 2], [3]: viral infections with delay and studying their qualitative
) behaviors (see e.g9], [11], [24], [1Q], [28], [29], [29],
X=A—dx—pBxv, (1) [22, [27 [21], [34), [31], [32]). The infection rate in
y = Bxv— 9y, (2) model ()-(3) is given by bilinear functional response
v=ky—rv, 3) which is usually unsuitable for many viral infections. In
the present paper, the infection rate is given by
where x,y and v represent the populations of the Crowley-Martin functional response. The

uninfected target cells, infected cells and free virusCrowley-Martin type of functional response was first
particles, respectively. The uninfected cells are gerdrat introduced by Crowley and Martir8p].

from sources within the body at rale The parametef In the literature, most of the proposed mathematical
is infection rate constant ardlis the death rate constant models for viral infection assume that the virus has one
of the uninfected target cells. Eq2)( describes the class of target cells, (e.g. CD4T cells in case of HIV or
population dynamics of the infected cells and shows thathepatic cells in case of HCV and HBV) (see e %], [3],
they die with rate constand. The virus particles are [4] and the book Nowak and May]). In [8], [26], [13],
produced by the infected cells with rate constinand  [17], [15], [14] and [18], some HIV models with two
are cleared from plasma with rate constant classes of target cells, CD4T cells and macrophages
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have been proposed. The global stability of these modelparameters of the model have the same biological

has been investigated in1@, [17], [14] and [18]).
Because the interactions of some types of virusesvo

is complex and is not known clearly, we would suppose
that the virus may attack classes of target cells where
n>1[1€),[19. In[19], models with discrete-time delays
and saturated incidence rate have been studied. Eldw [

studied a class of virus infection models with multitarget where

cells without time delay.

meaning as given in model)-(3).
The initial conditions for system}-(6) takes the form

XJ(Q) = ¢J(9)7 y](e) = ¢j+n(9)7 ] =1,..,n, V(e) = ¢2n+l(9)7

$i(6)>0, 8 [—£,0), $j(0) >0, j=1,....2n+1, @)
l = max{11, ..., Tn, U1, ---, Hn}
(¢1(6),92(6), ..., p2n11(0)) € C and

The purpose of this paper is to propose viral infectionC = C([—Z,O],Ri“*l) is the Banach space of continuous

models with multitarget cells and Crowley-Martin
functional response and investigate their qualitative
behaviors. We incorporate discrete delay into the mode
which represents an intracellular latent period for the
contacted uninfected target cells with virus to begin

functions mapping the intervé-¢,0] into R2"*1. By the
fundamental theory of functional differential equations
[20], system #)-(6) has a unique solution satisfying initial
conditions 7).

We note that, model4]-(6) can be considered as a

producing new virus particles. The global stability of the generalization of the model with one class of target cells
model is established using Lyapunov functionals andang without delay (i.en = 1 andt; = p; = 0) presented

LaSalle’s invariance principle. We prove that the global

in ([32] and [31]).

dynamics of these models are determined by the basic

reproduction numbeRy. If Ry < 1, then the uninfected
steady state is globally asymptotically stable (GAS) and if
Ro > 1, then the infected steady state exists and is GAS.

2 Model with discrete-time delays

In this section we propose a viral infection model with
multitarget cells and Crowley-Martin functional response
We incorporate two types of discrete-time delaysand
Ui, i =1,....,ninto the model. We assume that the virus
attacksn classes of uninfected cells.

Xy Bixiv B

X = Aj — diX; (1+a;x;)(1+biv)’ i=1..n,
(4)

- e MIBx(t—T1)v(t—1) . B

Vi = (1+axi(t—1))(1+bv(t—1)) — &y, i=1,..,n,
(5)

V= .ie”iﬁlikiyi (t—p)—rv, ©6)

where X and y; represent the populations of the
uninfected target cells and infected cells of class
respectively,v is the population of the virus particles.
Here the parameter; accounts for the time between the
target cells of class are contacted by the virus particles
and the contacting viruses inter the cells. The recruitmen
of virus producing cells at time is given by the number
of cells that were newly infected cells at time- 7; and
are still alive at time. The factog ™' accounts for the
loss of target cells during delay period whene is

positive constant. The time between the virus hasFrom @)we haveq <Aj—dix. Thuslimsup_,Xi(t)

penetrated into a target cell of classnd the emission of
infectious (matures) virus particles is representedupy

The factore "' account for the cells loss during this
delay period whera; is positive constant. All the other

2.1 Non-negativity and boundedness of
solutions

In the following, we establish the non-negativity and
boundedness of solutions &f){(6) with initial conditions
(7). Letx = (Xg,X2,....,%n) " andy = (y1,¥2,...,yn)".

Proposition 1. Let (X(t),y(t),v(t)) be any solution of4)-
(6) satisfying the initial conditions7), thenx(t),y(t) and
v(t) are all non-negative fdr> 0 and ultimately bounded.

Proof. First, we prove that;(t) > 0,i=1,....n, forallt >

0. Assume thax;(t) lose its non-negativity on some local
existence interval0, w] for some constani and lett; €

[0, w] be such tha;(t;) = 0. From Eq. 4) we havex(t;) =

Ai > 0. Hencex;(t) < 0 for somet € (t; — €,t1), where

€ > 0 is sufficiently small. This leads to a contradiction
and hence(t) > 0, for allt > 0. Further, from Egs.5)
and @) we have

t
yi(O)efat—O—e*mriBi/eﬁé(tin)
0

X(n—t)v(n -1
(1+ax(n—1))(1+bv

yi(t)

i=1,..,

dr77 n?

)
(n—m1))

vt) = v(0)e "+ ilqe”i“i e "My (n - )dn.
i=

O\’_'

E:onfiming thaty;(t) > 0, i =1,...,n, andv(t) > O for all

t € [0,4]. By a recursive argument, we obtajr{t) > 0,
i=1..,nandv(t) >0forallt >0.

Next we show that the solution is ultimately bounded.
<3
andx;(t) is ultimately bounded. LeX;(t) = e ™Tix(t —

i) +Vi(t), then

Xi(t) < Aie”™i — giXi(t),
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whereg; = min{d;, & }. It follows that limsup_,,, Xi(t) <
Li, wherel; = Ae—" This in turn implies, by the non-
negativity ofx; (t) andyl( ), that limsup_,., vi(t) <L; and

yi(t) is ultimately bounded. On the other hand, from Eg.

(6) we have

n
t) < zie‘“i“i kiLi —rv,
i=

n
then limsup_,,, v(t) <L*, whereL* =y
i=1

7nipiki|_.
£S5 andv(t)

is ultimately bounded.]

2.2 Seady states

Itis clear that, systen®lj-(6) has an uninfected steady state
Eo = (x%,y°,\9), wherexi"_ﬁ W=0i=1..,nand

Solving Eq. (1) with respect tog, we getx; as a function
of vas:

xt = !
T 2a(1+bv)

(aix?(l+biv)—(l+qu)+\/[(l+(nv)—ax?(l+biv)]2+4ax‘°(l+biv)z
(14)

!

X = Zadtby)

(a-x?(1+ biv) — (1+@v) — \/[(1+ @v) —ax (1+bv)] >+ 480 (1+bv)?
15)

where,@@ = b + %:
Itis clear that ifv > 0 thenx" > 0 andx,~ < 0. Let us
choosex = x". From Egs. {1)-(13) we have

N ke (MTi+nit)

273

Slnce>q is a function ofv, then we can define a function

(A —dx)—rv=0.  (16)

W =0.The system can also has a positive infected steadgl( v) as

stateE; (x*
state, if they exist, satisfy the equalities:

Ai = dix' + Mgy, i=1,..,n,
(8)
S 1% _
W = Trax)(11bv)’ '=L..n
9)
rv' = ie”‘“‘kiy{. (10)

We define the intracellular
reproduction number for system){(6) as

R-yR-3 S B

S ar(l+ad)
where R is the basic reproduction number for the
dynamics of the virus and the target cell of class

Lemma 1. Consider the systen¥)-(6). If Ry > 1, then
there exists a positive steady st&te

Proof. To compute the steady states of modg}(6), we
let the right-hand sides of Eq#)((6) equal zero,

Bixv

Ai_di)q_(1+a4>q)(1+biv) =0 1=1,...m,
(11)
e MuBxyv o B
(1+aq><4)(1+b|v)_ay'_0’ i=1..n,
(12)
ie‘”i“ihyi —rv=0. (13)

,Y*,v"). The coordinates of the infected steady

N ke (MTi+nik)
2 3

Itis clear that wher‘v =0, thenx;
e (m T|+”|“|)ki)\i
&r
Eq. 14) we obtamxI > 0and

Si(v) (Ai —dixj) —rv=0.

=x? andS;(0) = 0 and

whenv =v = Z > 0, then substituting it in

o N K dje (MTi+nik)
Sl(v)__i; &

SinceS;(v) is continuous for aly > 0, we have that

B n kiBi)(?e*(mTiJrniHi)
31(0)_21 3 (1+ax)

Therefore, ifRy > 1, thenS;(0) > 0. It follows that there
existsv* € (0,V) such thatS; (v*) = 0. From Eq. 14), we
obtainx’ > 0, i =1,...,n. Moreover, from Eq,12) we get
yi>0,i=1,.,n0

X < 0.

delay-dependent basic

=r(Ryp—1).

2.3 Global stability analysis

In this section, we study the global stability of the
uninfected and infected steady states of systdjn(g).
The strategy of the proofs is to use suitable Lyapunov
functionals which are similar in nature to those used in
[21]. Next we shall use the following notatiom:= z(t),

for any z € {x,y;,v, i = 1,...,n}. We also define a
functionH : (0,00) — [0,) as
H(z)=z—1-1Inz

Itis clear thatH (z) > O for anyz > 0 andH has the global
minimumH (1) = 0.
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Theorem 1. Consider the systerd)-(6), (i) if Ry < 1, then
Ep is GAS,

(i) if Ry > 1, thenE; is GAS.

Proof. (i) Define a Lyapunov functiong; as follows:

n

Wi (X,Y,V) = 21 ge*”i“i

e M0
m T
<x0>+y'+e ﬁ‘/ (1+a

1
H
1+ax’

X (t— 6)v(t - 6)
Xi(t—0))(1+bv(t

-9))

We note thatW; is defined and continuous for all
0 occurs at

(x,y,v) > 0. Also, the global minimunw, =
the uninfected steady stafg. The time derivative o¥\;
along the solution of4)-(6) is given by

e M )

“sae S ()0

e M Bx(t—T)v(t—T) )
(It+ax(t—1)1+bvit—1)) —ant

e M Bx(t—T)v(t— 1)
C(Atax(t-1))(1+bvt—1))

dw1 Bixiv

(1+a%)(1+bv)
e "Ml Bxv
(L+ax)(1+biv)

,dixi,

+3yi - dy, (tfui)} +_Zle’"i“ikiyi(t -

K gomp | —€ ™A (% —0)% — e MiBxv
B 21 X0 (1+axP) (1+ax0) (1+ax)(1+bv)
e i gxdv emipxv |

(l+a.><0) (L+ax)(1+byv)  (1+ax)(1+bv)
B S M A 2, e M Bxdv B

Zd ! XX (1+ax) 05 —4)"+ (l+aix|‘0)(l+biv) v
_ k‘de*”"ﬁTl*”llJl) ) 2

21 3% (1+ax0) 06 =)+ s l+biV7
o kidie (M +ni ki) ) 2 I'biR‘V2
_7;(7&)@“%{_&9) % —x0)" + 1+biv> +(Ro—1)rv. (17)

It can be seen that, Ry < 1 then® < 0 for all v >
0,i=1,..
system 4)-(6) limit to M, the largest invariant subset

{dWl = 0} Clearly, it follows from (7) that dWl =0if
andonly ifx, =x°%,i=1,....nandv=0. Notmg thaﬂ\/l is

invariant, for each element & we havev =0, therv'= 0.
From Eq. 6) we drive that

n

Ze_ni“iki)’i (t— ).

i=
Sincey; (t—8) > 0forall 6 € [0,¢], then Z e HiGy;(t—

i) =0 if and only if yi(t — ) = 0,1 = 1
M — 0if and onlyifx, =x0,y;=0,i = 1,...,n andv: 0.
From LaSalle’s invariance principl&g is GAS.

To prove (i), we consider the Lyapunov functional

{ ( . / dn)WH(w)

BV /r'H(xi(t76)v(t79)(l+ai>¢)(l+biv*)
(Lrax)@+bv) [ 7 \Xv(L+ax(t-6)(L+bu(t—6)
FVH (%)

>d9

k‘e*"ﬁ Hi

ain)
%)

X (1

WL(xy,v) = ;

+e Ml

Yi(t—0)

+ay./ ( 4

de +a/y.t ) de}

,n. By Theorem 5.3.1 inZ40], the solutions of

.,n. Hence

Calculating the time derivative &f, along the solutions
of model @)-(6), we get

dw, 2 ke Mk T 5 7xi*(l+a;xi) o Bixiv
dt 4 o [e " (1 >q(1+ai><i*)> (A' o (1+am)(1+biv)>
1— Vi e Ml Bix (t—1)v(t— 1)

)(;

a

N e MtiBxv

+v(1+ax)(1+byv)
e M Bixv*

T @rax)@+ov)

) &y.)
e M Bix (t—1)v(t—1)
T (L+ax(t—1)(1+bv(t—1))
In(Xi(t*Ti)V(t*Ti)(1+84Xi)(l+biV)
XV(1+ax (t—1))(1+bv(t— 1))

+3Yi — ayi(t— u,)+§y*|n<( u.))]

%) e

yi I+ax(t—1))(1+bv(t—r1

)

e ke T (o X (Aax)
7|: a |:err§ (l Xj(l#»ﬁj)(f) (AI d|X|)
e MhBxv yie M Bix (t—1)v(t—1)) 5
Trax)(1+bv)  yi(ltaxt—1)Arbvi—1)) v
N e M Bx v %(t=T)v(t—1)(1+ax)(1+hv) yi(t— )
H= (T ax)(L+Bv >'”<xv<1+ax.t Lot ) - ()]
+r\f*

—rv— Z n|UIKyI

Using the infected steady state conditio®-(10), we
obtain

dﬂ ke M 5 7Xi*<l+aixi) |y TisvE oy
d &4 9 [em (l >q(1+a4>¢>>(d'x'+em y —ax)
V(1+bv*) Xi(t—T)v(t—1i)y; (1+ax ) (1+bv*)
O @by - Y vy rant-m)Abvi-n) O
, X (t—T)v(t — T)yi(t — pi) (1 +ax) (1+biv) Vit — )7 Vv
e e ) B e
g ke Ty ( XAaX)) e
R { . ( xi(l+6w*)><d'ﬁ )
v v 14+bv 1+byv
of +dyi*< =5t 1+bv 1+biv*>
Loy {47x_ 1+ax  x(t—n)vt—n)y (IT+ax)(I+bv)  Vyi(t—p)
% 1+ax  xvyi(l+ax(t—1u))(1+bvt-1)) %
1+biv Xi(t—)V(t—1)yi(t— ) (1 +ax)(1+bv)
e (St e
Then using the following equality
X(t—T)V(t—T)yi(t—p)(I+ax)(1+biv)\ X 1+ax
In( XVyi(1+ax(t—1))(1+bv(t— 1)) >_In<>c 1+a4x;>
VhYi(t— )
+In< W )
X(t—T)v(t— 1)y (1+ax)(1+biv')
+In(><i*V*)/i(1+a4'><i(tfTi))(1+|0iV(t*Ti)))
1+byv
+In(l#»bw")y
Eq. (18) can be rewritten as:
Qe [e™idi (6 —x)" | ayibi(v—v)’
Zl o X (1+ax) vF(1+byv)(1+bjv*)
X 1+ax Vi (t — Wi 1+0b

)"9 HW{{H (Xi 1+aa>q*) o ( Wi M)) o ( ‘Z“)
)
(19)

1+b
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It is obvious that ifx",y‘v* > 0 then % < 0 for all
(%,¥i,v) > 0. By Theorem 5.3.1 inZ0], the solutions of
system 4)-(6) limit to M, the largest invariant subset of
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{dd—vl’z = O}. It can be seen tha®sz = 0 if and only if
X =X,v=v",andH =0i.e.

Vit — ;)

1
Wi

(20)

If v=v* then from Q0) we havey; =y;, and hencé%
equal to zero akE;. LaSalle’s invariance principle implies
global stability ofE;. O

3 Conclusion

In this paper, we have investigated mathematical model o

virus.dynamics with discrete delay. We havg assu.med th 0] J.K. Hale, and S. Verduyn Lunel, Springer-Verlag, New

the virus attack classes of target cells. The infection rate York, 1993,
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defining the delay-dependent basic reproduction number " 70 2693-2708, (2010).
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