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Abstract: Based on progressive first-failure censoring, step-stresspartially accelerated life tests are considered when the lifetime of
a product follows Weibull distribution. The maximum likelihood estimates (MLEs) are obtained for the distribution parameters and
the acceleration factor. In addition, asymptotic varianceand covariance matrix of the estimators are given. Furthermore, confidence
intervals of the estimators are presented. The optimal stress change time for the step-stress partially accelerated life test is determined
by minimizing the asymptotic variance of MLEs of the model parameters and the acceleration factor. Simulation results are carried out
to study the precision of the MLEs for the parameters involved.
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1 Introduction

In reliability analysis, it is not easy to collect lifetimeson highly reliable products with very long lifetimes since very few
or even no failures may occur within a limited testing time under normal operating conditions. To obtain failures quickly
an accelerated life test (ALT) or partially accelerated life test (PALT) is often used. If all test units are subjected tohigher
than usual stress levels, then the test is called ALT. But if only some of them are run under severe condition then the test
is called PALT. The information obtained from the test performed in the accelerated or partially accelerated environment
is used to estimate the failure behavior of the units under normal conditions. The stress loading in an ALT can be applied
in different ways. Commonly used methods are constant-stress and step-stress. Nelson [13] discussed the advantages and
disadvantages of each of such methods.
In constant-stress ALTs, each unit is run at constant high stress until either failure occurs or the test is terminated. In
step-stress ALTs, the stress on each unit is not constant butis increased step by step at prespecified times or upon the
occurrence of a fixed number of failures. When a test involvestwo levels of stress with the first one as the normal one
and has a fixed time point for changing stress referred to as a step-stress partially ALT (SSPALT).
Partially accelerated life tests (PALTs) studied under step-stress scheme by several authors, for example, see Goel [8],
DeGroot and Goel [7], Bhattacharyya and Soejoeti [6], Bai and Chung [2], Bai, Chung and Chun [3], Abdel-Ghani [1],
Ismail and Sarhan [10] and Ismail and Aly [9].
In ALTs or PALTs, tests are often stopped before all units fail. The estimate from the censored data is less accurate than
those from complete data. However, this is more than offset by the reduced test time and expense. The most common
censoring schemes is type-II censoring. Considern units placed on life test the experimenter terminates the experiment
after a prespecified number of unitsm ≤ n fail. In this scenario, only the smallest lifetimes are observed. Conventional
type-II censoring schemes do not allow removal of units at points other than the terminal point of the experiment. A
generalization of type-II censoring is the progressive type-II censoring. It is a method which enables an efficient
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exploitation of the available resources by continual removal of a prespecified number of surviving test units at each
failure time. On other hand, the removal of units before failure may be intentional to save time and cost or when some
items have to be removed for use in another experiment. A recent account on progressive censoring schemes can be
found in the book by Balakrishnan and Aggarwala [4]. Balasooriya [5] indicated that in a situation where the lifetime of
a product is quite high and test facilities are scarce but test material is relatively cheap, one can testk× n units by testing
n sets, each containingk units. The life test is then conducted by testing each of these sets of units separately until the
occurrence of first failure in each set. Such a censoring scheme is called a first-failure censoring scheme. Note that a
first-failure censoring scheme is terminated when the first failure in each set is observed. If an experimenter desires to
remove some sets of test units before observing the first failures in these sets, the above described scheme will not be of
use to the experimenter. The first-failure censoring does not allow for sets to be removed from the test at the points other
than the final termination point. However, this allowance will be desirable when some sets of the surviving units in the
experiment that are removed early can be used for some other tests. As in the case of accidental breakage of experimental
units or loss of contact with individuals under study, the loss of test units at points other than the termination point may
also be unavoidable. This paper considers a generalized censoring scheme which is progressive first-failure censoringto
save more time and cost associated with testing. It allows for some sets of the surviving units to be removed from the test
at each failure time. This type of censoring will be described in the next section.
The paper is organized as follows: in section 2, the progressive first-failure censoring scheme is described. In section3, a
description of the model, test procedure and its assumptions are presented. In section 4, the MLEs of the SSPALT model
parameters are derived and the asymptotic confidence boundsfor the model parameters are constructed based on the
asymptotic distribution of MLEs. In section 5, estimation of optimal stress change time is obtained. Section 6, contains
the simulation results. Conclusion is made in section 7.

2 A progressive first-failure censoring scheme

In this section, first-failure censoring is combined with progressive censoring scheme as in Wu and Kus [15]. Suppose
that n independent groups withk items within each group are put on a life test.R1 groups and the group in which the
first failure is observed are randomly removed from the test as soon as the first failureY R

1;m,n,k has occurred,R2 groups
and the group in which the second failure is observed are randomly removed from the test as soon as the second failure
Y R

2;m,n,k has occurred, and finally when them-th failureY R
m;m,n,k is observed, the remaining groupsRm (m ≤ n) are removed

from the test. ThenY R
1;m,n,k <Y R

2;m,n,k < ... <Y R
m;m,n,k are called progressively first-failure censored order statistics with the

progressive censored schemeR = (R1,R2, ...,Rm) . It is clear thatn = m+∑m
i=1 Ri. If the failure times of then× k items

originally in the test are from a continuous population withdistribution functionF(y) and probability density function
f (y), the joint probability density function forY R

1;m,n,k,Y
R
2;m,n,k, ...,Y

R
m;m,n,k is given by Wu and Kus [15] as follows:

f1,2,...,m(y
R
1;m,n,k,y

R
2;m,n,k, ...,y

R
m;m,n,k) = A km

m

∏
i=1

f (yR
i;m,n,k)

[
1−F(yR

i;m,n,k)
]k(Ri+1)−1

,

0< yR
1;m,n,k < yR

2;m,n,k < ... < yR
m;m,n,k < ∞,

(1)

where

A = n(n−R1−1)(n−R1−R2−2) ... (n−R1−R2− ...−Rm−1−m+1).

This censoring scheme has advantages in terms of reducing test time, in which more items are used but onlym of n× k
items are failures. Note that using the above notation, somecensoring rules can be accommodated such as the first-failure
censored order statistics when,R = (0,0, ...,0), a progressive type-II censored order statistics whenk = 1, a usual type-II
censored order statistics whenk = 1 andR = (0,0, ...,n−m), and complete sample case ifk = 1 andR = (0,0, ...,0),
with n = m. Also, it should be noted that the progressive first-failurecensored sampleY R

1;m,n,k,Y
R
2;m,n,k, ...,Y

R
m;m,n,k with

distribution functionF(y), can be viewed as a progressive type-II censored sample froma population with distribution
function 1− (1−F(y))k.
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3 Model description

3.1 Weibull distribution

Assume that the random variableY representing the lifetime of a product has Weibull distribution with shape and scale
parameters asα andλ respectively. So, the probability density function(pd f ) of Y is

f (y) =
α
λ

( y
λ

)α−1
e−(y/λ )α , y > 0, α > 0, λ > 0. (2)

Weibull distribution is one of the most common distributions which are used to analyze several lifetime data. Its hazard
function can be increasing, decreasing and constant depending on the value of the shape parameter.
The distribution function of the Weibull distribution is given by:

F(y) = 1− e−(y/λ )α , (3)

and the corresponding failure rate function is given by:

h(y) =
α
λ

( y
λ

)α−1
. (4)

3.2 Assumptions and test procedure

The following assumptions are used throughout the paper in the framework of SSPALT:

1.n identical and independent groups withk items within each group are put on a life test.
2.The lifetime of each unit has Weibull distribution.
3.The test is terminated at them-th failure, wherem is prefixed(m ≤ n).
4.Each of then×k units is first run under normal use condition. If it does not fail or remove from the test by a prespecified

time τ, it is put under accelerated condition.
5.At thei-th failure a random number of the surviving groupsRi, i = 1,2, ...,m−1, and the group in which the failure

Y R
i;m,n,k has occurred are randomly selected and removed from the test. Finally, at them-th failure the remaining

surviving groupsRm = n−m−∑m−1
i=1 Ri are all removed from the test and the test is terminated.

6.Let n1 be the number of failures before timeτ at normal condition, andn2 be the number of failures after timeτ at
stress condition, with these notations the observed progressive first-failure censored data are

yR
1;m,n,k < ... < yR

n1;m,n,k < τ < yR
n1+1;m,n,k < ... < yR

m;m,n,k,

whereR = (R1,R2, ...,Rm) and∑m
i=1 Ri = n−m.

7.The tampered random variable (TRV) model holds. It was proposed by DeGroot and Goel [7]. According to tampered
random variable model the lifetime of a unit under SSPALT canbe written as:

Y =





T, i f T ≤ τ,

τ +(T − τ)/β , i f T > τ.
(5)

WhereT is the lifetime of the unit under normal condition,τ is the stress change time andβ is the acceleration factor
(β > 1).

8.From the (TRV) model in (5), thepd f of Y under SSPALT can be given by:

f (y) =






0, y < 0,

f1(y) =
α
λ
( y

λ
)α−1

e−(y/λ )α , 0≤ y ≤ τ,

f2(y) =
β α
λ

(
β (y−τ)+τ

λ

)α−1
e
−
(

β(y−τ)+τ
λ

)α

, τ < y < ∞.

(6)

Where f1(y) as given in equation (2) and f2(y) is obtained by the transformation variable technique by using f1(y)
and the model in (5).
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4 Parameters estimation

The idea behind maximum likelihood parameter estimation isto determine the parameters that maximize the probability
(likelihood) of the sample data. From a statistical point ofview, the method of maximum likelihood is considered to
be more robust and yields estimators with good statistical properties. In other words, maximum likelihood methods are
versatile and apply to most models and to different types of data. In addition, they provide efficient methods for quantifying
uncertainty through confidence bounds. Although the methodology for maximum likelihood estimation is simple, the
implementation is mathematically intense. Using todays computer power, however, mathematical complexity is not a big
obstacle. Since these estimators do not always exist in closed form, numerical techniques are used to compute them such
as Newton Raphson.
This section discusses the process of obtaining point and interval estimations of the parametersα, λ andβ based on
progressive first-failure censored data under SSPALT.

4.1 Point estimation

In this subsection, the maximum likelihood estimators of the model parameters are obtained. Letyi = yR
i;m,n,k, i= 1,2, ...,m,

be the observed values of the lifetimeY obtained from a progressive first-failure censoring schemeunder SSPALT, with
censored schemeR = (R1,R2, ...,Rm). Then the maximum likelihood function of the observationsy1 < ... < yn1 < τ <
yn1+1 < ... < ym, takes the following form

L(α,λ ,β ) = Akm
n1

∏
i=1

f1(yi) [1−F1(yi)]
k(Ri+1)−1

m

∏
i=n1+1

f2(yi) [1−F2(yi)]
k(Ri+1)−1 , (7)

whereA is given by (1). From (6) in (7), we get

L(α,λ ,β ) = Akm
n1

∏
i=1

{
α
λ

(yi

λ

)α−1
e−k(Ri+1)(yi/λ )α

}
×

m

∏
i=n1+1

{
β α
λ

(
β (yi − τ)+ τ

λ

)α−1

e
−k(Ri+1)

(
β(yi−τ)+τ

λ

)α
}
.

(8)

The log-likelihood function may then be written as:

ℓ(α,λ ,β ) = logAkm +m logα −α m logλ +(m− n1) logβ +(α −1)
n1

∑
i=1

(Ri +1)yα
i

+(α −1)
m

∑
i=n1+1

log[β (yi − τ)+ τ]−
k

λ α

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α ,

(9)

and thus we have the likelihood equations forα, λ andβ respectively as:

∂ℓ(α,λ ,β )
∂α

=
m
α
−m logλ +

n1

∑
i=1

logyi −
k

λ α

n1

∑
i=1

(Ri +1)yα
i logyi +

k logλ
λ α

n1

∑
i=1

(Ri +1)yα
i

+
m

∑
i=n1+1

log[β (yi − τ)+ τ]+
k logλ

λ α

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α

−
k logλ

λ α

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α log[β (yi − τ)+ τ],

(10)

∂ℓ(α,λ ,β )
∂λ

=
−α m

λ
+

k α
λ α+1

n1

∑
i=1

(Ri +1)yα
i +

kα
λ α+1

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α , (11)

∂ℓ(α,λ ,β )
∂β

=
(m− n1)

β
+(α −1)

m

∑
i=n1+1

(yi − τ)
[β (yi − τ)+ τ]

−
k α
λ α

m

∑
i=n1+1

(Ri +1)(yi − τ) [β (yi − τ)+ τ]α−1 . (12)

Now, we have a system of three nonlinear equations in three unknownsα, λ andβ . It is clear that a closed form solution is
very difficult to obtain. Therefore, an iterative proceduresuch as Newton Raphson can be used to find a numerical solution
of the above nonlinear system.
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4.2 Interval estimation

In this subsection, the approximate confidence intervals ofthe parameters are derived based on the asymptotic
distributions of the MLEs of the elements of the vector of unknown parametersΘ = (α,λ ,β ). It is known that the
asymptotic distribution of the MLEs ofΘ is given by Miller [12].

(
(α̂ −α),(λ̂ −λ ),(β̂ −β )

)
7→ N

(
0, I−1(α,λ ,β )

)
,

whereI−1(α,λ ,β ) is the variance-covariance matrix of the unknown parametersΘ = (α,λ ,β ). The elements of the 3×3
matrix I−1, Ii j(α,λ ,β ), i, j = 1,2,3; can be approximated byIi j(α̂, λ̂ , β̂ ), where

Ii j(Θ̂) =−
∂ 2ℓ(Θ)

∂θi ∂θ j
|θ=θ̂ ,

from equation (9), we get the following

∂ 2ℓ(Θ)

∂ 2α
=

−m
α2 −

k
λ α

n1

∑
i=1

(Ri +1)yα
i (logyi)

2+
2k logλ

λ α

n1

∑
i=1

(Ri +1)yα
i logyi −

k(logλ )2

λ α

×
n1

∑
i=1

(Ri +1)yα
i −

k
λ α

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α (log[β (yi − τ)+ τ])2

+
2k logλ

λ α

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α log[β (yi − τ)+ τ]−
k

λ α (logλ )2

×
m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α ,

(13)

∂ 2ℓ(Θ)

∂ 2λ
=

αm
λ 2 −

kα(α +1)
λ α+2

n1

∑
i=1

(Ri +1)yα
i −

kα(α +1)
λ α+2 (Ri +1) [β (yi − τ)+ τ]α , (14)

∂ 2ℓ(Θ)

∂ 2β
=−

(m− n1)

β 2 −
kα(α −1)

λ α

m

∑
i=n1+1

(Ri +1)(yi − τ)2 [β (yi − τ)+ τ]α−2

− (α −1)
m

∑
i=n1+1

(yi − τ)2

[β (yi − τ)+ τ]2
,

(15)

∂ 2ℓ(Θ)

∂α∂λ
=−

m
λ
+

kα
λ α+1

n1

∑
i=1

(Ri +1)yα
i logyi −

kα logλ
λ α+1

n1

∑
i=1

(Ri +1)yα
i

+
k

λ α+1

n1

∑
i=1

(Ri +1)yα
i +

k
λ α+1 (1−α logλ )

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α

+
kα

λ α+1

m

∑
i=n1+1

(Ri +1) [β (yi − τ)+ τ]α log[β (yi − τ)+ τ] ,

(16)

∂ 2ℓ(Θ)

∂β ∂α
=

m

∑
i=n1+1

(yi − τ)
β (yi − τ)+ τ

+
k (α logλ −1)

λ α

m

∑
i=n1+1

(Ri +1)(yi− τ) [β (yi − τ)+ τ]α−1

−
kα
λ α

m

∑
i=n1+1

(Ri +1)(yi − τ) [β (yi − τ)+ τ]α−1 log[β (yi − τ)+ τ] ,
(17)

and
∂ 2ℓ(Θ)

∂λ ∂β
=

kα2

λ α+1

m

∑
i=n1+1

(Ri +1)(yi − τ) [β (yi − τ)+ τ]α−1 . (18)
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4.2.1 Approximate confidence intervals

For large value of effective sample sizem, the approximate 100(1− γ)% two sided confidence intervals forα, λ andβ
are respectively given by

[
α
˜
, α̃
]
=

[
α̂ ±Z1− γ

2

√
I−1
11 (α̂)

]
, (19)

[
λ
˜
, λ̃
]
=

[
λ̂ ±Z1− γ

2

√
I−1
22 (λ̂ )

]
, (20)

[
β
˜
, β̃
]
=

[
β̂ ±Z1− γ

2

√
I−1
33 (β̂ )

]
. (21)

WhereZq is the 100q− th percentile of a standard normal distribution.
The problem with applying normal approximation of the MLE isthat when the sample size is small, the normal
approximation may be poor. However, a different transformation of the MLE can be used to correct the inadequate
performance of the normal approximation. Since the parameters of interestα, λ and β are positive parameters,
log-transformation can be considered. Based on the normal approximation of the log-transformed MLE (Meeker and
Escobar [11]), the approximate 100(1− γ)% confidence interval forα, λ andβ are respectively given by

[
α
˜
, α̃
]
=




α̂

exp

(
Z1−γ/2

√
I−1
11 (α̂)

α̂

) , α̂ exp




Z1−γ/2

√
I−1
11 (α̂)

α̂






, (22)

[
λ
˜
, λ̃
]
=




λ̂

exp

(
Z1−γ/2

√
I−1
11 (λ̂ )

λ̂

) , λ̂ exp


Z1−γ/2

√
I−1
11 (λ̂ )

λ̂






, (23)

[
β
˜
, β̃
]
=




β̂

exp

(
Z1−γ/2

√
I−1
11 (β̂ )

β̂

) , β̂ exp


Z1−γ/2

√
I−1
11 (β̂ )

β̂






. (24)

5 Estimation of optimal stress change time

In this section, the optimal change stress timeτ∗ is found by minimizing the asymptotic variance of MLEs of themodel
parameters and the acceleration factor. The asymptotic variance ofα̂, λ̂ andβ̂ is given by the diagonal entries of the inverse
of the Fisher information matrix. FindMinimum option of Mathematica 7 is used to find the timeτ∗ which minimize the
asymptotic variance of MLEs of the model parameters and the acceleration factor. Assume that the true values of the
population parameters and the acceleration factor areα = 0.4, λ = 0.7 andβ = 1.2, then fork = 2, n = 25, m = 10 and
C.SI, the optimal value ofτ is obtained by using FindMinimum option of Mathematica 7 isτ∗ = 1.1261.

6 Simulation studies

In this section, simulation studies are conducted to investigate the performances of the maximum likelihood estimators
(MLEs) in terms of their biases and mean square errors (MSEs)for different choices ofn, m, k andτ values. Also, the
99% and 95% asymptotic confidence intervals based on the asymptotic distribution of the MLEs are computed.
Three progressive censoring schemes are considered:

scheme I : R1 = n−m,R2 = 0, ...,Rm = 0,
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scheme II : R1 = 0,R2 = 0, ...,Rm = n−m,

scheme III :






R m+1
2

= n−m, Ri = 0 ∀ i 6= m+1
2 , i f m odd

R m
2
= n−m, Ri = 0 ∀ i 6= m

2 , i f m even.

The estimation procedure is performed according to the following algorithm:

1.Specify the values ofn, m, k andτ.
2.Specify the values of the parametersα, λ andβ .
3.Generate a random sample of sizen× k from the random variableY given by equation (5) and sort it. The Weibull

random variable can be easily generated. For example, ifU represents a uniform random variable from[0,1], then
Y = −λ [ln(1−U)]1/α has Weibull distribution withpd f given by equation (2) if y ≤ τ. But if y > τ thenY =

τ + −λ [ln(1−U)]1/α−τ
β has Weibull distribution withpd f given by equation (6).

4.Use the model given by equation (6) to generate progressively first-failure censored data forgivenn, m, the set of data
can be considered:

yR
1;m,n,k < ... < yR

n1;m,n,k < τ < yR
n1+1;m,n,k < ... < yR

m;m,n,k,

whereR = (R1,R2, ...,Rm) and∑m
i=1 Ri = n−m.

5.Use the progressive first failure censored data to computethe MLEs of the model parameters. The Newton Raphson
method is applied for solving the nonlinear system to obtainthe MLEs of the parameters.

6.Replicate the steps 3−5, 1000 times.
7.Compute the average values of biases and the mean square errors (MSEs) associated with the MLEs of the parameters.
8.Estimate the asymptotic variances of the estimators of model parameters.
9.Compute the approximate confidence bounds with confidencelevels 95% and 99% for the three parameters of the

model.
10.Steps 1-9 are done with different values ofn, m, k andτ.

Table 1
Average values of the biases of MLES of the parameters, the associated MSEs and the associated approximate confidence intervals
based on 1000 simulations, when population parameters values:α = 0.4, λ = 0.7, β = 1.2 and stress change timeτ = 2.

k n m C.S Bias ofα̂ MSE of α̂ Bias ofλ̂ MSE of λ̂ Bias of β̂ MSE of β̂ 99% CI ofα̂ 95% CI ofα̂ 99% CI of λ̂ 95% CI of λ̂ 99% CI of β̂ 95% CI of β̂

1 25 15 I 0.2190 0.0480 0.4998 0.2498 0.1116 0.0191 0.324,1.179 0.379,1.011 0.654,2.113 0.779,1.846 0.483,3.558 0.613,2.803
II 0.1205 0.0344 0.4279 0.2471 −0.0764 0.1885 0.197,1.370 0.249,1.087 0.502,2.395 0.634,2.000 0.285,4.426 0.395,3.190
III 0.1885 0.0386 0.4806 0.2360 −0.0757 0.0395 0.292,1.183 0.345,1.001 0.617,2.164 0.744,1.872 0.438,2.883 0.548,2.302

50 20 I 0.0157 0.0112 0.1332 0.0774 0.0490 0.0102 0.107,1.612 0.148,1.166 0.206,3.069 0.308,2.248 0.447,3.487 0.571,2.729
II −0.1071 0.0158 0.3733 0.1467 0.1923 0.1112 0.131,0.651 0.159,0.538 0.648,1.717 0.750,1.535 0.726,2.669 0.848,2.285
III −0.0525 0.0056 0.0504 0.0371 0.1939 0.0384 0.106,1.131 0.141,0.853 0.205,2.510 0.299,1.881 0.875,2.219 0.978,1.986

75 30 I 0.0274 0.0078 0.1179 0.0392 0.0480 0.0084 0.014,0.869 0.090,0.764 0.016,1.618 0.208,1.427 0.245,2.250 0.485,2.010
II −0.0884 0.0107 0.3106 0.1062 0.1617 0.0297 0.065,0.558 0.123,0.499 0.421,1.599 0.562,1.458 0.541,2.182 0.737,1.986
III −0.0536 0.0054 0.0406 0.0327 0.1847 0.0343 −0.076,0.768 0.024,0.667 −0.191,1.673 0.030,1.450 0.834,1.935 0.965,1.803

40 I 0.0499 0.0025 0.1098 0.0120 −0.0214 0.0016 0.199,0.700 0.259,0.640 0.331,1.288 0.445,1.174 0.350,2.00 0.548,1.808
II −0.0618 0.0058 0.2080 0.0560 0.1567 0.0257 0.190,0.485 0.225,0.450 0.723,1.092 0.767,1.048 0.588,2.125 0.771,1.941
III 0.0326 0.0020 0.1096 0.0120 0.0273 0.0076 0.085,0.779 0.168,0.696 0.148,1.471 0.306,1.313 0.203,2.251 0.447,2.006

50 I 0.0437 0.0019 0.1080 0.0116 0.0104 0.0005 0.264,0.623 0.307,0.580 0.402,1.213 0.499,1.116 0.511,1.909 0.678,1.742
II −0.0254 0.0020 0.1032 0.0202 0.1171 0.0229 0.176,0.572 0.224,0.524 0.592,1.013 0.643,0.963 0.245,2.389 0.501,2.133
III 0.0389 0.0015 0.0978 0.0096 −0.0129 0.0012 0.192,0.685 0.251,0.626 0.308,1.286 0.425,1.169 0.211,2.162 0.444,1.929

2 25 10 I −0.1984 0.0399 0.2202 0.0805 1.1431 1.3207 0.040,1.007 0.059,0.686 0.171,4.412 0.279,3.034 0.817,6.717 1.051,5.223
II −0.0468 0.0035 0.2950 0.0883 0.0027 0.1088 0.166,0.748 0.199,0.625 0.588,1.624 0.685,1.444 0.480,3.007 0.598,2.416
III −0.1806 0.0344 0.2144 0.0610 1.2128 1.5402 0.189,0.253 0.196,0.245 0.377,2.090 0.487,1.715 0.901,6.455 1.140,5.103

20 I −0.1103 0.0172 0.0929 0.0700 0.4978 0.2722 0.048,1.723 0.074,1.125 0.085,6.323 0.163,3.851 0.605,4.764 0.771,3.723
II −0.0685 0.0063 0.2810 0.0862 0.3542 0.1795 0.129,0.848 0.162,0.677 0.454,2.014 0.567,1.696 0.790,3.056 0.928,2.600
III −0.1093 0.0146 0.1648 0.0689 0.5328 0.2951 0.055,1.536 0.081,1.032 0.115,5.661 0.206,3.614 0.690,4.348 0.860,3.490

7 Conclusion

Censoring is a common phenomenon in life testing and reliability studies. The subject of progressive censoring has
received considerable attention in the past few years, due in part to the availability of high speed computing resources,
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Table 1 (continued)

k n m C.S Bias ofα̂ MSE of α̂ Bias of λ̂ MSE of λ̂ Bias of β̂ MSE of β̂ 99% CI ofα̂ 95% CI ofα̂ 99% CI of λ̂ 95% CI of λ̂ 99% CI of β̂ 95% CI of β̂

2 50 30 I −0.1411 0.0256 0.0186 0.0653 0.4746 0.2277 0.036,0.480 0.089,0.427 0.062,1.374 0.219,1.217 0.670,2.678 0.910,2.438
II −0.0533 0.0036 0.2914 0.0857 0.2614 0.1180 0.225,0.467 0.254,0.439 0.794,1.187 0.841,1.140 1.028,1.894 1.131,1.791
III −0.1047 0.0121 0.1333 0.0431 0.5208 0.2721 0.092,0.498 0.140,0.449 0.307,1.359 0.432,1.233 0.826,2.615 1.039,2.401

35 I −0.1239 0.0198 0.0358 0.0519 0.4570 0.2138 0.002,0.554 0.064,0.488 0.075,1.547 0.118,1.353 0.988,2.325 1.148,2.165
II −0.0515 0.0032 0.2916 0.0885 0.2852 0.1179 0.266,0.430 0.286,0.410 0.668,1.314 0.745,1.237 1.387,1.582 1.410,1.559
III −0.0971 0.0101 0.1284 0.0342 0.4836 0.2351 0.053,0.552 0.112,0.492 0.156,1.500 0.316,1.340 1.161,2.205 1.286,2.080

75 40 I −0.1120 0.0142 0.0120 0.0193 0.3999 0.1599 0.114,0.461 0.155,0.420 0.304,1.119 0.401,1.022 0.738,2.461 0.944,2.255
II −0.0480 0.0024 0.2975 0.0887 0.2417 0.0971 0.183,0.520 0.223,0.480 0.677,1.318 0.753,1.241 0.877,2.006 1.012,1.871
III −0.1045 0.0111 0.0395 0.0040 0.4700 0.2209 0.145,0.445 0.181,0.409 0.386,1.092 0.470,1.008 0.783,2.556 0.995,2.344

50 I −0.0634 0.0050 −0.0072 0.0105 0.1995 0.0398 0.064,0.608 0.129,0.543 0.144,1.240 0.275,1.109 0.782,2.016 0.929,1.869
II −0.0329 0.0011 0.1144 0.0181 0.1954 0.0385 0.223,0.511 0.257,0.476 0.591,1.036 0.644,0.983 0.960,1.830 1.064,1.726
III −0.1066 0.0121 0.0065 0.0079 0.3996 0.1597 0.126,0.460 0.166,0.420 0.292,1.120 0.391,1.021 0.869,2.329 1.043,2.155

60 I −0.0502 0.0031 0.0182 0.0087 0.1901 0.0363 0.137,0.562 0.188,0.511 0.286,1.149 0.389,1.046 1.197,1.583 1.243,1.537
II −0.0295 0.0009 0.0806 0.0106 0.1884 0.0356 0.238,0.502 0.269,0.471 0.602,0.958 0.645,0.915 1.185,1.590 1.275,1.501
III −0.0930 0.0096 −0.0108 0.0071 0.3599 0.1319 0.130,0.483 0.172,0.441 0.265,1.112 0.365,1.011 1.078,2.040 1.193,1.926

Table 2
Average values of the biases of MLES of the parameters, the associated MSEs and the associated approximate confidence intervals
based on 1000 simulations, when population parameters values:α = 0.4, λ = 0.7, β = 1.2 and stress change timeτ = 3.5.

k n m C.S Bias ofα̂ MSE of α̂ Bias of λ̂ MSE of λ̂ Bias of β̂ MSE of β̂ 99% CI ofα̂ 95% CI ofα̂ 99% CI of λ̂ 95% CI of λ̂ 99% CI of β̂ 95% CI of β̂

1 25 15 I 0.0518 0.0130 0.2158 0.0801 0.2066 0.0767 0.199,1.024 0.242,0.842 0.326,2.398 0.440,1.905 0.569,3.474 0.706,2.799
II −0.0678 0.0114 0.2934 0.1514 0.4871 0.2910 0.126,0.868 0.159,0.690 0.253,3.562 0.375,2.625 0.632,4.499 0.799,3.559
III −0.0876 0.0175 0.1673 0.0808 0.5231 0.2965 0.108,0.901 0.139,0.699 0.172,3.924 0.274,2.736 0.695,4.266 0.864,3.435

50 20 I −0.0167 0.0028 0.0173 0.0184 0.1033 0.0106 0.129,1.131 0.168,0.873 0.190,2.477 0.279,1.842 0.670,2.532 0.786,2.160
II 0.0151 0.0019 0.3061 0.1122 −0.3422 0.1263 0.268,0.641 0.298,0.577 0.894,1.122 0.925,1.093 0.625,1.175 0.674,1.090
III 0.0182 0.0017 0.2726 0.0783 0.2544 0.1080 0.209,0.835 0.246,0.708 0.519,1.748 0.622,1.519 1.010,2.093 1.102,1.918

75 30 I −0.0269 0.0016 −0.0102 0.0057 0.102 0.0104 0.056,0.689 0.132,0.613 0.017,1.361 0.178,1.201 0.541,2.062 0.723,1.880
II 0.0130 0.0010 0.2769 0.0805 −0.2993 0.1023 0.249,0.576 0.288,0.537 0.776,1.177 0.824,1.129 0.680,1.120 0.733,1.068
III 0.0088 0.0007 0.1814 0.0469 0.1649 0.0313 0.026,0.844 0.077,0.740 0.117,1.880 0.120,1.642 1.107,1.621 1.168,1.559

75 40 I 0.0232 0.0009 0.0612 0.0054 −0.0015 0.0012 −0.413,1.259 −0.213,1.060 −0.908,2.430 −0.509,2.031 0.295,2.101 0.510,1.886
II −0.0024 0.0006 0.1982 0.0395 −0.1484 0.0372 0.169,0.625 0.223,0.571 0.453,1.342 0.560,1.236 0.398,1.704 0.554,1.548
III −0.0240 0.0030 −0.0431 0.0136 0.0520 0.0088 0.326,0.960 0.401,0.884 1.555,2.784 1.702,2.637 0.087,3.387 0.481,2.993

50 I 0.0202 0.0004 0.0580 0.0033 0.0065 0.00008 0.008,1.615 0.185,1.421 0.437,4.647 0.939,4.144 −0.272,2.926 0.109,2.544
II −0.0067 0.0003 0.1764 0.0337 0.0293 0.0114 1.012,1.270 1.042,1.240 2.192,2.839 2.269,2.762 0.839,1.670 0.938,1.571
III 0.0312 0.0010 0.0979 0.0095 0.0054 0.0007 0.0006,0.752 0.089,0.662 −0.177,1.491 0.021,1.292 0.729,1.774 0.854,1.649

2 25 10 I 0.0445 0.0023 0.3477 0.1210 0.4259 0.1957 0.226,0.873 0.265,0.743 0.587,1.799 0.694,1.581 0.607,4.351 0.768,3.439
II 0.0527 0.0039 0.3465 0.1319 −0.3064 0.1419 0.254,0.805 0.291,0.702 0.649,1.633 0.745,1.468 0.376,2.119 0.463,1.724
III 0.0747 0.0056 0.3998 0.1598 0.2414 0.0999 0.270,0.832 0.309,0.728 0.714,1.642 0.809,1.492 0.629,3.300 0.767,2.707

20 I 0.0174 0.0022 0.2986 0.0929 0.2526 0.1292 0.088,1.963 0.128,1.356 0.197,4.542 0.315,3.163 0.544,3.871 0.688,3.063
II 0.04247 0.0024 0.3165 0.1006 −0.1696 0.0612 0.239,0.818 0.276,0.706 0.630,1.587 0.723,1.427 0.618,1.716 0.698,1.519
III 0.0430 0.0023 0.3161 0.1001 0.0586 0.0516 0.163,1.202 0.207,0.947 0.387,2.502 0.511,2.017 0.642,2.464 0.754,2.098

50 30 I 0.0077 0.0004 0.2097 0.0499 0.2953 0.0879 0.155,0.659 0.216,0.599 0.366,1.453 0.496,1.323 0.650,2.339 0.852,2.137
II 0.0440 0.0021 0.2993 0.0897 −0.2082 0.0648 0.211,0.676 0.266,0.621 0.544,1.454 0.653,1.345 0.586,1.396 0.683,1.300
III 0.0448 0.0021 0.2745 0.0780 0.1356 0.0258 0.159,0.729 0.227,0.661 0.392,1.556 0.531,1.417 0.647,2.023 0.812,1.859

35 I 0.0081 0.0004 0.1967 0.0398 0.2458 0.0686 0.114,0.702 0.184,0.631 0.251,1.541 0.405,1.387 0.894,1.997 1.023,1.865
II 0.0310 0.0010 0.2099 0.0440 −0.1320 0.0278 0.266,0.595 0.305,0.556 0.642,1.177 0.706,1.113 0.914,1.221 0.951,1.184
III 0.0428 0.0019 0.2610 0.0688 0.0792 0.0155 0.142,0.743 0.214,0.671 0.344,1.578 0.491,1.430 0.981,1.576 1.052,1.505

75 40 I 0.0031 0.00007 0.1379 0.0198 0.2286 0.0523 0.234,0.571 0.274,0.531 0.507,1.168 0.586,1.089 0.696,2.161 0.871,1.986
II 0.0298 0.0010 0.1954 0.0404 −0.1496 0.0330 0.300,0.558 0.331,0.528 0.688,1.102 0.737,1.053 0.659,1.441 0.752,1.348
III 0.0243 0.0007 0.1483 0.0252 0.0923 0.0092 0.270,0.578 0.306,0.541 0.559,1.136 0.628,1.067 0.695,1.889 0.838,1.746

50 I −0.0166 0.0003 0.0746 0.0067 0.1999 0.0399 0.194,0.572 0.239,0.527 0.371,1.177 0.468,1.081 0.744,2.054 0.901,1.898
II 0.0291 0.0008 0.2000 0.0400 −0.0684 0.0120 0.283,0.574 0.318,0.539 0.651,1.148 0.710,1.089 0.863,1.399 0.927,1.335
III 0.0098 0.0001 0.0987 0.0106 0.0939 0.0090 0.231,0.588 0.273,0.545 0.441,1.155 0.527,1.070 0.768,1.819 0.89,1.693

60 I −0.0054 0.00008 0.0392 0.0017 0.0800 0.0070 0.194,0.594 0.242,0.547 0.325,1.152 0.424,1.054 0.924,1.635 1.009,1.550
II 0.0068 0.00004 0.04500 0.0020 −0.0082 0.0002 0.293,0.519 0.320,0.492 0.576,0.913 0.616,0.873 1.064,1.318 1.095,1.288
III 0.0052 0.00004 0.0582 0.0034 0.0467 0.0028 0.169,0.640 0.226,0.584 0.267,1.249 0.384,1.132 0.844,1.647 0.940,1.551

which makes it both a feasible topic for simulation studies for researchers and a feasible method of gathering lifetime
data for practitioners. It has been illustrated by Viveros and Balakrishnan [14] that the inference is feasible and practical
when the sample data are gathered according to a type-II progressively censored experimental scheme. Balasooriya [5]
indicated that in a situation where the lifetime of a productis quite high and test facilities are scarce but test material is
relatively cheap, one can testk× n units by testing n sets, each containing k units. Such a censoring scheme is called a
first-failure censoring scheme. Wu and Kus [15] combined the first-failure censoring with progressive censoring to
develop a new life test plan called a progressive first-failure censoring plan.
In this paper, we considered the classical inference procedure for the unknown parameters of the Weibull distribution
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(α,λ ) and the acceleration factor(β ) when the data are progressive first-failure censored from step-stress partially
accelerated life tests. It is observed that the maximum likelihood estimators can not be obtained in closed form and we
proposed to use the Newton Raphson as an iterative method to compute them. The approximate confidence intervals of
the model parameters are also constructed. The calculations are worked out based on different sample sizes(n× k),
different stress change time(τ) and three different progressive censoring schemes(I, II, III). The performances of the
estimators are investigated by Monte Carlo simulations andit is observed that they are quite satisfactory. The results
shown that the MSEs of the three estimatorsα̂, λ̂ andβ̂ are decreasing when the sample size is increasing. The MSEs of
α̂ are less than those of bothλ̂ andβ̂ . We also see that asτ increases the MSEs for̂α decrease. On the other hand, for
k = 1, the MSEs forβ̂ increase asτ increases and the MSEs forλ̂ decrease asτ increases. But fork = 2, the MSEs forβ̂
decrease asτ increases and the MSEs forλ̂ increase asτ increases. It is hard to decide on which censoring scheme is the
beast. In Table 1, by comparing the values of the MSEs of the estimatorsα̂ , λ̂ and β̂ for each censoring scheme, we
conclude that fork = 1, the beast censoring scheme for bothα andλ is III, and the beast censoring scheme forβ is I.
For k = 2, the beast censoring scheme for bothα andβ is II, and the beast censoring scheme forλ is III. In Table 2, we
conclude that fork = 1, the beast censoring scheme for bothλ andβ is I, and the beast censoring scheme forα is III.
For k = 2, the beast censoring scheme for bothα andλ is I, and the beast censoring scheme forβ is III. Finally, for the
interval estimation of the three parameters the second scheme (II), in which censoring occurs after the last observed
failures, gives lower lengths than the other two schemes except for some few cases. This may be due to fluctuation in
data.
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