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Abstract: In this paper, we study the equation (I −�)
α
2 u(x) = f (x),xεRn,0 < α < n. The operator � is named ultra-hyperbolic

operator defined by

�= (
∂ 2

∂x2
1
+

∂ 2

∂x2
2
+ · · ·+ ∂ 2

∂x2
p
− ∂ 2

∂x2
p+1

−·· ·− ∂ 2

∂ x2
p+q

),

p+ q = n is the dimension of Euclidean spaceRn, f (x)is given generalized function.We define the fractional ultra-hyperbolic kernel
Eα and obtain the solution of such equation which is related to the spectrum of Eα .Moreover,such Eα and u(x) are estimated,and then
we show that they are bounded.Then we study the non linear equation

(I −�)
α
2 u(x) = f (x,u(x)).

And on suitable conditions for f ,u and for the spectrum of the kernel Eα we can obtain a unique bounded solution for the nonlinear
equation in a compact subset of Rn.
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1 Introduction

It is well known that the solution of equation

−(∆ − I)u = f inRn (1.1)

where f εL2(Rn), was investigated before,see e.g. [1]. Its
Fourier transform is

û =
f̂

1+ | y |2

And its inverse Fourier transform is

u = (
f̂

1+ | y |2
)̌ =

f ∗E
(2π) n

2
,whereÊ =

1
1+ | y |2

As is known in [1] , [2]

E(x) =
1

2
n
2

∫ ∞

0

e
−t−|x|2
(4t)

t
n
2

dt,xεRn (1.2)

where E is called a Bessel potential ,and

u(x) =
1

(4π) n
2

∫ ∞

0

∫
Rn

e
−t−|x−y|2

(4t)

t
n
2

f (y)dydt, (1.3)

Also the solution of the problems −(∆ − I)ku = f ,k ≥ 1
and −(∆ − I)

α
2 u = f ,0 < α < n were considered in [1],

[3] and [4].
Recently a published work dealing with fractional

differential equations can be found in [10].
Now, the purpose of this work is to study the solution

of the equation

(I −�)
α
2 u(x) = f (x), (1.4)

f (x) is the given generalized function.We obtain u(x) =
f∗Eα

(2π)
n
2

as a solution of (1.4),where
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Eα(x) =
1

(2π) n
2 Γ (α

2 )

.
∫

Ω

∫ ∞

0
e−t−∥ξ∥2t+i(ξ ,x).t

α
2 −1dtdξ

(1.5)

and Ω ⊂ Rn is the spectrum of Eα(x). The function
Eα(x) is called fractional ultra -hyperbolic kernel or the
elementary solution of (1.4).

If we put q = 0,α = 2, then (1.4) and (1.5) reduce to
(1.1) and (1.2) respectively. Also under certain conditions
on f and u,we study the solution of the following nonlinear
equation of the form:

(I −�)
α
2 u(x) = f (x,u(x)) (1.6)

Also on suitable conditions for f ,u and for the spectrum
of the kernel we can find unique solution for the non linear
equation in the compact subset of Rn, see [5], [6] and [7].

2 preliminaries

Definition 2.1Let f (x)εL1(Rn)− the space of integrable
function inRn.

The fourier transform of f (x) is defined by

f̂ (ξ ) =
1

(2π) n
2

∫
Rn

e−i(ξ ,x) f (x)dx

where

ξ = (ξ1,ξ2, · · · ,ξn),x = (x1,x2, · · · ,xn)εRn,

(ξ ,x) = ξ1x1 +ξ2x2 + · · · · · ·+ξnxn is usual inner product
in Rn and dx = dx1dx2 · · ·dxn.

Also the inverse of Fourier transform is defined by

f (x) =
1

(2π) n
2

∫
Rn

ei(ξ ,x) f̂ (ξ )dξ ,

see [2],[8] and [9]

Definition 2.2let ξ = (ξ1,ξ2, · · · ,ξn) be a point in Rn and
we write µ =∥ ξ ∥2= ξ 2

1 + ξ 2
2 + · · ·+ ξ 2

p − ξ 2
p+1 − ·· · −

ξ 2
p+q, p+q = n.

Denote by Γ+ = {ξ εRn : ξ1 > 0 and µ > 0} the set of
an interior of the forward cone, and Γ+ denotes the closure
of Γ+.

Definition 2.3(Bipoolar coordinates)
let ξ1 = rω1 , ξ2 = rω2 ,· · · ,ξp = rωp
and
ξp+1 = sωp+1,ξp+2 = sωp+2,· · · , ξp+q = sωp+q

where ∑p
i=1 ω2

i = 1 and ∑p+q
j=p+1 ω2

j = 1 where
dξ = rp−1sq−1drdsdΩpdΩq ,and dΩp,dΩq are the
elements of surface area of the unit sphere in Rp,Rq

respectively. Since Ω ⊂ Rn,Ω ⊂ Γ+ is the spectrum of Eα
and we suppose 0 ≤ r ≤ R and 0 ≤ s ≤ L where R and L
are constants.

Definition 2.4The Fourier transform of a function f
which is sufficiently smooth, and small at infinity, and its
Laplacean,∆ f = ∑n

j=1
∂ 2 f
∂x2

j
, are related by

(−∆ f )̂(y) = 4π2 | y |2 f̂ (y), and thus the fractional power
of the Laplacean by ((−∆)

α
2 f )̂(y) = (2π | y |)α f̂ (y) and

by replacing the ”non-negative” operator −∆ , by the
”strictly positive” operator I −∆ , (I = identity), then we
get

((I −∆)
α
2 f )̂ = (1+4π2 | y |2) α

2 f̂ (y), see[4].

3 Main results

Theorem 3.1Given the equation

(I −�)
α
2 u(x) = f (x) (3.1)

we obtain

u(x) =
f ∗Eα

(2π) n
2

(3.2)

as a solution of (3.1) where Eα(x) is given as

Eα(x) =
1

(2π) n
2

∫
Ω

ei(ξ ,x)

.(
1

Γ (α
2 )

∫ ∞

0
e−t−∥ξ∥2t .t

α
2 −1dt)dξ

where Ω ⊂ Rn is the spectrum of Eα
proof:Taking the Fourier transform to both sides of

(3.1), we obtain

F [(I −�)
α
2 u(x)] = F [ f (x)]

But from properties of Fourier transform
F(Dα u) = (iξ )α û for each multiindex α such that
Dα uεL2(Rn)

Then, we get

û(ξ ) =
f̂

(1+ ∥ ξ ∥2)
α
2
= f̂ .Êα (3.3)

Where

∥ ξ ∥2=
p

∑
i=1

ξ 2
i −

p+q

∑
j=p+1

ξ 2
j > 0

But from the definition of gamma function we have,

r−a =
1

Γ (a)

∫ ∞

0
e−rtta−1,a =

α
2
,r = 1+ ∥ ξ ∥2 (3.4)

Then,

Êα(ξ ) = 1
Γ ( α

2 )

∫ ∞

0
e−(1+∥ξ∥2)tt

α
2 −1dt

From the definition of inverse Fourier transform, we get

Eα(x) =
1

(2π) n
2

∫
Rn

ei(ξ ,x)(
1

Γ (α
2 )

∫ ∞

0
e−t−∥ξ∥2t .t

α
2 −1dt)dξ
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Since Ω ⊂ Rn,Ω is the spectrum of Eα

Eα(x) = 1
(2π)

n
2 Γ ( α

2 )

∫
Ω
∫ ∞

0 e−t−∥ξ∥2t+i(ξ ,x).t
α
2 −1dtdξ

(3.5)
Thus (3.3) can be written in the convolution form u(x) =
f∗Eα

(2π)
n
2
. Then

u(x) = 1
(2π)nΓ ( α

2 )

.
∫

Ω

∫
Ω

∫ ∞

0
e−t−∥ξ∥2t+i(ξ ,x−y)t

α
2 −1

. f (y)dydtdξ

=
1

(2π) n
2

∫
Ω

Eα(x− y) f (y)dy (3.6)

Lemma 3.1 (Estimation of Eα )

| Eα(x) |≤
ΩpΩq

(2π) n
2 Γ (α

2 )
.Mα (3.7)

where

Mα =
∫ ∞

0

∫ R

0

∫ L

0
exp[−t+

t(s2 − r2)]

.t
α
2 −1rp−1sq−1drdsdt,

Ωp =
2π

p
2

Γ ( p
2 )

andΩq =
2π

q
2

Γ ( q
2 )

(3.8)

proof: Using (3.5) we get

| Eα(x) |≤
1

(2π) n
2 Γ (α

2 )

.
∫

Ω

∫ ∞

0
e−t−∥ξ∥2t .t

α
2 −1dtdξ

by changing to bipolar, we get

| Eα(x) |≤
1

(2π) n
2 Γ (α

2 )

.
∫

Ω

∫ ∞

0
exp[−t + t(s2 − r2)]

.t
α
2 −1rp−1sq−1drdsdtdΩpdΩq

where dξ = rp−1sq−1drdsdΩpdΩq, and dΩp and dΩq are
the elements of surface area of the unit sphere in Rp and
Rq respectively. Since Ω ⊂ Rn,Ω ⊂ Γ is the spectrum of
Eα and we suppose 0 ≤ r ≤ R and 0 ≤ s ≤ L where R and
L are constants.

Thus we obtain,

| Eα(x) |≤
ΩpΩq

(2π) n
2 Γ (α

2 )

.
∫ ∞

0

∫ R

0

∫ L

0
exp[−t + t(s2 − r2)]

.t
α
2 −1rp−1sq−1drdsdt

=
ΩpΩq

(2π) n
2 Γ (α

2 )
.Mα

i.e. Eα is bounded.
Lemma3.2 (Estimation of u)

| u(x) |≤
ΩpΩq

(2π)nΓ (α
2 )

.Mα .N (3.9)

where Mα ,Ωp,Ωq defined in (3.8) and N =
∫

Rn | f (y) | dy
proof: Using (3.6) we get

u(x) =
1

(2π)nΓ (α
2 )

∫
Ω
∫

Ω
∫ ∞

0 e−t−∥ξ∥2t+i(ξ ,x−y)

.t
α
2 −1 f (y)dydtdξ = 1

(2π)
n
2

∫
Ω Eα(x− y) f (y)dy

then

| u(x) |≤ 1
(2π) n

2

∫
Ω
| Eα(x− y) f (y) | dy

≤
ΩpΩq

(2π)nΓ (α
2 )

Mα .N

i.e. u is bounded.

Theorem 3.2Given the nonlinear equation

(I −�)
α
2 u(x) = f (x,u(x)),

f orxεRn,0 < α < n.
(3.10)

Then we obtain

u(x) =
f (x,u(x))∗Eα(x)

(2π) n
2

as a solution of (3.10) where Eα(x) is defined in (3.5)
proof:Taking the Fourier transform to both sides of

(3.10), and similar theorem 3.1, we obtain

û(x) = f̂ (x,u(x)).Êα(x) (3.11)

Where Eα is defined in (3.5)
Thus (3.11) can be written in the convolution form

u(x) =
f (x,u(x))∗Eα(x)

(2π) n
2

=
1

(2π) n
2

∫
Ω

Eα(x− y) f (y,u(y))dy
(3.12)

Lemma 3.3(Estimation of u(x) for the nonlinear
equation)

| u(x) |≤
ΩpΩq

(2π)nΓ (α
2 )

Mα .N (3.13)

where Mα ,Ωp,Ωq defined in (3.8) and
N =

∫
Rn | f (y,u(y)) | dy

proof: Using (3.7) and (3.12) and similar to Lemma
3.2, we obtain the result and then u(x) is bounded.
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Theorem 3.3Given the nonlinear equation

(I −�)
α
2 u(x) = f (x,u(x))

for xεRn,0 < α < n, and with the following conditions
1) f satisfies the Lipchitz condition , that is

| f (x,u)− f (x,w) |≤ A | u−w |

Where A is constant,

A <
(2π)nΓ (α

2 )

Ω 2
pΩ 2

q Mα S
,Mα ,Ωp,Ωq

defined in (3.8)and S = Rp

p
Rq

q .
2) ∫

Rn
| f (x,u(x)) | dx = N

for x = (x1,x2, · · · ,xn)εRn .
Then, for the spectrum of Eα(x) we obtain

u(x) = f (x,u(x))∗Eα (x)

(2π)
n
2

is bounded on Rn and also u(x) is a

unique solution of (3.10) for xεΩ0 where Ω0 is a compact
subset of Rn and Eα(x) is defined by (3.5).

proof:The formula

u(x) =
f (x,u(x))∗Eα(x)

(2π) n
2

was obtained in Theorem (3.2) and also boundness of u
was shown in Lemma (3.3) as

| u(x) |≤
ΩpΩq

(2π)nΓ (α
2 )

Mα .N

where Mα ,Ωp,Ωq defined in (3.8) and
N =

∫
Rn | f (y,u(y)) | dy

To show that u(x) is unique.Let

L(u) =
1

(2π) n
2

∫
Ω

Eα(x− y) f (y,u(y))dy

and suppose there is another solution w(x) of equation
(3.10).

Then,
| L(u)−L(w) |≤ 1

(2π)
n
2

.
∫

Ω
Eα(x− y) | f (y,u(y))− f (y,w(y)) | dy

But f satisfies the Lipchitz condition,then

| f (x,u)− f (x,w) |
≤ A | u(x)−w(x) |,

(3.14)

where A is constant,then
| L(u)−L(w) |≤ 1

(2π)
n
2

A | u−w |

.
∫

Ω |Eα(x−y) | dy, and using the estimation of Eα in (3.7)
we obtain

| L(u)−L(w) |≤ 1
(2π) n

2
A | u−w |

.
ΩpΩq

(2π) n
2 Γ (α

2 )
.Mα ΩpΩqS = K | u−w |

where
K = A

(2π)nΓ ( α
2 )

Ω 2
pΩ 2

q Mα S and

S = Rp

p
Lq

q
It is clear that by Banach contraction fixed point

theorem that if A <
(2π)nΓ ( α

2 )

Ω 2
pΩ 2

q Mα S ,

Then u = L(u) has a unique solution u(x) and is
defined by (3.12)
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