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Abstract: The Pareto Type-Il model is considered in present articte@anderlying model from which observables are to be ptedic
under Bayesian approach. The predictions are to be madeandbred failure items of the remaining businesses by wsinditional
probability function. A right item failure - censoring aiion has been used for prediction.
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1 Introduction

Pareto distribution has played a major role in the invesitga of previous phenomena providing a satisfactory matlel
the extremities. Pareto distribution and their close nadatprovide a very flexible family of fat - tailed distribatis,
which may be used as a model for income distribution of highesme group.

Freiling (1966) applied the Pareto law to study the distitms of nuclear particles. Harris (1968) used this
distribution in determining times of maintenance servitglevDavis & Feldstein (1979) employed it in studying time to
failure of equipment components. This distribution hasalglghed its important role in variety of other problemstsas
size of cities and firms (Steindle (1965)), business maytéliomax (1954)).

It is often used as a model for analyzing areas includingmatyulation distribution, stock price fluctuation, oil field
locations and military areas. It has also been found to balgei for approximating the right tails of distribution Wit
positive skewness. It has a decreasing failure rate, so dlss useful for modeling survival after some medical
procedures (the ability to survive for a longer time appéarscrease, the longer one survives after certain medical
procedures).

Two-parameter Pareto distribution is transformationaliegjent to the two-parameter exponential distributionyéb
(1981)), thus one could analyze Pareto data using knowmigebs for exponential distributions. Arnold (1983) gawe a
extensive historical survey of its use in the context of medalistribution. Arnold & Press (1989), Ouyang & Wu (1994),
Ali-Mousa (2001), Soliman (2001), Wu et al. (2004) and oshdrose who have studied predictive inference for the
future observations under the Pareto model. Recently,aBha& Singh (2013) present some Bayes prediction length of
interval for Pareto model.

Al-Hussaini et al. (2001) were obtaining Bayes predictionihds for Type - | censored data from a finite mixture of
Lomax (Pareto Type - II) components. Some Bayes predictinmlbs based on one - sample technique for Pareto model
have obtained by Nigm et al. (2003).

The objective of the present paper is to obtain the centre¢rege Bayes prediction length of bounds for the future
observation from Pareto Type - |l distribution. We preséet Bayesian statistical analysis to predict the futuressiat

of the considered model based on the right censored itenrdadlata. Based on the firktordered failure items in a
sample of sizen from Pareto Type - Il distribution, Bayesian prediction hda for the remainingn — k) items are
derived in two cases, the first is when the scale parameterowik (Section 3) and the second is when both parameters
are considered as the random variables (Section 4). A noaletudy has been carried out for the illustration of the
procedures in next section.
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2 The Considered M odel
Probability density function of the considered Pareto nhixle

f(x;@,a):60(1+ax)_9‘1;x>O,6>0,a>O. (1)

Here, 6 is the shape parameter aadis the scale parameter. The Pareto distribution (1), is ésalt of the mixture of
Exponential distribution with the parameter and the exponential scale parameteis distributed as Gamma with
parameter$® andag.

In life testing, fatigue failures and other kinds of destivetest situations, the observations usually occurreatdered
manner such a way that weakest items failed first and thenebensl one and so on. Let us suppose that, there are
n(> 0) items are put to test under the considered model withouacephent and onlig(> 0) items are fully measured,
while the remainingn — k) items are censored. Theg$e— k) censored lifetimes will be ordered separately. This is
known as the Right Item Failure - Censoring scheme. The tigeof the present article is the predictions are to be
made on the ordered failure remainifrg— k) items, by using conditional probability function.

The likelihood function for random samp_ke(: X(1):X(2)s ...,x(k)) under the above censoring criterion is define as

k n %
L(x/8,0) 0 (ﬂf (x(i>;6,o)>. 11, <1—/0 "Vt (Xi): 6,0) dxm))

= L(x]6,0) 00" 6¥exp(—6T1—To), @
whereT; = 311 log (1+ ox;)) andTo = $1_; log (14 oxg)) -

3 Central Coverage Bayes Prediction Bounds (K nown Scale Parameter)

From a Bayesian view point; there is clearly no way in whicle can say that one prior is better than other. It is more
frequently the case that, we select to restrict attenticam given flexible family of priors, and we choose one from that
family, which seems to match best with our personal beligfsatural family of conjugate prior for the shape parameter
0 is consider here as a Gamma (when scale parameter is knaavim)ghprobability density function

01(6]0) 06 te % 9>0d>0,c>0. (3)
Posterior density function of the paramefeis obtained by using (2) and (3) as

L(x|6,0).9:1(6|0)

n(0x) = JoL(X/6,0).01(0|0) dB
Tk+c
= (0x) = /'(IIZ+C) ok te T T =Ty +d. ?

Nigm & Handy (1987) consider the problem of predictifg ;s = 1,2,...,n based on the order statistics
tq) <tg <.. <t from a sample of size. In present article, the predictions are to be made on thereddailure
remaining(n — k) items, using the conditional probability function for thegRt Item failure - censored data.
The conditional predictive density 8fs) = X«;s;5=1,2,...,n—kat givend is defined as
s-1 n—k—s —n+r
hy (y9)10.%) = [ (xw0) —w (ve)]" [W o)™~ W) [ (Me)], (5)

wherey (.) is the survival function.

Solving (5), we have

—n;j@
s—-1 A B n
hi (y(/6.X) =60y = (ﬂ) : ©
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whereBs) = (1+0Yg)) , By = (1+0Xy)) , i =n—k—s+i+1andA = (-1 (=1C).

The joint probability density function ofis) given the data is defined as

b (y(s), 81X) = h1 (ys/6,X) . 71(6]x)

—no
Tk+C s—1 A BS) ni
=1 (Y, 0X) = =K _gokeeg ik y T (2O . (7)
Mo = Ficrey 2, B \ B
Therefore the predictive density ¥f; is thus obtained as
Vo) / W (y(s), O1x) d ®)
Using (7) in (8) forys , we have
(k+c+1)
s—-1
4 By
h (yg|X) = (k+0) o T 9§ =1 [ T+nilog | =2 . (9)
L < 2By | C
Now, the predictive survival function is defined as
7 h* (Yglx)d
P[ >y|X} jy *( |—) yS
kah (Y |>_() dys

—(k+c+1)
(k+c)aTk(k+C S N g (Tk+ nilog (?)) dys

=

- B —(k+c+1)
(k+C)UTk(k+C s ka By (Tk+ nilog (%)) dys

5742 (Ternlog (32)) )

P [Y(S> > y|)—(} ;5;3 %I (Tk),(kJrC) » Bo) = (1+ Uy)~ (10)
We know that
fo (1) () (i+b) = {(a+ 1) (**Cans) } 1)

Hence, the denominator of equation (10) are solving by ugiayas

S_lﬂl ~(kto) 1) (5 “1 o\~ (ko)
Z} = Z} C) (i+(n—k—s+1))""(Tx)

= (s(mey)) oo, (12)

Using (12) and (10), the predictive survival function isgtwritten as

c1p B o\
P[Ye >yx = s(”*kcs) (Tk*e Z} F: <Tk+ nilog (ﬁ)) . (13)

In the context of Bayes prediction, we say tliatl2) is a 1001 — €) % prediction limits for the future observatidfy), if
they satisfies

Pr (|1<Y(s) <|2)=1—£. (14)
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Herel; andl; are said to be lower and upper Bayes prediction bounds faatidom variablé), and 1- ¢ is called the
confidence prediction coefficient. The central coverageeBgyrediction lower and upper bounds are obtain by solving
following equality

l-¢
Pr (Y(s) < |1) = T =Pr (Y(s) > |2) . (15)

Using (13) and (15), the lower and upper central coverage8ayediction boundly andl, are obtained by solving
following equalities as

1+e S By S
- Te __ofn-k k+c Ai i 1
= =s("*cs) (o > <Tk+ nilog ( B ))

and

1—¢ s—1 A B(l ) —(k+c)
— Nk k+c ol ' 2
5 S( Cs) (Tk) i; o <Tk +nilog ( B ) ) : (16)

whereB,) = (1+110) andB,) = (1+120). Further, simplification of the above equations (16), do nugsible. A
numerical technique is applied here for obtaining the \vahfé¢; andl, for somes.

For a particular case, substitutisg- 1 in the predictive survival function (13), for predictinigetitemY(1) = Xk 1), of
the next item to fail, and is obtain as

—(k+c)
n—k B
P [Ya) > yix] = <1+<T)|og <%>> . an

Similarly, fors=n—k, corresponding to predicting the iteYf},_) = X,), of the last item to fail, the predictive survival
function (13) is written as

n—k - i B, —(k+0)
P[Yn- >y = 3 (-1 ("*a) <1+?klog <%>> : (18)

Now, the central coverage Bayes prediction lower and uppends fory; are now obtain as

~1/(kro)
a5 )
o\ (ko)
|2:a—1{Bke<p<nTT"k<<1—28> | —1))—1}. (19)

The central coverage Bayes prediction length of boundy fpis obtain as

and

L=1l,—1,. (20)

The Central coverage Bayes prediction lower and upper mdadhot exist for the iten¥,,_x). However, one may obtain
lower and upper bounds fdf,_, by equating following equality.

i —(k+c)
1+e Nk i-1 (n—k~ [ B,
=3 V(M) (14l By

1-g "X i1 (n- i By e
o= (-1 (kq)<1+?klog<8(k>>> . (1)

=

and
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4 Central Coverage Bayes Prediction Bounds (Both Parameters Unknown)

When, both scale and shape parameters are considered todmerraariable, the likelihood function of the considered
model is obtain as
L(x|6,0) 0 6ke fTigke T (22)

whereT; = 311109 (1+ ox;)) andTo = $; log (1+ 0X;)) -

Itis clear from equation (22) that, both the functidiagsandT; are depends only upon scale parameteand thus both
scale and shape parameters are independently distribltexiefore, in present case when both shape and scale
parameters are consider being random variables for the'lyimdemodel, the joint prior density for the parame&and

o is considered as

9(0,0) = 01(6]0) .92(0) ; (23)
whereg; (8]0) andgy (o) are the gamma densities and defined as
o©
01(6]0) = o ~1¢79%.9>0,0>0,c>0 (24)
and b2
02(0) = @ 0% te®:0>0a>0b>0. (25)
Now, the joint prior density is
9(6,0) 0 65 Lga+c-lg 98gbo, (26)

The joint posterior density is now defined as

L(x|6,0) .9(8,0)

" (6,0x) = T JoL(x16,0) .q(6,0) déda”

Using (22) and (26) we have,
- 77 (8,0x) = G 6K+c-1g 0(Ti+0) gatcik-1g-To-bo . 27)
T -1
whereo = (F(k+ c) [y (Ta+ 0)—(k+0) O—a+C+k—1e—T0_ba‘)

The conditional predictive density 8f) = Xr+s; s=1,2,...,n—kat givenf ando is obtain similarly as

hz(y(s)|9,o,>_<)=eoszt£exp —n; Blog By . (28)
& Bs B(k)

The joint probability density function of ) given the data is now obtain as

h, (y(s)v 97 G|)_() = h2 (y(S)|67 aa)_() . T[** (67 a|)_()

" _s-1 AI eic —9T 0a+c+k
=h (ys),0,00x) = o B< S 6 k SToTbo (29)
* BS
whereT/ = (T1+ o+njlog (BLK))) )
Hence, the predictive density ¥f; given on the data, fox(s) > X is thus obtained as
b (y(glx) = //h ,6,0]x) ddo.
a+c+k
= h** |X O. % AI/ 7Tofb0' (Tk*)—(k+C+l) dO', (30)
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whereg = o (k4+c+1).

The predictive survival function is obtain in present case a

Jy* b (Vg [x) dys

e b (Yig)x) dys

s-1 4 fa Tk** O-a+c+kflefToefba do .

i=0 nj
ZIS;(% %I I T gatctk—1lg—Tog—bo dg

P[Yg >VlX =

= P[Yig >yIX = (31)

—(k+c)

whereT " = (Tl +0o+nilog (gi—g)) C T =T+ 0)_(k+°) andBg) = (1+ay).

The Central coverage Bayes prediction lower and upper ®tordhe random variablgs when both parameters are
considered to be unknown, are obtained by equating follgwiuality

l1+¢ 1
—— =P[Y9>hlx] = 0.
and 1 0
— & 2,
5 =P [Y(s) > |2|)_(} = 5* : (32)

. = —(ktc)
whereQj = 5534 [ Ty g**ctkle e Pdg, By = (1+1j0), | = 1,2, Tj" = (T1+ o+nilog (%))
andQ, = zis;é ﬁ_ii [y T gatCtk—lg-Tog—boq g

Again, closed form of the above equations (32) does not.eXistumerical technique is applied here for obtaining the
values of central coverage Bayes prediction lower and uippends for some.

Puttings = 1, for predicting the iten¥(;) = X1, of the next item to fail, the predictive survival function is

fa Tkz* O-aJrCJrkfl e To efba do

JoTy oR K Tg Tog o dg (33

P Y >VYiX| =

whereT5 = (T1+ o+ (n—k)log (%))7(“0).

Similarly, for predicting the last item to fai(Y(n_k) :x(n)), putting s = n—k, the predictive survival function is
rewritten as

Q
P [Yinoi > YIX] = (34)

2“3

Q4

whereQs = zin;1|<(_1)i—1 (n_kCi) faTkT gatctk—1g=To—bo do, -
- i— — Hokok —1—To— % . B, —(K+C

Qu=3F (1) ("KG) [, TE oatetkle Tombo dg and Ty = (T1+0+|Iog (%)) .

The central coverage Bayes prediction lower and upper ®tord(;) andY(,_, do not exist in closed form. However,
one may obtain prediction bounds fgg by equating following equalities.

1 o R 0a+c+k—1e—T0e—badU
j:F’[Y(S)>|1|)—q = j'a o kK lg Tog b
2 jGTk*** gatttk—le-log=P0 dg
and a+Ct+k—1 n—Topa—bo
1-¢ Jo T 0 e g ?da
T =P [Y(S) > |2|)—(] = fo Tk*** 0a+c+k—1 e—TOe—bU do—’ (35)

. —(k+c) |
whereT,s; = (T1+0+ (n—K)log (%J)))) =12
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Table 1: Bayes Prediction Length of Bounds f&ig (Wheno is Known).

gle— | (cd) ] | 99% | 95% | 90%
0.25,0.50| 2.2975]| 1.6849 | 1.4879
2.00 04,02 | 2.1501| 1.6160 | 1.3089
09,03 | 1.9072| 1.4071| 1.2519
0.25,0.50| 2.2436 | 1.6454 | 1.4530
1.00 04,02 | 2.0997| 1.5781| 1.2782
09,03 | 1.8624| 1.3741| 1.2226
0.25,0.50| 2.1910] 1.6068 | 1.4189
0.50 04,02 | 2.0504| 1.5411| 1.2482
09,03 | 1.8188| 1.3418| 1.1939

Similarly, the central coverage Bayes prediction lower apger bounds fo¥(,,_y (the last item to fail) are obtained by
equating following equalities.

1+¢ Q3
and
l—¢ Q32
— P [Y(nfk) > |2|>_<] = Q—47 (36)
. V| —(k+c) i .
whereTy; = (T1+ o+ilog (%)) Qs = 3 (1) ("KG) [, Ty 0™ cHte b0 dg andj = 1,2

5 Numerical Analysis

5.1 When Scale Parameter is Known

In this section, we are presenting the findings of the ceraérage Bayes prediction lower and upper bounds for a
particular set of parametric values.

We assume here that the failure time follows the consideegdt® Type - Il model. The numerical values of the prior
parameters andd are selected ag,d) = (0.25,0.50), (04,02) and(09,03) with scale parametey = 0.50,1.00,2.00.
The selections of prior parametric values meet the critettiat the prior variance should be unity.

Using above considered parametric values, genera@00andom samples. A sample of(20n) items is tested and
their ordered failure times are observed.

Suppose that this test is terminated when firs{=1%) of the ordered lifetimes are available. For selected le¥el o
significancee = 99% 95% 90%; the central coverage Bayes prediction lower and upmends forXie, (the next failure
item) are calculated. The lengths of central coverage Bpsadiction bounds foX;g are presented in Table 1.

We observe from the table that the length of the interval tenble wider as the value of scale parameteincreases
when other parametric values are consider to be fixed. Ofgpwend has been seen when prior parameiecreases. It
is also noted further that when confidence lessel prior parameted decreases the length of intervals tends to be closer.

For the similar set of considered data, the length of cetraérage Bayes prediction bounds ¥, (the last failure
item) are obtained and presented in Table 2.

It observes from Table 2 that the magnitude of the length @irtkerval tends to be wider as compare to failure id&
However, the gain in the interval is robust. This is a natuaalthe prediction of the future order statistic that is faay
from the last observation, the value has less accuracy tizmt other future order statistic. Other properties assrssd
to be similar.
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Table 2: Bayes Prediction Length of Bounds &g (Wheno is Known).

ole— | (cd) ] | 99% | 95% | 90%
0.25, 0.50| 3.5438 | 2.5989 | 2.2951
2.00 04,02 | 3.3165| 2.4927 | 2.0190
09,03 | 2.9417| 2.1704| 1.9311
0.25, 0.50| 3.4607 | 2.5379 | 2.2413
1.00 04,02 | 3.2387| 2.4342| 1.9716
09,03 | 2.8727| 2.1195| 1.8858
0.25,0.50| 3.3795 | 2.4784 | 2.1886
0.50 04,02 | 3.1627| 2.3771| 1.9254
09,03 | 2.8054 | 2.0697 | 1.8415

Table 3: Bayes Prediction Length of Bounds &g (Both Parameters Unknown).

cle—> | (ab)l | 99% | 95% | 90%
0.25,0.50| 2.7521 | 2.0183| 1.7823
2.00 04,02 | 2.5755| 1.9358| 1.5679
09,03 | 2.2846| 1.6855| 1.4996
0.25,0.50| 2.6875 | 1.9710| 1.7405
1.00 04,02 | 2.5152| 1.8904| 1.5311
09,03 | 2.2309| 1.6460 | 1.4645
0.25,0.50| 2.6245 | 1.9247 | 1.6997
0.50 04,02 | 2.4561| 1.8460| 1.4952
09,03 | 2.1787| 1.6073| 1.4301

Table 4: Bayes Prediction Length of Bounds &g (Both Parameters Unknown).

cle— (a,b) | 99% 95% 90%
0.25,0.50| 4.4538 | 3.2663 | 2.8845
2.00 04, 02 4.1681 | 3.1328| 2.5375
09,03 | 3.6971| 2.7277| 2.4270
0.25,0.50| 4.3494 | 3.1896 | 2.8168
1.00 04, 02 4.0704 | 3.0593| 2.4779
09,03 | 3.6104 | 2.6638| 2.3701
0.25,0.50| 4.2473 | 3.1148| 2.7506
0.50 04, 02 3.9748 | 2.9875| 2.4198
09,03 | 3.5258 | 2.6012| 2.3144

5.2 When Both Parameters are Unknown

When both parameters are treated as the random variabily, &o has been carried out for studying the properties of
the length of the central coverage Bayes predictive bounds.

We generate the values of the scale parametefrom (25) by using selected values of prior parameters
(a,b) = (0.25,0.50),(04,02) and (09,03). The selections of prior parametric values meet the critetiat the prior
variance should be unity.

With the help of the generated valuesmfindc (= 0.50,1.00,2.00), we generated the shape paramétewith the help
of above generated values,, D00 random samples have been generated from the considesl, rand a sample of
20(=n) items is tested and their ordered failure times are observed

The length of central coverage Bayes prediction bounds btaired forX;s, (the next failure item, since test is
terminated when the first 15 k) of the ordered lifetimes are available) axg, and presented respectively in the Tables
3and 4.
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Similar properties have been seen for length of the centneérage Bayes prediction bounds in both cases. It is also
noted that the magnitude of the length of bounds are widee(wioth parameter are unknown) than compare to length
of bounds when one parameter is unknown. The gain in magnitudhe length of the Bayes prediction bounds is
nominal.
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