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Abstract: An analysis has been carried out to study a problem of the natural convective boundary-layer flow of a nanofluid past a
non-linear stretching surface with convective boundary condition in the presence of yield stress in porous media. The model used for
the nanofluid incorporates the effects of Brownian motion and thermophoresis. The local similarity solutions are obtained by using
an efficient numerical shooting technique with a fourth-order Runge–Kutta scheme (MATLAB package). The results corresponding to
the dimensionless temperature profiles and the reduced Nusselt number, Sherwood number and skin friction coefficient are displayed

graphically for various pertinent parameters. It was found that Nusselt number (Re−1/2
x Nux) and Sherwood number (Re−1/2

x Shx) is a

decreasing function of the yield stress parameter Ω and the porous media parameter ξ , while the skin friction coefficient (Re1/2
x C f )is

an increasing function of the yield stress parameter Ω and the porous media parameter ξ .
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Nomenclature
a stretching coefficient
Bi Biot number (surface convection parameter)
DB brownian diffusion coefficient
DT thermophoretic diffusion coefficient
f dimensionless stream function
Grx local Grashof number
g gravitational acceleration vector
h convective heat transfer coefficient
K permeability of the porous medium
Km thermal conductivity of the base fluid
Le Lewis number
m stretching index
Nb brownian motion parameter
Nt Thermophoresis parameter
Nux Local Nusselt number
Pr Prandtl number
Rex local Reynolds number
Shx Local Sherwood number
T temperature of the nanofluid within the boundary
layer
T◦ temperature of the fluid below the surface

Tw temperature at the surface of the sheet
T∞ temperature of the ambient fluid
u,v velocity components alongx- and y-directions,
respectively
x,y cartesian coordinates along the plate and normal
to it, respectively
Greek symbols
α thermal diffusivity of the nanofluid
α◦ threshold gradient
βT volumetric coefficient of thermal expansion
γ dimensionless rescaled nanoparticle volume
fraction
λ thermal buoyancy parameter
λ ∗ nanoparticle buoyancy parameter
ρ f fluid density
ρp nanoparticle mass density
(ρCp) f heat capacity of the fluid
(ρCp)p effective heat capacity of the nanoparticles
material
µ fluid viscosity
ν kinematic coefficient of viscosity
Ψ stream function
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η similarity variable
θ dimensionless temperature
ϕ nanoparticles volume fraction
ϕw nanoparticle volume fraction at the surface of the
sheet
ϕ∞ ambient nanoparticle volume fraction attained as y
tends to infinity
τ nanoparticle heat capacity ratio
τ◦ yield stress
Subscripts
w surface conditions
∞ conditions far away from the surface
Superscript
′ differentiat ion with respect to η

1 Introduction

The flow over a stretching surface is an important
problem in many engineering processes with applications
in industries such as extrusion, melt-spinning, the hot
rolling, wire drawing, glass–fiber production,
manufacture of plastic and rubber sheets, cooling of a
large metallic plate in a bath, which may be an
electrolyte, etc. In industry, polymer sheets and filaments
are manufactured by continuous extrusion of the polymer
from a die to a windup roller, which is located at a finite
distance away. The thin polymer sheet constitutes a
continuously moving surface with a non-uniform velocity
through an ambient fluid [1]. Experiments show that the
velocity of the stretching surface is approximately
proportional to the distance from the orifice [2]. Crane [3]
studied the steady two-dimensional incompressible
boundary layer flow of a Newtonian fluid caused by the
stretching of an elastic flat sheet which moves in its own
plane with a velocity varying linearly with the distance
from a fixed point due to the application of a uniform
stress. This problem is particularly interesting since an
exact solution of the two-dimensional Navier–Stokes
equations has been obtained by Crane [3]. After this
pioneering work, the flow field over a stretching surface
has drawn considerable attention and a good amount of
literature has been generated on this problem [4,5,6,7,8,
9]. Khan and Pop [10] analyze the development of the
steady boundary layer flow, heat transfer and nanoparticle
fraction over a stretching surface in a nanofluid. Rahman
and Eltayeb [11] investigate the dynamics of the natural
convection boundary layer flow of a viscous
incompressible nanofluid considering Buongiorno’s [12]
nanofluid model over a nonlinear stretching sheet in the
presence of an applied magnetic field with thermal
radiation. Instead of the commonly used conditions of
constant surface temperature or constant heat flux, a
convective boundary condition is employed which makes
this study unique and the results are more realistic and
practically useful.

The study of convective heat transfer in nanofluids is
gaining a lot of attention. The nanofluids have many

applications in the industry since materials of nanometer
size have unique physical and chemical properties.
Nanofluids are solid-liquid composite materials
consisting of solid nanoparticles or nanofibers with sizes
typically of 1-100 nm suspended in liquid. Nanofluids
have attracted great interest recently because of reports of
greatly enhanced thermal properties. For example, a small
amount (<1% volume fraction) of Cu nanoparticles or
carbon nanotubes dispersed in ethylene glycol or oil is
reported to increase the inherently poor thermal
conductivity of the liquid by 40% and 150%, respectively
as reported by Eastman et al. [13] and Choi et al. [14].
Conventional particle-liquid suspensions require high
concentrations (>10%) of particles to achieve such
enhancement. However, problems of theology and
stability are amplified at high concentrations, precluding
the widespread use of conventional slurries as heat
transfer fluids. In some cases, the observed enhancement
in thermal conductivity of nanofluids is orders of
magnitude larger than predicted by well-established
theories. Nanofluids are used in different engineering
applications such as microelectronics, microfluidics,
transportation, biomedical, solid-state lighting and
manufacturing. The research on heat and mass transfer in
nanofluids has been receiving increased attention
worldwide. Many researchers have found unexpected
thermal properties of nanofluids, and have proposed new
mechanisms behind the enhanced thermal properties of
nanofluids. Excellent reviews on convective transport in
nanofluids have been made by Buongiorno [12] and
Kakac and Pramuanjaroenkij [15]. Kuznetsov and Nield
[16] studied analytically the natural convective
boundary-layer flow of a nanofluid past a vertical plate.
The model used for the nanofluid incorporates the effects
of Brownian motion and thermophoresis. Also, it is
interesting to note that the Brownian motion of
nanoparticles at molecular and nanoscale levels is a key
nanoscale mechanism governing their thermal behaviors.
In nanofluid systems, due to the size of the nanoparticles,
the Brownian motion takes place, which can affect the
heat transfer properties. As the particle size scale
approaches to the nanometer scale, the particle Brownian
motion and its effect on the surrounding liquids play an
important role in the heat transfer.

Porous media heat transfer problems have several
engineering applications such as geothermal energy
recovery, crude oil extraction, ground water pollution,
thermal energy storage and flow through filtering media.
Cheng and Minkowycz [17] presented similarity solutions
for free convective heat transfer from a vertical plate in a
fluid saturated porous medium. Gorla and Zinolabedini
[18] and Gorla and Tornabene [19] solved the nonsimilar
problem of free convective heat transfer from a vertical
plate embedded in a saturated porous medium with an
arbitrarily varying surface temperature or heat flux. Chen
and Chen [20] and Mehta and Rao [21] presented
similarity solutions for free convection of non-Newtonian
fluids over horizontal surfaces in porous media.
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Nakayama and Koyama [22] studied the natural
convection over a non-isothermal body of arbitrary
geometry placed in a porous medium. All these studies
were concerned with Newtonian fluid flows. The
boundary layer flows in nanofluids have been analyzed
recently by Nield and Kuznetsov [16,23]. Hady et al. [24]
reported the problem of non-Darcian free convection of a
non-Newtonian fluid from a vertical sinusoidal wavy plate
embedded in a porous medium. Hady and Ibrahim [25]
studied the effect of the presence of an isotropic solid
matrix on the forced convection heat transfer rate from a
flat plate to power-law non-Newtonian fluid-saturated
porous medium. Mahdy and Hady [26] studied the effects
of thermophoretic particle deposition of the free
convective flow over a flat plate embedded in
non-Newtonian fluid-saturated porous medium in the
presence of a magnetic field. The free convective heat
transfer to the power-law non-Newtonian flow from a
vertical plate in a porous medium saturated with
nanofluid under laminar conditions is investigated by
Hady et al. [27].Jumah and Mujumdar [28] studied the
free convection heat and mass transfer of non-Newtonian
power law fluids with yield stress over a vertical plate in
saturated porous media subjected to constant wall
temperature and concentration. Jumah and Mujumdar
[29] also studied the natural convection heat and mass
transfer of non-Newtonian power law fluids with yield
stress over a vertical plate in saturated porous media
subjected to variable wall temperature and concentration.
Hady et al. [30] study the effect of yield stress on free
convection boundary-layer flow past a vertical flat plate
embedded in a porous medium filled with a nanofluid, the
basic fluid being a non-Newtonian fluid.

The objective of the present work is to analyze the
development of the steady boundary layer flow, heat
transfer and nanoparticle fraction past a non-linear
stretching surface in a porous medium in a nanofluid flow
under convective boundary condition. A similarity
solution is presented. This solution depends on a Prandtl
numberPr, a Lewis number Le, a Brownian motion
numberNb, a thermophoresis number Nt and yield stress
parameter Ω . The dependency of the local Nusselt and
local Sherwood numbers on these parameters is
numerically investigated.

2 Analysis

We consider the steady two-dimensional boundary layer
flow of a nanofluid moving over a heated vertical
stretching sheet with the threshold gradient α◦ = aτ◦/

√
k,

where a is a constant, τ◦ yield stress and k is the
permeability for the porous medium. We consider a
Cartesian coordinate system with the origin at the lower
corner of the sheet. The x−axis is vertically upwards
along the sheet and the y−axis is horizontal and
perpendicular to the plane of the sheet. The flow being
confined to y > 0. Two equal and opposite forces are

introduced along the x axis so that the surface is stretched
keeping the origin fixed. This continuous sheet is
assumed to move with a velocity according to the power
law form u = axm, where a is a dimensional constant
known as the stretching rate and m is an arbitrary positive
constant (i.e., not necessarily an integer) known as the
stretching index. It is assumed that the left surface of the
sheet is heated by convection from a hot fluid at
temperature T◦ which provides a heat transfer coefficient
h. We consider the nanofluid as a two-component mixture
(i.e. base fluid plus nanoparticles) with the assumptions
(1) incompressible flow, (2) no chemical reactions, (3)
dilute mixture, (4) negligible viscous dissipation and (5)
nanoparticles and base fluid locally in thermal
equilibrium. Following these assumptions along with the
usual boundary layer and Boussinesq approximations, the
governing equations of the problem become (Buongiorno
[12], Kuznetsov and Nield [16])

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ f

(
u ∂u

∂x + v ∂u
∂y

)
=µ ∂ 2u

∂y2 +
[
ρ f ∞g(1−ϕ∞)βT (T −T∞)−

(
ρP −ρ f ∞

)
g(ϕ −ϕ∞)−α◦

]
− µ

k u,

(2)

u
∂T
∂x

+v
∂T
∂y

=α
∂ 2T
∂y2 +τ

[
DB

∂ϕ
∂y

∂T
∂y

+

(
DT

T∞

)(
∂T
∂y

)2
]
,

(3)

u
∂ϕ
∂x

+ v
∂ϕ
∂y

= DB
∂ 2ϕ
∂y2 +

(
DT

T∞

)
∂ 2T
∂y2 (4)

where u,v are the velocity components along x,y
coordinates, respectively. Here ρ f is the density, µ is the
viscosity,βT is the volume expansion coefficient of the
base fluid, while ρP is the density of the particles.
α = km/(ρc) f is the thermal diffusivity, km is the thermal
conductivity and (ρc) f is the heat capacity of the base
fluid, τ = (ρc)p /(ρc) f is the ratio between the effective
heat capacity of the nanoparticle material and heat
capacity of the fluid, DBis the Brownian diffusion
coefficient, DT is the thermophoretic diffusion coefficient,
T is the temperature of the nanofluid in the boundary
layer, T∞ is the temperature of the ambient fluid outside
the boundary layer, ϕ is the nanoparticle volume fraction
while ϕ∞ is its ambient value, and g is the acceleration
due to gravity.
The boundary conditions suggested by the physics of the
problem are

u = axm,v = 0,−Km
∂T
∂y

= h(T◦−Tw) ,ϕ = ϕw at y = 0,

u → 0,T → T∞,ϕ → ϕ∞ as y → ∞. (5)

where the subscripts w and ∞ refer to the wall and
boundary layer edge, respectively.
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We look for a similarity solution of Eqs. (2)-(4) with the
boundary conditions (5) of the following form:

η = y
√

a
ν xm−1,Ψ =

√
aνxm+1 f (η),θ = T−T∞

Tw−T∞
,γ = ϕ−ϕ∞

ϕw−ϕ∞
.

(6)
where the stream function Ψ is defined in the usually way
as u = ∂Ψ

∂y and v =− ∂Ψ
∂x .

Thus from Eq. (6) we have

u = axm f ′(η),v =− ∂Ψ
∂x =−

√
aνxm−1

[m+1
2 f (η)+ m−1

2 η f ′(η)
]

(7)
Here f is a non-dimensional stream function and the
prime denotes differentiation with respect to η .
Now substituting Eqs. (6) and (7) into Eqs. (2)–(4) we
obtain the following ordinary differential equations:

f ′′′+
m+1

2
f f ′′−m f ′2+[λθ −λ ∗γ −Ω ]−ξ f ′ = 0, (8)

θ ′′+
m+1

2
f Prθ ′+Nb Prθ ′γ ′+PrNtθ ′2 = 0, (9)

γ ′′+
1
2

Le(m+1) f γ ′+(Nt/Nb)θ ′′ = 0. (10)

along with the boundary conditions

f = 0, f ′ = 1,θ ′ =−Bi(1−θ),γ = 1 at η = 0, f ′ → 0,θ → 0,γ → 0 as η → ∞.

(11)
Where the parameters which govern the problem are
defined by

λ =
ρ f ∞(1−ϕ∞)

ρ f

Grx

Re2
x
,Grx =

gβT (Tw−T∞)
ν2 ,Rex =

axm+1

ν
,

λ ∗ =
(ρp−ρ f ∞)g(ϕw−ϕ∞)x

ρ f (axm)2 ,Ω = xα◦
ρ f (axm)2 ,

ξ = xν
kaxm ,Pr =

ν
α
,Nb =

τDB(ϕw−ϕ∞)
ν ,Nt =

τDT (Tw−T∞)
ν ,

Le =
ν

DB
,Bi =

xh
Km

Re−1/2
x . (12)

Here λ ,Grx,Rex,λ ∗,Ω ,ξ ,Pr,Nb,Nt ,Le and Bi denote a
thermal buoyancy parameter, a local thermal Grashof
number, a local Reynolds number, a nanoparticle
buoyancy parameter, a yield stress parameter, porous
media parameter, a Prandtl number for the base fluid, a
Brownian motion parameter, a thermophoresis parameter,
Lewis number and a surface convection parameter or
so-called Biot number.
Skin friction, Heat and Mass transfer coefficients

The primary objective of this study is to estimate the
parameters of engineering interest in fluid flow, heat and
mass transport problems are the skin friction coefficient
C f , the Nusselt number Nux and the Sherwood number
Shx. These parameters characterize the surface drag, the
wall heat and nanoparticle mass transfer, respectively.
The shearing stress, local heat and local mass flux from
the vertical plate can be obtained from

τw = µ
[

∂u
∂y

]
y=0

,qw = −km

[
∂T
∂y

]
y=0

,qm =

−DB

[
∂ϕ
∂y

]
y=0

The non-dimensional shear stress C f = 2τw
ρ f (axm)2 , the

Nusselt number Nux = qwx
km(Tw−T∞)

and the Sherwood

number Shx =
qmx

DB(ϕw−ϕ∞)
, are given by Re1/2

x C f = f ′′(0)

, Re−1/2
x Nux =−θ ′(0) , Re−1/2

x Shx =−γ ′(0).

3 Numerical Results and discussion

The set of Eqs. (8)–(10) is highly nonlinear and coupled
and cannot be solved analytically. The numerical
solutions of Eqs. (8)–(10) subject to the boundary
conditions (11) are obtained using an efficient numerical
shooting technique with a fourth-order Runge–Kutta
scheme (MATLAB package). For the purpose of
discussing the results, the numerical calculations are
presented graphically for nondimensional temperature
profiles as a function of η , rate of heat transfer, rate of
mass transfer and the rate of shear stress. In the
calculations the values of the parameters, namely the
thermal buoyancy parameter λ , nanoparticle buoyancy
parameter λ ∗, a yield stress parameter Ω , porous media
parameter ξ , Brownian motion parameter Nb,
thermophoresis parameter Nt , Biot number Bi, and
stretching index m are varied keeping Prandtl number Pr
and Lewis number Le as fixed. The accuracy of the
aforementioned numerical method was validated by direct
comparisons with the numerical results reported earlier
by Khan and Pop [10] and Rahman and Eltayeb [11] for
various Values of the reduced Nusselt number and the
Sherwood number for different values of Nt and
Pr = 10,Le = 10, in the limiting case
(λ = λ ∗ = ξ = Ω = 0.Bi = ∞,m = 1).This comparison is
presented in table 1 (Nb = 0.5 ) and table 2 (Nb = 0.1) . It
can be shown from this table that an excellent agreement
between the results exists. Figs. 1,2 show the effect of
yield stress parameter Ω = 0,0.3,0.5 and porous media
parameter ξ = 0.5,1,1.5,2 on (a) velocity profiles (b)
temperature function and (c) mass fraction function
(rescaled nanoparticles volume fraction) with m = 2
,λ = 10 ,λ ∗ = 5 ,Pr = 10, Nb = 0.2, Nt = 0.2, Le = 10
and Bi = ∞. It is shown that the momentum boundary
layer thickness decreases with Ω increase. On the other
hand, the thermal and concentration boundary layer
thicknesses increase as Ω increase as shown in Fig. 1
with ξ = 1. This means that higher values of heat and
mass transfer rates are associated with small Ω . It is clear
that the effect of ξ on velocity profiles ,temperature
function and mass fraction function is similar to the effect
of Ω which is discussed above. Figs. 3, show (a) the local
rate of shear stress in terms of the skin friction coefficient
Re1/2

x C f ,(b) the local rate of heat transfer in terms of
Nusselt number Re−1/2

x Nux from the heated surface to the
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nanofluid and (c) local rate mass transfer in terms of
Sherwood number Re−1/2

x Shx for different values of
Ω = 0,0.3,0.5 and Nt = 0,0.1,0.2,0.3,0.4,0.5 at m = 2
,λ = 10 ,λ ∗ = 5 ,ξ = 1,Pr = 10, Nb = 0.2, Le = 10 and
Bi = ∞. From these figures it is found that values of
Nusselt number Re−1/2

x Nux and Sherwood number
Re−1/2

x Shx decrease markedly with the increase of yield
stress parameter Ω . On the other hand values of the skin
friction coefficient Re1/2

x C f increase very rapidly with the
increase of yield stress parameter Ω . The values of
Nusselt number Re−1/2

x Nux and the skin friction
coefficient Re1/2

x C f decrease with the increase of
Brownian motion parameter Nb as well as thermophoresis
parameter Nt , while the Sherwood number Re−1/2

x Shx
increase with the increase of Brownian motion parameter
Nb as well as thermophoresis parameter Nt as shown in
Figs. 3,4. The variations of the skin friction coefficient
Re1/2

x C f ,(b) the Nusselt number Re−1/2
x Nux and (c) the

Sherwood number Re−1/2
x Shx for different values of

porous media parameter are presented in Figs. 5,6.
Keeping all other parameter values fixed as m = 2
,λ = 10 ,λ ∗ = 5 ,Pr = 10,Ω = 0.1, Nb = 0.2, Le = 10
and Bi = ∞. It is found that values of the skin friction
coefficient Re1/2

x C f , increase very rapidly with the
increase of porous media parameter ξ . but it can be seen
that an increase in porous media parameter ξ , it led to an
decrease in the Nusselt number Re−1/2

x Nux and the
Sherwood number Re−1/2

x Shx.

4 Conclusions

We have examined the influence of the stretching plate
parameter on non-linear stretching surface in a porous
medium in a nanofluid flow under convective boundary
condition in the presence of yield stress effect . Using
similarity transformations the governing equations of the
problem are transformed into nonlinear ordinary
differential equations and solved for local similar
solutions by using an efficient numerical shooting
technique with a fourth-order Runge–Kutta scheme
(MATLAB package). From the present study the
following conclusions can be drawn:
The local rate of shear stress in terms of the skin friction
coefficient Re1/2

x C f , increases with an increase of the
yield stress parameter Ω and the porous media parameter
ξ but it decreases with the increase of the Brownian
motion parameter Nb and the thermophoresis parameter
Nt .
The local rate of heat transfer in terms of Nusselt number
Re−1/2

x Nux from the surface of the sheet to the fluid
decreases with an increase of each of the yield stress
parameter Ω , the porous media parameter ξ , the
Brownian motion parameter Nb and the thermophoresis
parameter Nt .

Table 1: Comparison test results. Values of the reduced Nusselt
number and the Sherwood number for different values of Nt and
Pr = 10,Le = 10,Nb = 0.5 in the limiting case (λ = λ ∗ = ξ =
Ω = 0.Bi = ∞,m = 1 )

Nt −θ ′(0) −γ ′(0)
Ref. [10] Present results Ref. [10] Present results

0.1 0.0543 0.05425 2.3836 2.38357
0.2 0.0390 0.03904 2.4468 2.44681
0.3 0.0291 0.02914 2.4984 2.49837
0.4 0.0225 0.02250 2.5399 2.53986
0.5 0.0179 0.01792 2.5731 2.57310

Table 2: Comparison test results. Values of the reduced Nusselt
number and the Sherwood number for different values of Nt and
Pr = 10,Le = 10,Nb = 0.5 in the limiting case (λ = λ ∗ = ξ =
Ω = 0.Bi = ∞,m = 1 )

Nt −θ ′(0) −γ ′(0)
Ref.[11] Ref.[10] Present

results
Ref.[11] Ref.[10] Present

results
0.1 0.952376 0.9524 0.952327 2.129393 2.1294 2.129534
0.2 0.693174 0.6932 0.693110 2.274020 2.2740 2.274280
0.3 0.520079 0.5201 0.520078 2.528636 2.5286 2.528644
0.4 0.402581 0.4026 0.402579 2.795167 2.7952 2.795179
0.5 0.321054 0.3211 0.321053 3.035139 3.0351 3.035134

The local rate mass transfer in terms of Sherwood number
Re−1/2

x Shx decreases with an increase of the yield stress
parameter Ω and the porous media parameter ξ but it
increases with the increase of the Brownian motion
parameter Nb and the thermophoresis parameter Nt .
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(a)

(b)

(c)

Fig. 1: Effects of yield stress parameter Ω on (a) velocity profiles
(b) temperature function (c) mass fraction function with m = 2 ,
λ = 10 , λ ∗ = 5 ,Pr = 10, Nb = 0.2, ξ = 1, Nt = 0.2, Le = 10
and Bi = ∞

(a)

(b)

(c)

Fig. 2: Effects of porous media parameter ξ on (a)velocity
profiles (b)temperature function (c) mass fraction function with
m = 2 ,λ = 10 , λ ∗ = 5 ,Pr = 10, Nb = 0.2, Ω = 0.1, Nt = 0.2,
Le = 10 and Bi = ∞
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(a)

(b)

(c)

Fig. 3: Effects of yield stress parameter Ω on (a) Re1/2
x C f (b)

Re−1/2
x Nux (c) Re−1/2

x Shx with m= 2 , λ = 10 , λ ∗ = 5 ,Pr= 10,
ξ = 1, Nt = 0.2 , Le = 10 and Bi = ∞

(a)

(b)

(c)

Fig. 4: Effects of yield stress parameter Ω on (a) Re1/2
x C f (b)

Re−1/2
x Nux (c) Re−1/2

x Shx with m= 2 , λ = 10 ,λ ∗ = 5 ,Pr= 10,
ξ = 1, Nb = 0.2 , Le = 10 and Bi = ∞.
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(a)

(b)

(c)

Fig. 5: Effects of porous media parameter ξ on (a) Re1/2
x C f (b)

Re−1/2
x Nux(c) Re−1/2

x Shx with m = 2 ,λ = 10 ,λ ∗ = 5 ,Pr = 10,
Ω = 0.1, Nb = 0.2 , Le = 10 and Bi = ∞

(a)

(b)

(c)

Fig. 6: Effects of yield stress parameter Ω and porous media
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x C f (b) Re−1/2
x Nux (c) Re−1/2

x Shx with
m = 2 ,λ = 10 ,λ ∗ = 5 , Pr = 10, Nt = 0.2, Nb = 0.2, Le = 10
and Bi = ∞
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