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Abstract: The aim of this paper is to present fixed point theorems in dislocated metric space. We have proved some unique fixed point
results for expanding type of continuous self-mapping and surjective expanding self-map in dislocated metric space. Anon-unique
fixed point theorem has been obtained for Hardy-Rogers type mapping using expanding mapping in dislocated metric space.Examples
are given in the support of our constructed results.
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1 Introduction

The concept of dislocated metric space was introduced by
Hitzler and Seda [1], [2]. In dislocated metric space the
self distance of a point need not to be zero necessarily.
They also generalized famous Banach contraction
principle in dislocated metric space. Dislocated metric
space play a vital role in Topology, Logical Programming
and Electronic Engineering. Zeyada et al. [3] developed
the notion of complete dislocated quasi-metric spaces and
generalized the result of Hitzler [1] in dislocated
quasi-metric space. Later on many papers have been
published containing fixed point results for different type
of contractions defined by [4,5] in dislocated quasi-metric
spaces (see [6,7,8,9,10]).

In this article, we have proved some unique and non-
unique fixed point results for expanding type mapping in
dislocated metric space. A non-unique fixed point theorem
have been obtained for Hardy-Rogers type mapping using
expanding mapping in dislocated metric space.

2 Preliminaries

Throughout this paperR+ will represent the set of non-
negative real numbers.
Definition 2.1. [3]. Let X be a non-empty set and letd :
X ×X → R

+ be a function satisfying the conditions
d1) d(x,x) = 0;

d2) d(x,y) = d(y,x) = 0 implies thatx = y;
d3) d(x,y) = d(y,x);
d4) d(x,y)≤ d(x,z)+ d(z,y) for all x,y,z ∈ X .
If d satisfy the conditions fromd1 to d4 then it is

called metric onX , if d satisfy conditionsd2 to d4 then it
is called dislocated metric (d-metric ) on X and if d
satisfy conditionsd2 and d4 only then it is called
dislocated quasi-metric (dq-metric) onX .

Clearly every metric is a dislocated metric but the
converse is not necessarily true as clear form the
following example:
Example 2.2. Let X=R+ define the distance function
d : X ×X →R

+ by

d(x,y) = max{x,y}

clearlyd is dislocated metric but not a metric.
Also every metric and dislocated metric is dislocated

quasi-metric but the converse is not true as clear from the
following example:
Example 2.3.Let X = R

+ we define the functiond : X ×
X →R

+ by

d(x,y) = |x− y|+ |x| for all x,y ∈ X

evidentlyd is dq-metric but not a metric nor dislocated
metric.

In our main work we will use the following definitions
which can be found in [1].
Definition 2.4. A sequence{xn} in d-metric space(X ,d)
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is called Cauchy sequence if forε > 0 there exist a positive
integern0 ∈ N such that form,n ≥ n0, we haved(xm,xn)<
ε.
Definition 2.5. A sequence{xn} is calledd-convergent in
(X ,d) if

lim
n→∞

d(xn,x) = lim
n→∞

d(x,xn) = 0.

In this casex is called thed-limit of the sequence{xn}.
Definition 2.6. A d-metric space(X ,d) is said to be
complete if every Cauchy sequence inX converge to a
point ofX .
Definition 2.7. Let (X ,d) be ad-metric space a mapping
T : X → X is called contraction if there exist 0≤ α < 1
such that

d(Tx,Ty)≤ αd(x,y) for all x,y ∈ X .

Theorem 2.8.[12]. Let (X ,d) be a complete metric space.
T : X → X be a self-mapping satisfying the condition,

d(T x,Ty)≤ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty)+

e ·d(x,Ty)+ f ·d(y,Tx)

∀ x,y ∈ X anda,b,c,e, f ≥ 0 with a+ b+ c+ e+ f < 1.
ThenT has a unique fixed point.
Theorem 2.9.[6]. Let (X ,d) be a complete dislocated
quasi-metric space.T : X → X be a continuous
self-mapping satisfying the condition

d(Tx,Ty)≤ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty)

∀ x,y ∈ X anda,b,c ≥ 0 with a+ b+ c < 1. ThenT has a
unique fixed point.
Lemma 2.10.[1]. Limit in d-metric space is unique.
Theorem 2.11. [1]. Let (X ,d) be a completed-metric
spaceT : X → X be a contraction thenT has a unique
fixed point.

3 Main Results

In this section, we first prove some unique fixed point
results satisfying expanding condition by taking the
continuity of self-mapping and then considering
surjective self-mapping in the context of dislocated metric
space.
Theorem 3.1.Let (X ,d) be a complete dislocated metric
space let T : X → X be a continuous self-mapping
satisfying the condition

d(T x,Ty)≥ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty) (1)

∀ x,y ∈ X anda > 1,b ∈ R andc ≤ 1 with a+ b+ c > 1.
ThenT has a unique fixed point.
Proof. Let x0 be arbitrary inX , we define a sequence{xn}
in X by the rule

x0 = T x1,x1 = T x2, ...........,xn = T xn+1.

Now to show that{xn} is a Cauchy sequence inX ,
Consider

d(xn,xn−1) = d(T xn+1,T xn).

Now by (1) and definition of the sequence

d(xn,xn−1) = d(T xn+1,T xn)≥ a ·d(xn+1,xn)

+b ·d(xn+1,T xn+1)+ c ·d(xn,T xn)

d(xn,xn−1)≥ a ·d(xn+1,xn)+b ·d(xn+1,xn)+c ·d(xn,xn−1).

By use of symmetric property we have

d(xn−1,xn)≥ a ·d(xn,xn+1)+b ·d(xn,xn+1)+c ·d(xn−1,xn)

(1− c)d(xn−1,xn)≥ (a+ b) ·d(xn,xn+1)

d(xn,xn+1)≤

(

1− c
a+ b

)

d(xn−1,xn).

Let

k =
1− c
a+ b

< 1.

So the above inequality become

d(xn,xn+1)≤ k ·d(xn−1,xn).

Also
d(xn−1,xn)≤ k ·d(xn−2,xn−1).

So
d(xn,xn+1)≤ k2 ·d(xn−2,xn−1).

Proceeding in similar way we can get

d(xn,xn+1)≤ kn ·d(x0,x1).

Taking limit n → ∞, ask < 1 sokn → 0 so

d(xn,xn+1)→ 0.

Hence{xn} is a Cauchy sequence in completed-metric
space. So there must existsu ∈ X such that

lim
n→∞

xn = u.

Now to show thatu is a fixed point ofT , since T is
continuous So,

lim
n→∞

Txn = Tu ⇒ lim
n→∞

xn−1 = Tu ⇒ Tu = u.

Henceu is the fixed point ofT .
Uniqueness. Let u,v are two distinct fixed points ofT .

Now to show that(u,u) = d(v,v) = 0, puttingx = y = u in
(1), We have

d(Tu,Tu)≥ a ·d(u,u)+ b ·d(u,Tu)+ c ·d(u,Tu)

d(u,u)≥ (a+ b+ c) ·d(u,u).

Sincea+ b+ c> 1, so the above inequality is possible if

d(u,u) = 0.
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Similarly we can show that

d(v,v) = 0.

Now consider

d(u,v) = d(Tu,Tv)≥ a ·d(u,v)+b ·d(u,Tu)+c ·d(v,Tv)

d(u,v)≥ a ·d(u,v)+ b ·d(u,u)+ c ·d(v,v)

d(u,v)≥ a ·d(u,v).

Sincea > 1 so the above inequality is possible ifd(u,v) =
0 similarly we can show thatd(v,u) = 0 which implies that
u = v. Hence fixed point ofT is unique.
Corollary 3.2. Let (X ,d) be a complete dislocated metric
space.T : X → X be a continuous self-mapping satisfying
the condition

d(T x,Ty)≥ a ·d(x,y)+ ·d(x,Tx)

∀ x,y ∈ X anda > 1,b ∈ R with a+ b > 1. ThenT has a
unique fixed point.
Proof. By putting c = 0 in Theorem 3.1 we can get the
required result easily.
Corollary 3.3. Let (X ,d) be a complete dislocated metric
space.T : X → X be a continuous self-mapping satisfying
the condition

d(T x,Ty)≥ a ·d(x,y)

∀ x,y ∈ X anda > 1. ThenT has a unique fixed point.
Proof. Puttingb = c = 0 in Theorem 3.1 one can get the
required result without any difficulty.
Example 3.4.Let X =R

+ the dislocated distance function
defined onX is

d(x,y) = max{x,y}

for all x,y∈X and the continuous function onX is given by
T x = 2x so fora = 2,b = −1 andc = 1

3 all the conditions
of Theorem 3.1 are satisfied. Thereforex = 0 is the unique
fixed point ofT .
Example 3.5.Let X =R

+ the dislocated distance function
defined onX is

d(x,y) = max{x,y}

for all x,y ∈ X and the continuous function onX is given
by Tx = 2x so fora ≥ 2 all the conditions of Corollary 3.2
are satisfied. Thereforex = 0 is the unique fixed point of
T .
Theorem 3.6.Let (X ,d) be a complete dislocated metric
space.T : X → X be a surjective self-mapping satisfying
the condition

d(T x,Ty)≥ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty) (2)

∀ x,y ∈ X anda > 1,b ∈ R andc ≤ 1 with a+ b+ c > 1.
ThenT has a unique fixed point.

Proof. Let x0 be arbitrary inX , we define a sequence{xn}
in X by the rule

x0 = T x1,x1 = Tx2, ...........,xn = Txn+1.

Proceeding like Theorem??, we obtain that{xn} is a
Cauchy sequence in complete dislocated metric space. So
there must existsu ∈ X such that limn→∞ xn = u. Now to
show thatu is the fixed point ofT sinceT is surjective
(onto) mapping so for anyp ∈ X T p = u. Consider

d(xn,u)= d(Txn+1,T p)≥ a ·d(xn+1, p)+b ·d(xn+1,T xn+1)

+c ·d(p,T p)

d(xn,u)≥ a ·d(xn+1, p)+ b ·d(xn+1,xn)+ c ·d(p,u).

Taking limit n → ∞ we get

0≥ (a+ c) ·d(p,u) ⇒ d(p,u) = 0 ⇒ p = u.

SoT p = u becomesTu = u. Thusu is the fixed point ofT .
Uniqueness.Follows from Theorem 3.1.

Example 3.7.Let X =R
+ the dislocated distance function

defined onX is

d(x,y) = max{x,y}

for all x,y ∈ X and the surjective continuous function onX
is given byTx = 5

2x so fora = 4,b =−2 andc = 3
4 all the

conditions of Theorem 3.6 are satisfied. Thereforex = 0 is
the unique fixed point ofT .

Our next theorem is about a non-unique fixed point
for Hardy-Rogers type mapping satisfying the expanding
condition in the context of dislocated metric space.
Theorem 3.8.Let (X ,d) be a complete dislocated metric
space.T : X → X be a continuous self-mapping satisfying
the condition

d(T x,Ty)≥ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty)+

e ·d(x,Ty)+ f ·d(y,T x) (3)

∀ x,y ∈ X with a+b+c> 1 andc ≤ 1+e+ f . ThenT has
a fixed point.
Proof. Let x0 be arbitrary inX , we define a sequence{xn}
in X by the rule

x0 = T x1,x1 = Tx2, ...........,xn = Txn+1.

Now to show that{xn} is a Cauchy sequence inX
Consider,

d(xn,xn−1) = d(T xn+1,T xn).

Now by (3) and definition of the sequence we have

d(xn,xn−1) = d(T xn+1,T xn)≥ a ·d(xn+1,xn)+

b ·d(xn+1,T xn+1)+ c ·d(xn,T xn)+ e ·d(xn+1,Txn)+

f ·d(xn,T xn+1)
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d(xn,xn−1)≥ a ·d(xn+1,xn)+ b ·d(xn+1,xn)+

c ·d(xn,xn−1)+ e ·d(xn+1,xn−1)+ f ·d(xn,xn).

By using symmetric property we have

d(xn−1,xn)≥ a ·d(xn,xn+1)+ b ·d(xn,xn+1)+

c ·d(xn−1,xn)+ e ·d(xn−1,xn+1)+ f ·d(xn,xn).

Since

d(xn,xn+1)≤ d(xn−1,xn+1)+ d(xn−1,xn)

d(xn−1,xn+1)≥ d(xn,xn+1)+ d(xn−1,xn).

Using the above technique in 4th and 5th term of above
We have

(1− c+ e+ f ) ·d(xn−1,xn)≥ (a+ b+ d+ f ) ·d(xn,xn+1)

d(xn,xn+1)≤

(

1− c+ e+ f
a+ b+ e+ f

·

)

d(xn−1,xn).

Now using the restrictions on the constants in the theorem
We have let

k =
1− c+ e+ f
a+ b+ e+ f

< 1.

So the above inequality become

d(xn,xn+1)≤ k ·d(xn−1,xn).

Also
d(xn−1,xn)≤ k ·d(xn−2,xn−1).

So
d(xn,xn+1)≤ k2 ·d(xn−2,xn−1).

Proceeding in similar way we get

d(xn,xn+1)≤ kn ·d(x0,x1).

Taking limit n → ∞, ask < 1 sokn → 0 so

d(xn,xn+1)→ 0.

Hence{xn} is a Cauchy sequence in completed-metric
space. So there must existsu ∈ X such that
limn→∞ xn = u. Now to show thatu is a fixed point ofT
sinceT is continuous so

lim
n→∞

T xn = Tu ⇒ lim
n→∞

xn−1 = Tu ⇒ Tu = u.

Henceu is the fixed point ofT .
Corollary 3.9. Let (X ,d) be a complete dislocated metric
space.T : X → X be a continuous self-mapping satisfying
the condition

d(T x,Ty)≥ a ·d(x,y)+b ·d(x,Tx)+c ·d(y,Ty)+e ·d(x,Ty)

∀ x,y ∈ X with a+ b+ c > 1 andc ≤ 1+ e. ThenT has a
fixed point.
Proof. Putting f = 0 in Theorem 3.8 one can get the

required result easily.
Theorem 3.10.Let (X ,d) be a complete dislocated metric
space.T : X → X be a surjective self-mapping satisfying
the condition,

d(T x,Ty)≥ a ·d(x,y)+ b ·d(x,Tx)+ c ·d(y,Ty)

+ e ·d(x,Ty)+ f ·d(y,T x) (4)

∀ x,y ∈ X with a+b+ c> 1, c ≤ 1+ e+ f anda,c, f > 0.
ThenT has a fixed point.
Proof. Let x0 be arbitrary inX we define a sequence{xn}
in X by the rule

x0 = T x1,x1 = Tx2, ...........,xn = Txn+1.

Proceeding like Theorem3 we obtain that{xn} is a
Cauchy sequence in complete dislocated metric space. So
there must existsu ∈ X such that limn→∞ xn = u. Now to
show thatu is the fixed point ofT . SinceT is surjective
(onto) mapping so for anyp ∈ X T p = u. Consider

d(xn,u)= d(Txn+1,T p)≥ a ·d(xn+1, p)+b ·d(xn+1,T xn+1)

+c ·d(p,T p)

+e ·d(xn+1,T p)+ f ·d(p,Txn+1)

d(xn,u)≥ a ·d(xn+1, p)+ b ·d(xn+1,xn)+ c ·d(p,u)

+e ·d(xn+1,u)+ f ·d(p,xn.

Taking limit n → ∞ we get

0≥ (a+ c+ f ) ·d(u, p).

Sincea,c, f > 0 so the above inequality is possible only if

d(u, p) = 0 ⇒ u = p ⇒ Tu = u.

Thusu is the fixed point ofT .
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