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Abstract: The Pareto Type-II model is considered in present article asthe underlying model from which observables are to be predicted
under Bayesian approach. The predictions are to be made on the ordered failure items of the remaining businesses by usingconditional
probability function. A right item failure - censoring criterion has been used for prediction.
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1 Introduction

Pareto distribution has played a major role in the investigations of previous phenomena providing a satisfactory modelat
the extremities. Pareto distribution and their close relatives provide a very flexible family of fat - tailed distributions,
which may be used as a model for income distribution of higherincome group.

Freiling (1966) applied the Pareto law to study the distributions of nuclear particles. Harris (1968) used this
distribution in determining times of maintenance service while Davis & Feldstein (1979) employed it in studying time to
failure of equipment components. This distribution has established its important role in variety of other problems such as
size of cities and firms (Steindle (1965)), business mortality (Lomax (1954)).

It is often used as a model for analyzing areas including citypopulation distribution, stock price fluctuation, oil field
locations and military areas. It has also been found to be suitable for approximating the right tails of distribution with
positive skewness. It has a decreasing failure rate, so it isalso useful for modeling survival after some medical
procedures (the ability to survive for a longer time appearsto increase, the longer one survives after certain medical
procedures).

Two-parameter Pareto distribution is transformational equivalent to the two-parameter exponential distribution (Dyer
(1981)), thus one could analyze Pareto data using known techniques for exponential distributions. Arnold (1983) gave an
extensive historical survey of its use in the context of income distribution. Arnold & Press (1989), Ouyang & Wu (1994),
Ali-Mousa (2001), Soliman (2001), Wu et al. (2004) and others those who have studied predictive inference for the
future observations under the Pareto model. Recently, Prakash & Singh (2013) present some Bayes prediction length of
interval for Pareto model.

Al-Hussaini et al. (2001) were obtaining Bayes prediction bounds for Type - I censored data from a finite mixture of
Lomax (Pareto Type - II) components. Some Bayes prediction bounds based on one - sample technique for Pareto model
have obtained by Nigm et al. (2003).

The objective of the present paper is to obtain the central coverage Bayes prediction length of bounds for the future
observation from Pareto Type - II distribution. We present the Bayesian statistical analysis to predict the future statistic
of the considered model based on the right censored item failure data. Based on the firstk ordered failure items in a
sample of sizen from Pareto Type - II distribution, Bayesian prediction bounds for the remaining(n − k) items are
derived in two cases, the first is when the scale parameter is known (Section 3) and the second is when both parameters
are considered as the random variables (Section 4). A numerical study has been carried out for the illustration of the
procedures in next section.
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2 The Considered Model

Probability density function of the considered Pareto model is

f (x;θ ,σ) = θ σ (1+σx)−θ−1 ; x > 0, θ > 0,σ > 0. (1)

Here,θ is the shape parameter andσ is the scale parameter. The Pareto distribution (1), is the result of the mixture of
Exponential distribution with the parameterα, and the exponential scale parameterα is distributed as Gamma with
parametersθ andσ .

In life testing, fatigue failures and other kinds of destructive test situations, the observations usually occurred inordered
manner such a way that weakest items failed first and then the second one and so on. Let us suppose that, there are
n(> 0) items are put to test under the considered model without replacement and onlyk(> 0) items are fully measured,
while the remaining(n − k) items are censored. These(n− k) censored lifetimes will be ordered separately. This is
known as the Right Item Failure - Censoring scheme. The objective of the present article is the predictions are to be
made on the ordered failure remaining(n− k) items, by using conditional probability function.

The likelihood function for random samplex
(

= x(1),x(2), ...,x(k)
)

under the above censoring criterion is define as

L(x|θ ,σ) ∝

(

k

∏
i=1

f
(

x(i);θ ,σ
)

)

.

(

n

∏
i=k+1

(

1−
∫ x(i)

0
f
(

x(i);θ ,σ
)

dx(i)

)

)

⇒ L(x|θ ,σ) ∝ σ k θ k exp(−θT1−T0) , (2)

whereT1 = ∑n
i=1 log

(

1+σx(i)
)

andT0 = ∑k
i=1 log

(

1+σx(i)
)

.

3 Central Coverage Bayes Prediction Bounds (Known Scale Parameter)

From a Bayesian view point; there is clearly no way in which one can say that one prior is better than other. It is more
frequently the case that, we select to restrict attention toa given flexible family of priors, and we choose one from that
family, which seems to match best with our personal beliefs.A natural family of conjugate prior for the shape parameter
θ is consider here as a Gamma (when scale parameter is known), having probability density function

g1 (θ |σ) ∝ θ c−1e−d θ ; θ > 0,d > 0,c > 0. (3)

Posterior density function of the parameterθ is obtained by using (2) and (3) as

π (θ |x) =
L(x|θ ,σ) .g1(θ |σ)

∫

θ L(x|θ ,σ) .g1(θ |σ) dθ

⇒ (θ |x) =
T k+c

k

Γ (k+ c)
θ k+c−1 e−θTk ; Tk = T1+ d. (4)

Nigm & Handy (1987) consider the problem of predictingT(r+s);s = 1,2, ...,n based on the order statistics
t(1) < t(2) < ... < t(r) from a sample of sizen. In present article, the predictions are to be made on the ordered failure
remaining(n− k) items, using the conditional probability function for the Right Item failure - censored data.

The conditional predictive density ofY(s) = Xk+s;s = 1,2, ...,n− k at givenθ is defined as

h1
(

y(s)|θ ,x
)

=
[

ψ
(

x(k)
)

−ψ
(

y(s)
)]s−1 [ψ

(

y(s)
)]n−k−s [ψ

(

x(k)
)]−n+r [

f
(

y(s)
)]

, (5)

whereψ (.) is the survival function.

Solving (5), we have

h1
(

y(s)|θ ,x
)

= θ σ
s−1

∑
i=0

∆i

B(s)

(

B(s)

B(k)

)−niθ

; (6)
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whereB(s) =
(

1+σy(s)
)

, B(k) =
(

1+σx(k)
)

, ni = n− k− s+ i+1 and∆i = (−1)i (s−1Ci
)

.

The joint probability density function ofY(s) given the data is defined as

h′
(

y(s),θ |x
)

= h1 (ys|θ ,x) .π (θ |x)

⇒ h′
(

y(s),θ |x
)

=
T k+c

k

Γ (k+ c)
σ θ k+c e−θTk

s−1

∑
i=0

∆i

B(s)

(

B(s)

B(k)

)−niθ

. (7)

Therefore the predictive density ofY(s) is thus obtained as

h∗
(

y(s)|x
)

=
∫

θ
h′
(

y(s),θ |x
)

dθ . (8)

Using (7) in (8) fory(s) > x(r), we have

h∗
(

y(s)|x
)

= (k+ c)σ T (k+c)
k

s−1

∑
i=0

∆i

B(s)

(

Tk + ni log

(

B(s)

B(k)

))−(k+c+1)

. (9)

Now, the predictive survival function is defined as

P
[

Y(s) > y|x
]

=

∫ ∞
y h∗

(

Y(s)|x
)

dys
∫ ∞

xk
h∗
(

Y(s)|x
)

dys

=
(k+ c)σ T (k+c)

k ∑s−1
i=0 ∆i

∫ ∞
y

1
B(s)

(

Tk + ni log
(

B(s)
B(k)

))−(k+c+1)
dys

(k+ c)σ T (k+c)
k ∑s−1

i=0 ∆i
∫ ∞

xk

1
B(s)

(

Tk + ni log
(

B(s)
B(k)

))−(k+c+1)
dys

P
[

Y(s) > y|x
]

=
∑s−1

i=0
∆i
ni

(

Tk + ni log
(

B(0)
B(k)

))−(k+c)

∑s−1
i=0

∆i
ni

(Tk)
−(k+c)

; B(0) = (1+σy) . (10)

We know that

a

∑
i=0

(−1)i (aCi) (i+ b)−1 =
{

(a+1)
(

a+bCa+1

)}−1
. (11)

Hence, the denominator of equation (10) are solving by using(11) as

s−1

∑
i=0

∆i

ni
(Tk)

−(k+c) =
s−1

∑
i=0

(−1)i (s−1Ci
)

(i+(n− k− s+1))−1 (Tk)
−(k+c)

=
(

s
(

n−kCs

))−1
(Tk)

−(k+c) . (12)

Using (12) and (10), the predictive survival function is thus written as

P
[

Y(s) > y|x
]

= s
(

n−kCs

)

(Tk)
k+c

s−1

∑
i=0

∆i

ni

(

Tk + ni log

(

B(0)

B(k)

))−(k+c)

. (13)

In the context of Bayes prediction, we say that(l1, l2) is a 100(1− ε)% prediction limits for the future observationY(s), if
they satisfies

Pr
(

l1 < Y(s) < l2
)

= 1− ε. (14)
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Herel1 andl2 are said to be lower and upper Bayes prediction bounds for therandom variableY(s), and 1− ε is called the
confidence prediction coefficient. The central coverage Bayes prediction lower and upper bounds are obtain by solving
following equality

Pr
(

Y(s) ≤ l1
)

=
1− ε

2
= Pr

(

Y(s) ≥ l2
)

. (15)

Using (13) and (15), the lower and upper central coverage Bayes prediction boundsl1 and l2 are obtained by solving
following equalities as

1+ ε
2

= s
(

n−kCs

)

(Tk)
k+c

s−1

∑
i=0

∆i

ni

(

Tk + ni log

(

B(l1)

B(k)

))−(k+c)

and

1− ε
2

= s
(

n−kCs

)

(Tk)
k+c

s−1

∑
i=0

∆i

ni

(

Tk + ni log

(

B(l2)

B(k)

))−(k+c)

, (16)

whereB(l1) = (1+ l1σ) andB(l2) = (1+ l2σ) . Further, simplification of the above equations (16), do not possible. A
numerical technique is applied here for obtaining the values of l1 andl2 for someε.

For a particular case, substitutings = 1 in the predictive survival function (13), for predicting the itemY(1) = X(k+1), of
the next item to fail, and is obtain as

P
[

Y(1) > y|x
]

=

(

1+
(n− k)

Tk
log

(

B(0)

B(k)

))−(k+c)

. (17)

Similarly, for s = n− k, corresponding to predicting the itemY(n−k) = X(n), of the last item to fail, the predictive survival
function (13) is written as

P
[

Y(n−k) > y|x
]

=
n−k

∑
i=1

(−1)i−1
(

n−kCi

)

(

1+
i

Tk
log

(

B(0)

B(k)

))−(k+c)

. (18)

Now, the central coverage Bayes prediction lower and upper bounds forY1 are now obtain as

l1 = σ−1

{

Bk exp

(

Tk

n− k

(

(

1+ ε
2

)−1/(k+c))

−1

))

−1

}

and

l2 = σ−1

{

Bk exp

(

Tk

n− k

(

(

1− ε
2

)−1/(k+c))

−1

))

−1

}

. (19)

The central coverage Bayes prediction length of bounds forY(1) is obtain as

L = l2− l1. (20)

The Central coverage Bayes prediction lower and upper bounds do not exist for the itemY(n−k). However, one may obtain
lower and upper bounds forY(n−k) by equating following equality.

1+ ε
2

=
n−k

∑
i=1

(−1)i−1
(

n−kCi

)

(

1+
i

Tk
log

(

B(l1)

B(k)

))−(k+c)

and

1− ε
2

=
n−k

∑
i=1

(−1)i−1
(

n−kCi

)

(

1+
i

Tk
log

(

B(l2)

B(k)

))−(k+c)

. (21)
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4 Central Coverage Bayes Prediction Bounds (Both Parameters Unknown)

When, both scale and shape parameters are considered to be random variable, the likelihood function of the considered
model is obtain as

L(x|θ ,σ) ∝ θ k e−θT1σ ke−T0 (22)

whereT1 = ∑n
i=1 log

(

1+σx(i)
)

andT0 = ∑k
i=1 log

(

1+σx(i)
)

.

It is clear from equation (22) that, both the functionsT0 andT1 are depends only upon scale parameterσ , and thus both
scale and shape parameters are independently distributed.Therefore, in present case when both shape and scale
parameters are consider being random variables for the underlying model, the joint prior density for the parameterθ and
σ is considered as

g(θ ,σ) = g1(θ |σ) .g2(σ) ; (23)

whereg1(θ |σ) andg2(σ) are the gamma densities and defined as

g1 (θ |σ) =
σ c

Γ (c)
θ c−1e−σθ ; θ > 0,σ > 0,c > 0 (24)

and

g2(σ) =
ba

Γ (a)
σa−1e−bσ ; σ > 0,a > 0,b > 0. (25)

Now, the joint prior density is

g(θ ,σ) ∝ θ c−1σa+c−1 e−σθ e−bσ . (26)

The joint posterior density is now defined as

π∗∗ (θ ,σ |x) =
L(x|θ ,σ) .g(θ ,σ)

∫

σ
∫

θ L(x|θ ,σ) .g(θ ,σ) dθdσ
.

Using (22) and (26) we have,

⇒ π∗∗ (θ ,σ |x) = σ̄ θ k+c−1e−θ(T1+σ)σa+c+k−1e−T0−bσ ; (27)

whereσ̄ =
(

Γ (k+ c)
∫

σ (T1+σ)−(k+c) σa+c+k−1 e−T0−bσ
)−1

.

The conditional predictive density ofY(s) = Xr+s ; s = 1,2, ...,n− k at givenθ andσ is obtain similarly as

h2
(

y(s)|θ ,σ ,x
)

= θ σ
s−1

∑
i=0

∆i

B(s)
exp

(

−ni θ log

(

B(s)

B(k)

))

. (28)

The joint probability density function ofY(s) given the data is now obtain as

h
′′ (

y(s),θ ,σ |x
)

= h2
(

y(s)|θ ,σ ,x
)

.π∗∗ (θ ,σ |x)

⇒ h
′′ (

y(s),θ ,σ |x
)

= σ̄
s−1

∑
i=0

∆i

B(s)
θ k+ce−θT∗

k
σa+c+k

eT0+bσ ; (29)

whereT ∗
k =

(

T1+σ + ni log
(

B(s)
B(k)

))

.

Hence, the predictive density ofY(s) given on the data, forY(s) > x(r) is thus obtained as

h∗∗
(

y(s)|x
)

=
∫

σ

∫

θ
h
′′ (

y(s),θ ,σ |x
)

dθ dσ .

⇒ h∗∗
(

y(s)|x
)

= ¯̄σ
s−1

∑
i=0

∆i

∫

σ

σa+c+k

B(s)
e−T0−bσ (T ∗

k )
−(k+c+1) dσ ; (30)
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where ¯̄σ = σ̄Γ (k+ c+1).

The predictive survival function is obtain in present case as

P
[

Y(s) > y|x
]

=

∫ ∞
y h∗∗

(

Y(s)|x
)

dys
∫ ∞

xk
h∗∗
(

Y(s)|x
)

dys

⇒ P
[

Y(s) > y|x
]

=
∑s−1

i=0
∆i
ni

∫

σ T ∗∗
k σa+c+k−1 e−T0e−bσ dσ

∑s−1
i=0

∆i
ni

∫

σ T ∗∗∗
k σa+c+k−1 e−T0e−bσ dσ

; (31)

whereT ∗∗
k =

(

T1+σ + ni log
(

B(0)
B(k)

))−(k+c)
, T ∗∗∗

k = (T1+σ)−(k+c) andB(0) = (1+σy).

The Central coverage Bayes prediction lower and upper bounds for the random variableY(s) when both parameters are
considered to be unknown, are obtained by equating following equality

1+ ε
2

= P
[

Y(s) > l1|x
]

=
Ω1

Ω∗

and
1− ε

2
= P

[

Y(s) > l2|x
]

=
Ω2

Ω∗
; (32)

whereΩ j = ∑s−1
i=0

∆i
ni

∫

σ T ∗∗
k j σa+c+k−1e−T0e−bσ dσ , B(l j) = (1+ l jσ) , j = 1,2, T ∗∗

k j =

(

T1+σ + ni log

(

B(l j)

B(k)

))−(k+c)

andΩ∗ = ∑s−1
i=0

∆i
ni

∫

σ T ∗∗∗
k σa+c+k−1e−T0e−bσ dσ .

Again, closed form of the above equations (32) does not exist. A numerical technique is applied here for obtaining the
values of central coverage Bayes prediction lower and upperbounds for someε.

Puttings = 1, for predicting the itemY(1) = X(k+1), of the next item to fail, the predictive survival function is

P
[

Y(s) > y|x
]

=

∫

σ T ∗∗
k3 σa+c+k−1 e−T0e−bσ dσ

∫

σ T ∗∗∗
k σa+c+k−1 e−T0e−bσ dσ

, (33)

whereT ∗∗
k3 =

(

T1+σ +(n− k) log
(

B(0)
B(k)

))−(k+c)
.

Similarly, for predicting the last item to fail
(

Y(n−k) = x(n)
)

, putting s = n − k, the predictive survival function is
rewritten as

P
[

Y(n−k) > y|x
]

=
Ω3

Ω4
, (34)

whereΩ3 = ∑n−k
i=1 (−1)i−1 (n−kCi

)
∫

σ T ∗∗
k4 σa+c+k−1 e−T0−bσ dσ ,

Ω4 = ∑n−k
i=1 (−1)i−1 (n−kCi

)
∫

σ T ∗∗∗
k σa+c+k−1e−T0−bσ dσ andT ∗∗

k4 =
(

T1+σ + i log
(

B(0)
B(k)

))−(k+c)
.

The central coverage Bayes prediction lower and upper bounds forY(1) andY(n−k) do not exist in closed form. However,
one may obtain prediction bounds forY(1) by equating following equalities.

1+ ε
2

= P
[

Y(s) > l1|x
]

=

∫

σ T ∗∗
k31σa+c+k−1 e−T0e−bσ dσ

∫

σ T ∗∗∗
k σa+c+k−1 e−T0e−bσ dσ

and
1− ε

2
= P

[

Y(s) > l2|x
]

=

∫

σ T ∗∗
k32σa+c+k−1 e−T0e−bσ dσ

∫

σ T ∗∗∗
k σa+c+k−1 e−T0e−bσ dσ

, (35)

whereT ∗∗
k3 j =

(

T1+σ +(n− k) log
(

B(l j)
B(k)

))−(k+c)
; j = 1,2.
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Table 1: Bayes Prediction Length of Bounds forX16 (Whenσ is Known).

σ ↓ ε → (c,d) ↓ 99% 95% 90%
0.25, 0.50 2.2975 1.6849 1.4879

2.00 04, 02 2.1501 1.6160 1.3089
09, 03 1.9072 1.4071 1.2519

0.25, 0.50 2.2436 1.6454 1.4530
1.00 04, 02 2.0997 1.5781 1.2782

09, 03 1.8624 1.3741 1.2226
0.25, 0.50 2.1910 1.6068 1.4189

0.50 04, 02 2.0504 1.5411 1.2482
09, 03 1.8188 1.3418 1.1939

Similarly, the central coverage Bayes prediction lower andupper bounds forY(n−k) (the last item to fail) are obtained by
equating following equalities.

1+ ε
2

= P
[

Y(n−k) > l1|x
]

=
Ω31

Ω4

and
1− ε

2
= P

[

Y(n−k) > l2|x
]

=
Ω32

Ω4
, (36)

whereT ∗∗
k4 j =

(

T1+σ + i log
(

B(l j)
B(k)

))−(k+c)
Ω3 j = ∑n−k

i=1 (−1)i−1 (n−kCi
)
∫

σ T ∗∗
k4 j σa+c+k−1 e−T0−bσ dσ and j = 1,2.

5 Numerical Analysis

5.1 When Scale Parameter is Known

In this section, we are presenting the findings of the centralcoverage Bayes prediction lower and upper bounds for a
particular set of parametric values.

We assume here that the failure time follows the considered Pareto Type - II model. The numerical values of the prior
parametersc andd are selected as(c,d) = (0.25,0.50),(04,02) and(09,03) with scale parameterσ = 0.50,1.00,2.00.
The selections of prior parametric values meet the criterion that the prior variance should be unity.

Using above considered parametric values, generate 10,000 random samples. A sample of 20(= n) items is tested and
their ordered failure times are observed.

Suppose that this test is terminated when first 15(= k) of the ordered lifetimes are available. For selected level of
significanceε = 99%,95%,90%; the central coverage Bayes prediction lower and upper bounds forX16, (the next failure
item) are calculated. The lengths of central coverage Bayesprediction bounds forX16 are presented in Table 1.

We observe from the table that the length of the interval tendto be wider as the value of scale parameterσ increases
when other parametric values are consider to be fixed. Opposite trend has been seen when prior parameterc increases. It
is also noted further that when confidence levelε or prior parameterd decreases the length of intervals tends to be closer.

For the similar set of considered data, the length of centralcoverage Bayes prediction bounds forX20, (the last failure
item) are obtained and presented in Table 2.

It observes from Table 2 that the magnitude of the length of the interval tends to be wider as compare to failure itemX16.
However, the gain in the interval is robust. This is a natural, as the prediction of the future order statistic that is far away
from the last observation, the value has less accuracy than that of other future order statistic. Other properties are seemed
to be similar.
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Table 2: Bayes Prediction Length of Bounds forX20 (Whenσ is Known).

σ ↓ ε → (c,d) ↓ 99% 95% 90%
0.25, 0.50 3.5438 2.5989 2.2951

2.00 04, 02 3.3165 2.4927 2.0190
09, 03 2.9417 2.1704 1.9311

0.25, 0.50 3.4607 2.5379 2.2413
1.00 04, 02 3.2387 2.4342 1.9716

09, 03 2.8727 2.1195 1.8858
0.25, 0.50 3.3795 2.4784 2.1886

0.50 04, 02 3.1627 2.3771 1.9254
09, 03 2.8054 2.0697 1.8415

Table 3: Bayes Prediction Length of Bounds forX16 (Both Parameters Unknown).

c ↓ ε → (a,b) ↓ 99% 95% 90%
0.25, 0.50 2.7521 2.0183 1.7823

2.00 04, 02 2.5755 1.9358 1.5679
09, 03 2.2846 1.6855 1.4996

0.25, 0.50 2.6875 1.9710 1.7405
1.00 04, 02 2.5152 1.8904 1.5311

09, 03 2.2309 1.6460 1.4645
0.25, 0.50 2.6245 1.9247 1.6997

0.50 04, 02 2.4561 1.8460 1.4952
09, 03 2.1787 1.6073 1.4301

Table 4: Bayes Prediction Length of Bounds forX20 (Both Parameters Unknown).

c ↓ ε → (a,b) ↓ 99% 95% 90%
0.25, 0.50 4.4538 3.2663 2.8845

2.00 04, 02 4.1681 3.1328 2.5375
09, 03 3.6971 2.7277 2.4270

0.25, 0.50 4.3494 3.1896 2.8168
1.00 04, 02 4.0704 3.0593 2.4779

09, 03 3.6104 2.6638 2.3701
0.25, 0.50 4.2473 3.1148 2.7506

0.50 04, 02 3.9748 2.9875 2.4198
09, 03 3.5258 2.6012 2.3144

5.2 When Both Parameters are Unknown

When both parameters are treated as the random variable, study also has been carried out for studying the properties of
the length of the central coverage Bayes predictive bounds.

We generate the values of the scale parameterσ from (25) by using selected values of prior parameters
(a,b) = (0.25,0.50),(04,02) and (09,03) . The selections of prior parametric values meet the criterion that the prior
variance should be unity.

With the help of the generated values ofσ andc(= 0.50,1.00,2.00), we generated the shape parameterθ . With the help
of above generated values, 10,000 random samples have been generated from the considered model, and a sample of
20(= n) items is tested and their ordered failure times are observed.

The length of central coverage Bayes prediction bounds are obtained forX16, (the next failure item, since test is
terminated when the first 15(= k) of the ordered lifetimes are available) andX20, and presented respectively in the Tables
3 and 4.
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Similar properties have been seen for length of the central coverage Bayes prediction bounds in both cases. It is also
noted that the magnitude of the length of bounds are wider (when both parameter are unknown) than compare to length
of bounds when one parameter is unknown. The gain in magnitude in the length of the Bayes prediction bounds is
nominal.
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