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Abstract: In this article we introduce and study the I-convergent seqe space$’ (szf_,f, p), %6(52{_,f, p) and ZLO(M_,f, p) on
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1 Introduction and Preliminaries also managed their place in the world of mathematics and
credited into account some alike structures . Interval
LetN, R andC be the sets of all natural, real and complex arithmetic was first suggested by P.S.Dwyer[13] in 1951.
numbers respectively. Further development of interval arithmetic as a formal
system and evidence of its value as a computational

Let ém' c and Co be denote the Banach spaces of device was provided by R.E.Moore[24] in 1959 and

bounded, convergent and null sequences respectively withloore and Yang[25] and others and have developed
norm applications to differential equations.

||| = sup| X« | Recently, Chiao [12] introduced sequences of interval
k numbers and defined usual convergence of sequences of
interval numbers. Sengodnil and Eryllmaz[34] introdiice
and studied bounded and convergent sequence spaces of
w={x= (%) X% <RorC} interval numbers and showed that these spaces are
complete.

We denote

the space of all real or complex sequences.
Hereafter, we give the definitions that will be used in
Any subspace\ of the linear spacev of sequences is the paper.
called a sequence space. A sequence spaeéh linear
topology is called aK-space provided each of maps A set consisting of a closed interval of real numbers
pi : A — C defined byp;j(x) = x is continuous, for all  such thata < x < b is called an interval number. A real
i € N. A space) is called anFK-space provided is interval can also be considered as a set. Thus, we can
complete linear metric space. ARrK-space whose investigate some properties of interval numbers for
topology is normable is calledBK-space. instance, arithmetic properties or analysis properties. L
us denote the set of all real valued closed intervalsky
It is an admitted fact that the real and complex Any element ofiR is called an interval number and it is
numbers are playing a vital role in the world of denoted byA = [x,%] wherex andx, are the smallest
mathematics. Many mathematical structures have beeand the greatest point of an interval numBeAn interval
constructed with the help of these numbers. In recenhumber is closed subset of real numbers [12]. The
years, since 1965 fuzzy numbers and interval numberslgebraic operations for interval numbers can be found in
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[34] and it is a quasilinear space(see[37]).

The set of all interval numbel® is a complete metric
space defined by

d(A, Ag) = max{| Xy, — X, |, | X1, — X, [}, (sed25, 34]()~
_ 1
wherex andx; be first and last points @&, respectively.

In a special caseﬁ_,\l =[a,a], A_z = [b,b], we obtain the
usual metric ofR with

d(A,A2) =|a—b].

Let us define transformatiof from N to IR by
k— f(k) =, & = (A). Then, the sequenddy) is
called sequence of interval numbers, whégeis the ki
term of the sequendg\y).

(N3) ||A_k‘tB_k||)\(( H< ||A_k||_/\(;z{_)+||B_k||)\((<47_) B
(Na) l[aAdl ) = lalllAlla(7), where A(<7) is a
subset of(«).

Let o = (Ay) = ([Xq,%]) be the element o¥’ (<),
6o(7) or lw(<7). Then, in the light of above discussion,
the classes of sequence¥.«’), ¢.(«7) and (. (<7) are
normed interval spaces normed by

I JH:SLJDmaX{IXm 1% [} (see34)).  (5).

ThroughoutO = [0,0] andl = [1,1] represent zero and
identity interval numbers according to addition and
multiplication, respectively.

As a generalisation of usual convergence for the
sequences of real or complex numbers, the concept of

Let us denote the set of sequences of interval numberstatistical convergence was first introduced by Fast [14]

with real terms by

w(el) ={ = (A): AcE IR} (2)

The algebraic properties ofo(«) can be found in
[12,34].

The following definitions were given by Sengodnil and

Eryilmazin [34]. _

A sequence? = (Ax) = ([ ,X]) of interval numbers is
said to be convergent to an interval numbgr= [xo,, X, ]
if for eache > 0, there exists a positive integag such

that d(Ax,Ao) < &, for all k > ny and we denote it as

IirknAk:Ao.

Thus, ILmA_k A lim Xy, =Xo, and limxy, = x, and

and also independently by Buck [11] and Schoenberg
[33]. Later on, it was further investigated from a sequence
space point of view and linked with the Summability
Theory by Fridy[15],Salat [30], Tripathy [35] and many
others. The notion of statistical convergence has been
extended to interval numbers by Esi as follows in

[11.[2].[3].[4].[5].[6].[7].[8].[9].[10].
Let us suppose that/ = (A € Zm(d_). If, for every
£>0,

im L1{ne N A Aol €, n<k)| =0 (6)

then the sequence/ = (A) is said to be statistically
convergent to an interval numbAg, where vertical lines
denote the cardinality of the enclosed set. That is, if

it is said to be Cauchy sequence of interval numbers if for5(A(£)) =0, whereA(g) = {ke N:|| Ac— Ao ||> €}

eache > 0, there exists a positive integks such that
d(Ax, Am) < €, whenevek, m > k.

The notation of ideal convergence (I-convergence) was
introduced and studied by Kostyrko, Macaj, Salat and

Let us denote the space of all convergent, null andwyjiczypski [21,22]. Later on, it was studied bSalat,

bounded sequences of interval numbers ®Y.</),
¢-(#) andlw (), respectively. The sets (), 6, ()
and/. (<) are complete metric spaces with the metric

Q)

(A Br) = SLmeaX{Ith — Yk | X —Yic [} (se€34)). (3)

If we takeBy = O in (3) then the metrid reduces to

d(A.0) = supmax{ | e [} (4)

In this paper, we assume that a noffAy|| of the
sequence of interval numbe(dy) is the distance from
(Ay) to O and satisfies the following properties:

VA, Bk € A (/) andva € R
(N1) VA € A () = {O}, [|Ad[ 5 (1) > O;
(N2) |Al [y () = 0 A= 0;

Tripathy and Ziman [31,32], Esi and Hazarika[1],
Tripathy and Hazarika [36], Khaet al [18,19,20] and
many others.

Let us denote the classes of I-convergent, I-null,
bounded I-convergent and bounded I-null sequences of
interval numbers with' (<), €)(</), .4} (</) and
My, (o), respectively.

Definition 1.1. Let N be a non empty set. Then, a
family of sets IC 2V (power set ofN) is said to be an
ideal if
() I is additive i.eVA,Be | = AUB€ |
(i) I is hereditary i.eVAc land BC A= B¢< .

A non-empty family of setlf) C 2" is said to be filter
on N if and only if
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() @ ¢ £(1),

(i) VA Be£(l) we have MB e £(1),

(iily Y Ac £(I) and ACB= B e £(1).

An Ideal 1 C 2N is called non-trivial if 1 # 2N,

A non-trivial ideal 1 C 2N is called admissible if

{{x}:xeN} CI.

Let us suppose that | be an ideal. Then a sequence
(Ak) € loo() C () _

(i) is said to be I-convergent to an interval numbBegif
for everye > 0, the set

(ke N[ Ao |> e} el.

In this case, we write + lim Ay = Ag. If Ag = O then the
sequence? = (Ax) € Lo(<7) is said to be I-null. In this
case, we write + lim A, = O.

(ii) is said to be I-cauchy if for everg > 0 there exists
a number m= m(¢e) such that

(kEN:| Ac—An > e} el.

(iii) is said to be I-bounded if there exists some>M)
such that _
{keN:| A ||>M}el.

We know that for each idedl, there is a filter£(l)
corresponding td,
i.,e£(l) ={K CN:KCel}, whereK®=N\K.

Definition 1.2. A sequence spack(</) of interval
numbers is _ _

(iv) said_to be solid(normal) if(axAx) € A(<)
whenever(Ay) € A(«/) and for any sequencéay) of
scalars with| ay |< 1, forallk € N, _

(V) said to be symmetric {Ay)) € A (</) whenever

AcEA(),
wherertis a permutation o,
~(vi) said to be sequence algebra if
(A) = (By) = (ABy) € A(o) whenever

(A), (Bk) € A(#), _

(vii) said to be convergence free (By) € A(«)
wheneverAy) € A(</) and Ay = O impliesBy = O, for
all k.

Definition 1.3. Let
K={ki < ky < ks < kg <ks...} CN. The K-step space
of the A(&) is a  seguence space

A —
e = {(Ag) € () 1 (A) €A ()},
Definition 1.4. A canonical pre-image of a sequence

(A,) € tp ) is a sequence
(Bx) € w(=/) defined by

|

A ifkeK,
O, otherwise

A canonical preimage of a step spappé(_“{) is a set of
canonical preimages of all elerpentsﬂﬁ<"7/>, i.e.Aisin
the canonical preimage qﬁjﬁ(”) iff % is the canonical
preimage of some7 € u,ﬁ(”).

Definition 1.5. A sequence spaob(gf) is said to be

monotone if it contains the canonical preimages of its step
space.

Definition 1.6. A function f :[0,00) — [0,) is
called a modulus function if
(1) f(t) =0ifand only ift=0,
(2) f(t+u) < f(t)+ f(u)forallt, u>0,
(3) f isincreasing, and
(4) f is continuous from the right at zero.

For any modulus function f, we have the inequalities

| F() = f(y) < f(x=y)
and
f(nx) < nf(x), (7)

A modulus function f is said to satisfiyy — Condition
for all values of u if there exists a constant>K0 such
that f(Lu) < KL f(u) for all values of L> 1.

for all x, y € [0, o].

The idea of modulus was introduced by Nakano in
1953(Seé26], Nakang1953).

Ruckle [27,28,29] used the idea of a modulus function
f to construct the sequence space

00

(%) Y F(x) < ).

k=1

(8)

This space is an FK-space and Ruckle[27,28,29]
proved that the intersection of all such(X) spaces isp,
the space of all finite sequences. The spadd)Xs
closely related to the spac@ which is an X f) space
with f(x) = x for all real x > 0. Thus Ruckle[27,28,29]
proved that, for any modulus f.

X(f) c f1and X(f) = lo
Where

0

X(H*={y=) e w:y fllyxl) <o}
k=1

(9)

Spaces of the type (X) are a special case of the
spaces structured by B.Gramsch [17]. From the point of
view of local convexity, spaces of the typéf Xare quite
pathological. Symmetric sequence spaces, which are
locally convex have been frequently studied by D.J.H
Garling[16], G.Kothe[23] and W.H.Ruckle[27,28,29].
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We need the following popular inequalities throughout Theorem 2.2.The classes of sequenc%;(d_, f,p) and

the paper.

Let p= (px) be the bounded sequence of positive reals

numbers. For any complex wheneveH = sup(py) < o,
k

we have
| A [Pe<max(1, | A |7)

Also, wheneveH = sup(pk), we have
k

| a4 b [P < C(| a [ + | o [P),
whereC = max(1,2"-1).
Now, we give some important Lemmas.
Lemma.1.7.Every solid space is monotone.

Lemma.1l.8.LetK € £(1) andM C N. If M ¢ I, then
MNK ¢ I, where£(l) C 2N filter onN.

Lemma.1.9.1f 1 € 2N andM C N. If M ¢ I, then
MNON¢1.

2 Main Results
Let us give a most important definition for this paper:

Definition 2.1(see [37]). LetX be a space of interval
numbers. A functiorg : X — R is called paranorm oKX
Jfforall A Be X,

_A) = g(A)a

A+B)<g(A)+9(B),

(An) is a sequence of scalars with — A (n — )
€ X with g(An) = 9(Ag) (n — =), then
g(AAg) — 0 (n— ).

B, theng(A) < g(B).

In this article, we introduce and study the following
classes of sequences;

%}'(.pf,f,p):{,J:(/Kk)ezm<,ex7):{keN: f(|\/§kﬂ&\|)"kza}e|,}; (10)

%(d,f,p):{di: (A € (/) : {kEN: f(HA_kH)pkzs}el}; (11)

m(-ef.,f.,p):{w‘:(ik)emf‘)zslkmf(u&n)"woo}. (12)

We also denote _ _
//[J&”(dv_fvp) = éw(;a_/,f,p) N Cgl(iyvap)
My (7,5,0) = la(,f,p) N Gy, 1,p),

and
where

p = (pk) is a bounded sequence of positive real numberd?2) IfU = {keN: f(

andf is a modulus function.

//l} (o, f,p) are paranormed spaces, paranormed by
o(«)

Proof. Let & = (A), = (Bx) € #L(<,T,p).

(Pp). Itis Clear thag(«/) =0 if &/ = 0.

(P,). Itis obvious thag(«/) > 0.

(Ps). 9(«) = g(—d) is obvious.

(P4). Since § <1 andM > 1, using Minkowski’s
inequality, we 'Y|1ave ]

= ((A) =supf (| A " whereM = max(Lsuppy).

=R

g<J+@:g</¥k+§k>:sEpf(\|/Kk+§k>n)p SSEMHMD%

+supf (|| B) 1% = 9(A) +9(Bx) = 9(/) + 9(%)

Thereforeg(«/ + %) < 9() +9(AB).

(Ps). Let(Ax) be a sequence of scalars witk) — A (k—
o) and _

(A, Ao € Y (<, f,p) such that

9(A) — g(Ao) (k— ),
Then, since the inequality
9(A) < 9(Ac—Ao) +9(Ao),

holds by subadditivity ofg, the sequeang(Kk)} is
bounded.
Therefore,

| 9(AA) —9(A Ao) =] (M) — (A A) +9(AA) —g(AAo) |

(14)

< M= A M g(AA) [+ A 1] g(A) — g(Ag) | 0

as (k — ). That is to say that scalar multiplication is
continuous. _ _
(Ps). Sincef is increasing, it is clear thaj(.</) < g(4,

if o <B. _

Hence//l('g(ie%, f,p) is a paranormed space.

For.#y, (<, f,p), the resultis similar.

Theorem 2.3.The set///%(d_, f,p) is closed subspace of
leo(, T, ).

Proof. Let (,&(k”)) be a Cauchy sequenceimjf(,@f_, f.p)

such that”) — A B
We show thath € . (<7, f, p)

Since (A_\(k")) € ///Jg(d_,f, p). Then, there exist&, such

that _
(keN:f([|AY A [ )*>e}el.

We need to show that

(1) (An) convergestdy.

| Ax—Ao || )™ < g}, thenu® ell.
(1) Since(A_\(k”)) is Cauchy sequence M'g(bef_, f.p) =
for a given € > 0, there existsky € N such that

(@© 2014 NSP
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Py
supf ([ A" — A )™ < £ foralln, q> ko.
k
Fore > 0, we have

Brg = (ke N F(| A7 — A )P < ()M}
Ba= (ke N: F(| AX - Al )™ < (5"}

Bn:{keN: f(|A‘k”>—/In|)pk<(g)M}

Then,B, Bg,Br € |
Let BC = Big U By U B where
B={keN:f(|Aq— An|\)pk<s} ThenB®c .

We chooseg € B®. Then for eacm, g > kg, we have
(ke mf(1 A Al )™ <&} 2 [ke s 1(]
A=A )™ < (HM)

NikeN: (AT -AY )™ < (5

ke s (17— Al < G

Then (A_n) is a Cauchy sequence of interval numbers, so

there exists some interval numb%y such thath, — Ag as

n— oo,

(2) Let 0< & < 1 be given. Then, we show that if
U={keN:f(|A—A|)™*<3d},

thenUC_? .
Since(Ak”)) — Athen, there existgp € N such that

P={keN: (| A% ~AJ)*<(2M) (14

impliesP® € 1.
where

D =max{1,2""1}, H =suppx >0,
k

The numbeigg can be chosen that together with (14), we

have
— 5
Q={keN: f( || A —Ao])™ < (35"}
such thaQ® ¢ I. B
Since{k € N: f( | A% —Aq || )™ >3} € 1. Then, we

have a subsetS of N such that S € I, where

S={keN: f([|A% —Aq | )™ < (S)M}.
Let u¢ = P U Q° U S where
U={keN:f(|A-A|)™*<3d}

Therefore, for eack € U¢, we have
ke N:f( || A—Aoll)™ <8} 2[fkeN:f(|

Kk_'&(kQO H)pk §) }

N{keN: f( AP — Ay )P < (2)M}

w| o™

KeN: 1(| AR )* < (DM (9

Then, the result follows from (15).

Since the inclusions#.. (<7, f,p) C le (d,f,p) and

///% (d,f,p) C lw(/,f,p) are strict so in view of
Theorem (2.3) we have the following result.

Theorem

m 2.4. The spaces .#.L(<,f,p) and
VACA

, p) are nowhere dense subsetdof</, f, p).

Theorem 2.5.The space& (<7,

f.p) and.#, (<, f,p)
are both solid and monotone.

Proof. We shall prove the result fo#} (<, f
L//l} (<, f,p), the result follows similarly.

For, leto = (A) € €3(<7, f,p) and(ak) be a sequence
of scalars with ay |< 1, for allk € N.

Since| ay |P«< max{1,| ax |7} < 1, forallk € N,

we have

F([laAc )™ < ([ Acll)™, forallk e N.
which further implies that
{keN:f(||Al)™*>e} 2 {keN:

Thus, a(Ac) € 63/, T,p).
Therefore, the space} (<, f
lemma(1.7), it is monotone.

,p). For

f( ] oA )™> e}
,p) is solid and hence by

Theorem 2.6.Let H = suppk < « and| be an admissible

k
ideal. Then, the following are equivalent.
(@) (A) € ¢ (<, f,p); _ _

(b) there exists (By) € ¥(«,f,p)
A= Bk,foraakrl

(c) there existgBy) € %(d, f,p) andCy € %3 (d, f,p)
such that Ay, = B + C for all k € N and
{keN:f(|B—Al)*>elel

(d) there exists a subskt= {ky < ko < k3 <ks...} of N
such thaK e £(1) and lim (|| A, — Al)P =0

such that

Proof. (a) implies (b). _
Let o7 = (Ay) € €' (o, f,p). Then, there exists interval
numberA such that the set

(keN:f(|A—A[)*>e}el.

Let (m) be an increasing sequence withe N such that

{k<m:f([|A-AD >t el

(@© 2014 NSP
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Define a sequenddy) as
By = Ay, forallk <my.
Form <k<myi, teN

5 _ [ A if FLA—A])> <t
k A, otherwise

ThenBy € € («, f, p) and from the inclusion
(k<m:AAB} C{k<m:f(||A—A])* >} el

we getA, = By fora.a.k.. _

(b) implies (c). ForeZ = (Ay) € €' (<7, f,p), then, there
exists(By) € (<, f,p) such thatA, = B, for a.a.k.i.
LetK = {ke N: Ac # By}, thenK € 1.

DefineCy as follows.

= [A—BgifkeK,
Ck—{ 0, if kK.
ThenCy € 6} (<, f,p) andBy € €(, f, p).
(c) implies (d). Suppose (c) holds. Let> 0 be given. Let
Pi={keN:f([|C|)*>¢e}el.

and
K =P ={ki < ky <kg<kg.}e£(l).

Then we have
H A _ N pkn —
lim £ (|| A, — A )P =o.
(d) implies (a). LeK = {k; < kp < k3 < ks...} € £(]) and
i A —_— A pkn =
lim £ (|| Aq, — Al})P =0.
Then for anye > 0, and Lemma (Il), we have

{(keN: (| A—A])*>e} CKOU{keK: f([|A—A])*>e}.
Thus, (A) € €' (7, f,p)

Theorem 2.7 Let f; and f, be two modulus functions
satisfying A, — Condition and p = (pk) € ¢ be a
sequence of positive real numbers, then

(@) 2 (.12, p) C 2, f1M2,p) _

(b) 2" (o, f1,p) N (o, f2,p) € 27 (o, f1 + f2,p)

for 2’=¢", 6}, ./} and.#;,

Proof.(a) Let.«/ = (A) € € (ba%_, fo, p) be any arbitrary
element.
Then, the set

{ken:t(1A))" 2 et

Let £ > 0 and choos® with 0 < & < 1 such thatfy(t) <
£, 0<t<o.
Let us denote

Be=fa( | Acll )

(16)

(17)

and consider

1 (B) ™+ _ lim

f B_ [
By>0.keN 1( k)

lim f1(Bx)™ = _ lim
k Bx<d keN

Now, sincef; is an modulus function , we have

f1(Bi)™ < f1(2)™ gkg"ﬂm(gk) Pk

_ lim (18)
By <d.keN

For By > &, we have

~ By Bx
Bk< = <1+—
K < 5< +5

Now, sincef; is non-decreasing and modulus, it follows
that

— B, 1 1. 2By

f1(Bk) < f1(1+ 3) < §f1(2)+ Efl(T)

Again, sincef; satisfiesA; — Condition, we have
1. (By) 1. (By)

Thus, 1 (B) < KB £, (2)
Hence,

fl(B_k) <

lim

f1(Bi) ™ < max{1, (K& *1(2))"} _ lim  (B)P, H =max{1,
B0 ke 1(Bi)™ < max{1,( 1(2)7} _lim  (Be)P, max{ ,Stlppk}

By >0 ,keN

(19
Therefore, from (17), (18) and (19), we have
(A) €6 (o, 1112.p) _
Thus, 6)(e/,f2,p)_C €M, fifpp).
2 (e, f2,p) C 2 (o, f1f2,p) for 27=16].
For 2'= ¢', .#) and .4, the inclusions can be
established similarly. _ _
(b). Let & = (A) € E) (o, f1,p) N E) (A, T2, p). Let
€ > 0 be given. Then the sets

{keN:f1(|Kk|)pk>s}el;
{keN:f2(|A_k|)pkze}e|.

Therefore, from (20) and (21), we have

Hence,

(20)

(23)

{keN;(fl+f2)(|/Kk|)pk>s}e|

Thus,o = (A) € 6) (o, f1+ T2, p) _

Hence,¢ gﬂ, f1,p) NG (7, f2,p) CCL(, f1+ f2,p)
ForZ'=%¢", L///} and%}o, the inclusions are similar.
For fa(x) =x and £ (x) = f(x), V x € [0,), we have the
following corollary.

Corollary 2.8.2 (o7 ,p) C 2 (. f,p) for =%, ¢,
MYy and. 4y,
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Theorem 2.9.Let (px) and (gk) be two sequences of
positive_ real _ numbers. Then
My (o, f,p) 2 Al (o/,f,q) if and if
Lirr}linf & > 0, whereK C N such thaK € £(1).

S

only

Proof. Let II(in}ginf % >0 and(Ay) € MY (.;zf_, f.q). Then,
E o

there existg > 0 such thapy > Bgx for sufficiently large
keK. _ _
Since(Ay) € ///Jé (7, 1,q). For a givere > 0, we have

Bo={keN:f(||A)*>e}el.

Let Gop = K°UBy. ThenGq € |. Then for all sufficiently
largek € Gy,

(keN:f(| A > e} C{keN: £ (| A)P%>e}el.

Therefore(A) € .4}, (<7, f,p).
The converse part of the result follows obviously.

Theorem 2.10.Let (py) and (gx) be two sequences of
positive_ real _ numbers. Then
My (o ,8.0) D My («/,F,p) if and if
Lirr}linf o >0, whereK C N such thaK € £(1).

(S

only

Proof. The proof follows similarly as the proof Theorem
[2.9].

Theorem 2.11.Let (py) and (gx) be two sequences of
positive_ real _ numbers. Then
My (,1,q) My (7, f,p) if and only if
liminf 2 > 0 and liminf % > 0, whereK C N such that
keK G keK Pk

Ke£().

Proof. On combining Theorem (2.9.) and (2.10.) we get
the desired result.
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