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Abstract: In this paper, we introduce contraction mappings, φ−contraction mappings in n-normed spaces and we show that the
mappings have a unique fixed point in n-Banach spaces. Also, taking advantage of the authors [15] and [16] we give a new type of
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1 Introduction and Preliminaries

In 1963 S.Gahler introduced the concept of 2-normed
space. Since 1963, S. Gähler, Y. J. Cho, R. W. Frees, C.
R. Diminnie, R. E. Ehret, K. Iséki, A. White and many
others have studied on both 2-normed spaces and 2-metric
spaces. Recently, H. Gunavan and M. Mashadi defined
n-normed space ( for more details [1–7] ).

The origins of the fixed point theory based on the use
of good approximations to construct the existence and
uniqueness of solutions, especially, for differential
equations. This method is associated with the names of
such celebrated mathematicians as Cauchy, Liouville,
Lipschitz, Peano, Fredholm and especially Picard. In fact
that the precursors of a fixed point theoretic approach are
explicit in the work of Picard. However, it is the Polish
mathematician Stefan Banach who is credited with
placing the underlying ideas into an abstract framework
suitable for broad applications well beyond the scope of
elementary differential and integral equations. In spite of
their being a long years old, the study in metric fixed
point theory was limited to minor extensions of Banach’s
contraction mapping principal and its manifold
applications. The theory gained new impetus largely as a
result of the pioneering work of Felix Browder in the
mid-nineteen sixties and the development of nonlinear
functional analysis as an active and vital branch of
mathematics. Pivotal in this development were the 1965
existence theorems of Browder, Göhde, and Kirk and the

early metric results of Edelstein. By the end of the
decade, a rich fixed point theory for nonexpansive
mappings was clearly emerging and it was equally clear
that such mappings play a main role in many aspects of
nonlinear functional analysis with links to variational
inequalities and the theory of monotone and accretive
operators ( for more information [8–14]).

Definition 1. [9] Let E be a nonempty set and T : E → E a
selfmap. We say that x ∈ E is a fixed point of T if T (x) = x
and denote by FT or Fix(T ) the set of all fixed points of T .

Let E be any set and T : E → E a selfmap. For any
given x ∈ E, we define T n (x) inductively by T 0 (x) = x
and T n+1 (x) = T (T n (x)); we recall T n(x) the nth iterative
of x under T.

For any x0 ∈ X, the sequence {xn}n≥0 ⊂ X given by

xn = T xn−1 = T nx0, n = 1,2, ... (1)

is called the sequence of successive approximations with
the initial value x0. It is also known as the Picard iteration
starting at x.

Definition 2. [3] Let n ∈ N and E be a real vector space
of dimension d ≥ n. A real valued function ∥·, · · · , ·∥ on En

satisfying the following
n1) ∥x1, · · · ,xn∥= 0 if and only if x1, ...,xn are linearly

dependent;
n2) ∥x1, · · · ,xn∥ is invariant under permutation;
n3) ∥x1, · · · ,xn−1,cxn∥ = |c|∥x1, · · · ,xn−1,xn∥ for all

c ∈ R,
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n4) ∥x1, · · · ,xn−1,y+ z∥ ≤ ∥x1, · · · ,xn−1,y∥+
∥x1, · · · ,xn−1,z∥,

is called a n−norm on E and the pair (E,∥·, · · · , ·∥) is
called n−normed space.

Definition 3. [3] A sequence {xn} in a n-normed space
(E,∥·, · · · , ·∥) is said to be a Cauchy sequence if

lim
m,n→∞

∥xn − xm,x2, · · · ,xn∥= 0 for all x2, ...,xn ∈ E.

Definition 4. [3] A sequence {xn} in a n-normed space
(E,∥·, · · · , ·∥) is said to be convegent if there is a point x in
E such that lim

n→∞
∥xn − x,x2, · · · ,xn∥= 0 for all x2, ...,xn in

E. If {xn} converges to x we write xn → x as n → ∞.

Definition 5. [3] A linear n-normed space is said to be
complete if every Cauchy sequence is convergent to an
element of E. A complete n-normed space E is called
n-Banach space.

Definition 6. [2] A subset L of E of the form
{x+ ty : t ∈ R}, where x and y are in E and y is a
non-zero element, will be called a line.

2 Contraction Mappings and Their Fixed
Point Theorems in n-Normed Space

In this section, we introduce the new definitions which are
φ−contraction mappings, contraction mappings in
n-normed space. Then, we show that these mappings have
a unique fixed point in n-Banach spaces.

Definition 7.Let E be a linear n-normed space then the
mapping T : E → E is said to be a contraction if there
exist some k ∈ [0,1) such that

∥T x−Ty,x2, · · · ,xn∥ ≤ k∥x− y,x2, · · · ,xn∥ ,
for all x,y,x2, ...,xn ∈ E.

Definition 8.Let E be a linear n-normed space then the
mapping T : E → E is called contractive if

∥T x−Ty,x2, · · · ,xn∥< ∥x− y,x2, · · · ,xn∥ ,
for all x,y,x2, · · · ,xn ∈ E.

Example 1.Let (E,∥·, · · · , ·∥) be a n-normed space and S
be a subset of the line L = {x+ ty : t ∈ R\{0}}. Define T :
S → L by T (x+ty) = t

1+∥y,x2,...,xn∥y, such that y,x2, ...,xn ∈
S are linearly independent. Then, if x+ t1y, x+ t2y are in S
and z ∈ E, we have

∥T (x+ t1y)−T (x+ t2y) ,x2, · · · ,xn−1∥

=

∥∥∥∥ t1
1+∥y,x2, · · · ,xn∥

y− t2
1+∥y,x2, · · · ,xn∥

y,x2, · · · ,xn

∥∥∥∥
=

∣∣∣∣ t1 − t2
1+∥y,x2, · · · ,xn∥

∣∣∣∣∥y,x2, · · · ,xn∥

< |t1 − t2|∥y,x2, · · · ,xn∥
= ∥(x+ yt1)− (x+ yt2),x2, · · · ,xn∥ .

Therefore, T is a contractive mapping in S.

Now, we extend the definition of contraction mapping
by using a function φ : R+ → R+ defined as following.

Definition 9. [9] Let φ : R+ → R+ be a function. In
connection with the function φ we consider the following
properties:

(iφ) φ is monotone increasing, i.e., t1 > t2 implies
φ (t1)> φ (t2);

(iiφ) φ (t)< t for all t > 0 ;
(iiiφ) φ(0) = 0;
(ivφ) φ is continuous;
(vφ) {φn (t)} converges to 0 for all t ≥ 0;
(viφ) ∑∞

n=0 φn (t) converges for all t > 0;
(viiφ) t −φ (t)→ 0 as t → ∞;
(viiiφ) φ is subadditive.

We have some important relationships between
conditions of Definition 9 as followings;

Lemma 1.( [9])

1) (iφ) and (iiφ) imply (iiiφ);
2) (iiφ) and (ivφ) imply (iiiφ);
3) (iφ) and (vφ) imply (iiφ).

Definition 10. [9] A function φ satisfying (iφ) and (vφ) is
said to be a comparison function.

Lemma 2.( [9])
1) Any comparison function satisfies (iiiφ);
2) Any comparison function satisfying (viiiφ) satisfies

(ivφ), too;
3) If φ is a comparison function, then, for any k ∈ N∗,

φk is a comparison function, too;
4) If φ is a comparison function, then the function s :

R+ → R+ s(t) = ∑∞
k=0 φk(t) satisfies (iφ) and (iiiφ).

We can give some examples for function φ as follows;
1. φ : R+ → R+, φ (t) = kt, k ∈ [0,1), satisfies all the

conditions (iφ) - (viiiφ).
2. φ : R+ → R+, φ (t) = t

t+1 , satisfies (iφ), (vφ) and
(viiφ).

Now, we extend the definition of contraction mappings
by using a comparison function φ : R+ → R+.

Definition 11.Let (E,∥·, · · · , ·∥) be a linear n-normed
space. A mapping T : E → E is said to be a
φ − contraction if there exists a comparison function
φ : R+ → R+ such that

∥T x−Ty,x2, · · · ,xn∥ ≤ φ (∥x− y,x2, · · · ,xn∥) ,
for all x,y,x2, ...,xn ∈ E.

Remark.In Definition 11 if we take φ(t) = kt , k ∈ [0,1)
we obtain definition of contraction mappings to n-normed
spaces. It is clear that Definition 11 is an extended of
Definition 7.

Lemma 3.Let(E,∥·, · · · , ·∥) be a linear n-normed space
then every φ−contraction T : E → E is sequentially
continuous.

c⃝ 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett. 2, No. 2, 59-64 (2014) / www.naturalspublishing.com/Journals.asp 61

Proof.Let {xn} be a sequence in E and {xn} → x ∈ E that
means ∥xn − x,x2, ...,xn∥→ 0 as n → ∞

∥T xn −T x,x2, · · · ,xn∥ ≤ φ(∥xn − x,x2, · · · ,xn∥)
< ∥xn − x,x2, · · · ,xn∥
→ 0 as n → ∞.

Thus, T xn → T x.

Now, we are in a position to give the definition of
closed set and bounded set in n-normed spaces.

Definition 12.Let (E,∥·, · · · , ·∥) be a linear n-normed
space, C be a subset of E then the closure of C is C =
{x ∈ E; there is a sequence xn of C such that xn → x }.
We say, C is sequentially closed if C =C.

Definition 13.Let (E,∥·, · · · , ·∥) be a linear n-normed
space, B be a nonempty subset of E and e ∈ B then B is
said to be e−bounded if there exist some M > 0 such that
∥e,x2, · · · ,xn∥ ≤ M for all x2, · · · ,xn ∈ B. If for all e ∈ B,
B is e−bounded then B is called a bounded set.

Theorem 1.Let (E,∥., · · · , .∥) be a linear n-Banach space
and K be a nonempty closed and bounded subset of E. A
selfmap T : K → K be φ−contraction then T has a unique
fixed point in K.

Proof.Let a0 ∈ K and {an}∞
n=0 be sequence in K such that

an = Tan−1 = T na0 , n = 1,2, ....

Because of T is φ contraction and from (1) for all a0,a1 ∈
K we have∥∥T 2 (a0)−T 2 (a1) ,x2, · · · ,xn

∥∥
= ∥T (Ta0)−T (Ta1) ,x2, · · · ,xn∥
≤ φ (∥Ta0 −Ta1,x2, · · · ,xn∥)
≤ φ (φ (∥a0 −a1,x2, · · · ,xn∥))
= φ2(∥a0 −a1,x2, · · · ,xn∥). (2)

Similarly, we obtain that

∥T na0 −T na1,x2, · · · ,xn∥ ≤ φn(∥a0 −a1,x2, · · · ,xn∥),
for all n ∈ N.

Now, we show that {an}∞
n=0 is a Cauchy sequence in

K. Let m,n > 0 , with m > n , take m = n+ p

∥an −am,x2, · · · ,xn∥
=

∥∥an −an+p,x2, · · · ,xn
∥∥

=
∥∥[(an −an+1)+(an+1 −an+2)++(an+p−1 −an+p)

]
,x2, · · · ,xn

∥∥
≤ ∥an −an+1,x2, · · · ,xn∥+∥an+1 −an+2,x2, · · · ,xn∥

+...+
∥∥an+p−1 −an+p,x2, · · · ,xn

∥∥
= ∥T na0 −T na1,x2, · · · ,xn∥+

∥∥∥T n+1a0 −T n+1a1,x2, · · · ,xn

∥∥∥
+...+

∥∥∥T n+p−1a0 −T n+p−1a1,x2, · · · ,xn

∥∥∥
≤ φn (∥a0 −a1,x2, · · · ,xn∥)+φn+1 (∥a0 −a1,x2, · · · ,xn∥)

+...+φn+p−1 (∥a0 −a1,x2, · · · ,xn∥) . (3)

Note that K is bounded so there is a constant M > 0 such
that ∥a0 −a1,x2, · · · ,xn∥ ≤ M for all x2, ...,xn ∈ K. In (3)
we make use of the definition of comparison function φ ,
that is

∥an −am,x2, · · · ,xn∥ ≤ φn (M)+φn+1 (M)+ · · ·+φn+p−1 (M) .

From definition of φ , we obtain

lim
n→∞

∥an −am,x2, · · · ,xn∥

= lim
n→∞

∥∥an −an+p,x2, · · · ,xn
∥∥

≤ lim
n→∞

φn (M)+ lim
n→∞

φn+1 (M)+ ...+ lim
n→∞

φn+p−1 (M)

= 0.

Hence, {an}∞
n=0 is a Cauchy sequence in K. The {an}∞

n=0
converges to a in K that K is a closed and bounded subset
of E. Also, by continuity of T , we have

Ta = limTan = liman+1 = a , as n → ∞.

Therefore, T has a fixed point in K. Now, we prove that
the fixed point is unique. Let a′ ∈ K and assume that a′ is
an other fixed point of T . From (1) we have Ta′ = a′.

Using definition of φ function we have∥∥a−a′,x2, · · · ,xn
∥∥ =

∥∥Ta−Ta′,x2, · · · ,xn
∥∥

≤ φ
(∥∥a−a′,x2, · · · ,xn

∥∥) . (4)

The inequalty (4) contradiction to property φ (t)≤ t. This
implies that ∥∥a−a′,x2, · · · ,xn

∥∥= 0
Hence, we have a = a′ in K so the fixed point is unique.
This is completes the proof.

Theorem 2.Let (E,∥., ..., .∥) be a linear n-normed space
and K be a nonempty closed and bounded subset of E.
Let T : K → K be a contraction then T has a unique fixed
point on X .

Proof.If we take φ(t) = kt , k ∈ [0,1) then, we obtain the
proof as a result of Theorem 1.

Theorem 3.Let S be a subset of the line
L = {x+ ty : t ∈ R+} and φ : R+ → R+ be a comparison
function. Define T : S → L by T (x+ ty) = φ(t)y then T is
contractive mapping in S.

Proof.Let x+ t1y , x+ t2y ∈ S under condition t1 > t2.For
all x2, ...,xn ∈ E, from Definition 10, we have
φ (t1)> φ (t2) and we obtain the following

∥T (x+ t1y)−T (x+ t2y),x2, ...,xn∥
= ∥φ(t1)y−φ(t2)y,x2, ...,xn∥
= |φ(t1)−φ(t2)|∥y,x2, ...,xn∥
< |t1 − t2|∥y,x2, ...,xn∥
= ∥t1y− t2y,x2, ...,xn∥
= ∥(x+ t1y)− (x+ t2y),x2, ...,xn∥ .

Thus, we arrive at the desired result.
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In the next section, we will give a new type of
contraction mappings in n-normed spaces. We will make
the definition taking advantage of the authors [15]
and [16].

3 The Concept of n-Contraction Mappings in
n-Normed Space

In 2004, Chu et al. [15] defined the concept of n-Lipschitz
mapping and n-isometry which are suitable for
representing the notion of n-distance preserving mappings
in linear n-normed space and studied the Aleksandrov
problem in linear n-normed spaces ( for more
details, [15], [16]).

In this section we introduce the concept of
n-contraction mappings and give some new fixed point
theorems for n-contraction mappings in n-Banach spaces.

Definition 14.Let E be a linear n-normed space. We call T
an n-contraction mapping if there is a k ∈ [0,1) such that

∥T x1 −T x0,T x2 −T x0, ...,T xn −T x0∥ ≤ k∥x1 − x0,x2 − x0,...,xn − x0∥
(5)

for all x0,x1, ...,xn ∈ E.

Theorem 4.Let (E,∥., · · · , .∥) be a linear n-Banach space
and K be a nonempty closed and bounded subset of E. A
selfmap T : K → K be n−contraction then the sequences
{an} generated from arbitrary y0 ∈ K by

an = T nbi, n = 0,1,2, ... (6)

bi = a0 +
i
c
(a1 −a0), i = 0,1,2, ...,n; c ∈ N (7)

converges to some fixed point of T.

Proof.For i = 0,1,2, ...,n, yi ∈ E, an ∈ E, for n = 0,1,2, ...∥∥T 2b1 −T 2b0, ...,T 2bn −T 2b0
∥∥

≤ k∥T b1 −T b0, ...,T bn −T b0∥
≤ k2 ∥b1 −b0, ...,bn −b0∥ ,

continuing this process, we easly arrive at

∥T nb1 −T nb0, ...,T nbn −T nb0∥≤ kn ∥b1 −b0, ...,bn −b0∥ .
(8)

Now, we show {an}∞
n=0 is a Cauchy sequence in K. Let

m,n ∈ N , with m > n, take m = n+ p

∥an −am,x2, ...,xn∥
≤ ∥an −an+1,x2, ...,xn∥+∥an+1 −an+2,x2, ...,xn∥ (9)

...+
∥∥an+p−1 −an+p,x2, ...,xn

∥∥ .

Also, for all x2, ...,xn ∈ K we have

∥an+1 −an,x2, ...,xn∥ =
∥∥T n+1bi −T nbi,x2, ...,xn

∥∥
≤ kn ∥T bi −bi,x2, ...,xn∥ ,

countining this process, we arrive at

1) ∥an+1 −an,x2, ...,xn∥ ≤ kn ∥T bi −bi,x2, ...,xn∥ (10)

2) ∥an+2 −an+1,x2, ...,xn∥ ≤ kn ∥T bi −bi,x2, ...,xn∥ (11)

3) ∥an+3 −an+2,x2, ...,xn∥ ≤ kn ∥T bi −bi,x2, ...,xn∥ (12)
...

p)
∥∥an+p −an+p−1,x2, ...,xn

∥∥ ≤ kn ∥T bi −bi,x2, ...,xn∥ . (13)

Substituting (10)-(13) into (9) and simplifying, we have

∥an −am,x2, ...,xn∥ ≤ kn.p∥T bi −bi,x2, ...,xn∥ .

Note that K is bounded, there is a constant M > 0 such
that ∥T bi −bi,x2, ...,xn∥ ≤ M for all l x2, ...,xn ∈ K. Thus,
leads to the following:

∥an −am,x2, ...,xn∥ ≤ kn pM. (14)

When we take n → ∞ in (14), we obtain that

lim
n→∞

∥an −am,x2, ...,xn∥ = lim
n→∞

∥∥an −an+p,x2, ...,xn
∥∥

≤ lim
n→∞

kn pM

= 0.

Hence, {an}∞
n=0 is a Cauchy sequence in K. Obviously

that K is a closed and bounded subset of E. Therefore, we
consider that {an}∞

n=0 converges to “a” in K such that
a = bt , i < t < n. Additionally, from continuity of T , we
see that

Ta = T ( lim
n→∞

an) = lim
n→∞

Tan = lim
n→∞

an+1 = a.

This implies that bt is fixed point of T. Now, we prove that
the fixed point is unique. Let bt2 = a′ ∈ K and assume that
bt2 is an other fixed point of T . Then T bt2 = bt2 = a′, i <
t2 < n.

Note that if T n-contraction, for x,y,x2, ...,xn ∈ K we
have

∥T x−Ty,x2, ...,xn∥
≤ ∥T x−Ty,T x2 −Ty, ...,xn∥+∥T x−Ty,x2 +Ty−T x2, ...,xn∥
≤ ∥T x−Ty,T x2 −Ty, ...,xn∥

...

≤ ∥T x−Ty,T x2 −Ty, ...,T xn −Ty∥
≤ k∥x− y,x2 − y, ...,xn − y∥
≤ k∥x− y,x2, ...,xn∥ .

Therefore, if T is n-contraction then T is contraction in
n-normed space.Thus, we can use this fact to show
uniqueness of fixed point of T .∥∥∥a−a

′
,x2, · · · ,xn

∥∥∥ =
∥∥∥Ta−Ta

′
,x2, · · · ,xn

∥∥∥ (15)

≤ k
∥∥∥a−a

′
,x2, · · · ,xn

∥∥∥ .
This is contradiction to k ∈ [0,1). Therefore, the fixed point
is unique for n-contraction mapping T .
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Now we extend the definition of n-contraction
mapping by using a comparison function φ : R+ → R+.

Definition 15.Let (E,∥·, · · · , ·∥) be a linear n-normed
space. A mapping T : E → E is said to be a
φ − n− contraction if there exists a comparison function
φ : R+ → R+ such that

∥T x1 −T x0,T x2 −T x0, · · · ,T xn −T x0∥ ≤ φ (∥x1 − x0,x2 − x0, · · · ,xn − x0∥) ,

for all x1,x0,x2, ...,xn ∈ E.

Remark.In Definition 15, if we take φ(t) = kt , k ∈ [0,1)
we obtain definition of n- contraction mappings to
n-normed spaces. It is clear that Definition 15 is an
extended of Definition 14.

Theorem 5.Let (E,∥., · · · , .∥) be a linear n-Banach space
and K be a nonempty closed and bounded subset of E. A
selfmap T : K → K be φ − n−contraction then the
sequences {an} generated from arbitrary b0 ∈ K by

an = T nbi, n = 0,1,2, ...

bi = a0 +
i
c
(a1 −a0), i = 0,1,2, ...,n; c ∈ N

converges to some fixed point of T.

Proof.For i = 0,1,2, ...,n, yi ∈ E, an ∈ E, for n = 0,1,2, ...∥∥T 2b1 −T 2b0, ...,T 2bn −T 2b0
∥∥

≤ φ (∥T b1 −T b0, ...,T bn −T b0∥)
≤ φ2 (∥b1 −b0, ...,bn −b0∥) ,

continuing this process, we easly arrive at

∥T nb1 −T nb0, ...,T nbn −T nb0∥ ≤ φn (∥b1 −b0, ...,bn −b0∥ .)
(16)

Now, we show {an}∞
n=0 is a Cauchy sequence in K. Let

m,n ∈ N , with m > n, take m = n+ p

∥an −am,x2, ...,xn∥
≤ ∥an −an+1,x2, ...,xn∥+∥an+1 −an+2,x2, ...,xn∥

...+
∥∥an+p−1 −an+p,x2, ...,xn

∥∥ . (17)

Also, for all x2, ...,xn ∈ K we have

∥an+1 −an,x2, ...,xn∥ =
∥∥T n+1bi −T nbi,x2, ...,xn

∥∥
≤ φn (∥T bi −bi,x2, ...,xn∥) , (18)

continuing this process, we arrive at

1) ∥an+1 −an,x2, ...,xn∥ ≤ φn (∥T bi −bi,x2, ...,xn∥) (19)

2) ∥an+2 −an+1,x2, ...,xn∥ ≤ φn (∥T bi −bi,x2, ...,xn∥)
3) ∥an+3 −an+2,x2, ...,xn∥ ≤ φn (∥T bi −bi,x2, ...,xn∥)

...

p)
∥∥an+p −an+p−1,x2, ...,xn

∥∥ ≤ φn (∥T bi −bi,x2, ...,xn∥) . (20)

Substituting (19)-(20) into (17) and simplifying, we have

∥an −am,x2, ...,xn∥ ≤ φn (∥T bi −bi,x2, ...,xn∥) p.

Note that K is bounded, there is a constant M > 0 such
that ∥T bi −bi,x2, ...,xn∥ ≤ M for all l x2, ...,xn ∈ K. Thus,
it leads to the following:

∥an −am,x2, ...,xn∥ ≤ φn (M) p. (21)

When we take n → ∞ in (21), we obtain that

lim
n→∞

∥an −am,x2, ...,xn∥ = lim
n→∞

∥∥an −an+p,x2, ...,xn
∥∥

≤ lim
n→∞

φn (M) p

= 0. (22)

Hence, {an}∞
n=0 is a Cauchy sequence in K. Obviously

that K is a closed and bounded subset of E. Therefore, we
consider that {an}∞

n=0 converges to “a” in K such that
a = bt , i < t < n. Additionally, from continuity of T , we
see that

Ta = T ( lim
n→∞

an) = lim
n→∞

Tan = lim
n→∞

an+1 = a.

This implies that bt is fixed point of T. Now, we prove that
the fixed point is unique. Let bt2 = a′ ∈ K and assume that
bt2 is an other fixed point of T . Then T bt2 = bt2 = a′, i <
t2 < n.

Note that when T φ−n-contraction, for x,y,x2, ...,xn ∈
K we have

∥T x−Ty,x2, ...,xn∥
≤ ∥T x−Ty,T x2 −Ty, ...,xn∥+∥T x−Ty,x2 +Ty−T x2, ...,xn∥
≤ ∥T x−Ty,T x2 −Ty, ...,xn∥

...

≤ ∥T x−Ty,T x2 −Ty, ...,T xn −Ty∥
≤ φ (∥x− y,x2 − y, ...,xn − y∥)
≤ ∥x− y,x2, ...,xn∥ . (23)

Therefore, if T is φ −n-contraction then T is contraction
in n-normed space.Thus, we can use this fact to show
uniqueness of fixed point of T .

∥∥∥a−a
′
,x2, · · · ,xn

∥∥∥ =
∥∥∥Ta−Ta

′
,x2, · · · ,xn

∥∥∥
≤ φ

(∥∥∥a−a
′
,x2, · · · ,xn

∥∥∥) . (24)

This is contradiction to property φ (t) ≤ t. Therefore, the
fixed point is unique. This completes the proof.
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