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1 Introduction

The investigation of exact solutions of nonlinear partial differential equations
(NLPDEs) plays an important role in the study of nonlinear physical phenomena, for ex-
ample, in fluid mechanics, plasma physics, atmospheric science, optical fiber communi-
cations, etc. In the past decades, there has been significant progress in the development
of methods such as the inverse scattering method [1, 2, 3], Hirota,s bilinear method [4],
Bäcklund transformations method [5, 6, 7], Darboux transformations method [8], similar-
ity transformation method [9, 10], homogeneous balance method [11,12], the sine-cosine
method [13,14], tanh function method [15, 16], Jacobi elliptic function method [17, 18,
19], Painlevé expansion method [20], and so on.

Bäcklund transformation is a useful tool for generating solutions to certain NLPDEs,
especially, soliton equations. Using Bäcklund transformations for NLPDEs, one obtains
a new solutions to the equation from a known one [21–24]. Up to now, much research
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has been devoted to the search for Bäcklund transformation, e.g., from the Painlevé Prop-
erty [20], from the Ablowitz-Kaup-Newell-Seger (AKNS) scheme [1], from nonclassical
symmetries [21-24], from the homogenous balance method [11, 12] and singular manifold
method [20], etc.

In this paper, using combinations of the Bäcklund transformation method and the gen-
eralized tanh function expansion method, new various sequences of exact solutions are
obtained for the system of (2+1)-dimensional Burgers equations [25].

In section 2, Bäcklund transformations and recurrence formula are introduced by sin-
gular manifold method. In section 3, we apply the generalized tanh function expansion
method to the system of (2+1)-dimensional Burgers equations. The new abundant exact
solutions for the system of (2+1)-dimensional Burgers equations are illustrated in section
4. The conclusion is then given in section 5.

2 Bäcklund Transformation

The integrable (2+1)-dimensional Burgers equation is given by [25]

ut = uxx + 2ux∂−1
y ux. (2.1)

Starting from the general solution formula, some interesting nonlinear phenomena for
Eq. (2.1) is reported. Under the transformations ux = vy, Eq. (2.1) is converted into a set
of couple NLPDEs

ut = uxx + 2v ux, ux = vy. (2.2)

According to the singular manifold method [20], Peng and Yomba [26] truncated the
Painlevé expansion of Eq. (2.2) at the constant level term

u =
u0

ϕ
+ u1, v =

v0

ϕ
+ v1, (2.3)

where ϕ is the singular manifold and {u1, v1} is an arbitrary seed solution of Eq. (2.2).
Substituting Eq. (2.3) into Eq. (2.2) and equating the coefficients of like powers of ϕ yields

u0 = ϕy, v0 = ϕx, (2.4)

where ϕ satisfies the equation

ϕt = ϕxx + 2v1 ϕx, (2.5)

which is called the singular manifold equation. Eqs. (2.3)-(2.5) constitute an auto-
Bäcklund transformation for Eq. (2.2). If we take u1 = ϕ, v1 = ∂−1

y ϕx, then

u =
ϕy

ϕ
+ ϕ, (2.6)
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where ϕ satisfies

ϕt = ϕxx + 2ϕx∂−1
y ϕx. (2.7)

Eqs. (2.6) and (2.7) are another auto-Bäcklund transformation for Eq. (2.1). If we take
u1 = 0, v1 = 0, the Cole-Hopf type transformation or hetro-Bäcklund transformation

u =
ϕx

ϕ
, (2.8)

where ϕ satisfies

ϕt = ϕxx, (2.9)

is obtained for the (2+1)-dimensional Burger equation (2.1). Therefore the Bäcklund trans-
formations for the system of Burgers Eq. (2.2) take the form

uN+1 =
uNy

uN
+ uN , vN+1 =

uNx

uN
+ vN + hN+1, (2.10)

where hN+1 is a constant that can be determined. We turn to the application of the
Bäcklund transformation for the integrable equations. Their power lies in that they may
be used to generate additional solutions of the integrable equation. Here uN+1 and vN+1

quantities refer to new solution and uN and vN quantities refer to old solution. This means
that, on the basis of a known solution to the system of Burgers equations, we are able to
find new solutions of the system.

3 Tanh Function Method

The tanh method is a powerful solution method for the computation of exact travelling
wave solution. Now we introduce the travelling wave transformations

u(x, y, t) = u(ξ), v(x, y, t) = v(ξ), ξ = k0(k1 x + k2 y + t), (3.1)

where k0, k1 and k2 are arbitrary constants that can be determined. Under the transfor-
mations (3.1), Eqs. (2.2) become ordinary differential equations (ODEs) with constant
coefficients

k0k
2
1u
′′(ξ) +

(
2k1v(ξ)− 1

)
u′(ξ) = 0, k1u

′(ξ)− k2v
′(ξ) = 0, ′ =

d

dξ
. (3.2)

We assume that the solutions of Eqs. (3.2) are in the form

u(ξ) =
r∑

i=0

aiF
i(ξ), v(ξ) =

s∑

i=0

biF
i(ξ), (3.3)
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where F (ξ) is the solution of the Riccati equation

F ′(ξ) = A + B F (ξ) + C F 2(ξ), (3.4)

where A, B and C are arbitrary constant. Balancing the highest derivative term with the
nonlinear term in ODE (3.2) we have r = s = 1. The solution (3.3) of the system (2.2)
becomes

u(ξ) = a0 + a1 F (ξ), v(ξ) = b0 + b1 F (ξ). (3.5)

Substituting (3.5) into (2.2) gives rise to

k0k
2
1F

′′ + 2b1k1F + 2b0k1 − 1 = 0, (a1k1 − b1k2)F ′ = 0. (3.6)

From the second equation of Eq. (3.6) we obtain

k2 =
a1k1

b1
. (3.7)

Integrating the first equation of Eq. (3.6) we obtain the following equation

F ′ = α +
1− 2b0k1

k0k2
1

F − b0

k0k1
F 2. (3.8)

The Eq. (3.8) is the same as Eq. (3.4) when

A = α, B =
1− 2b0k1

k0k2
1

, C = − b0

k0k1
. (3.9)

4 Exact Solutions for the System of Burgers Equations

We obtain the following cases of soliton like-solutions and triangular periodic solutions
of the system of Burgers equation (2.2):

Case 1. When A = C = 1 and B = 0, then (3.4) or (3.8) has the solution tan[ξ] where
ξ = k0 t + k0 x/(2b0)− a1 y. The solution of the system of Burgers equations (2.2) takes
the form

u1 = a0 + a1 tan[ξ], v1 = b0 − k0

2b0
tan[ξ]. (4.1)

Considering (4.1) the seed solution and substituting it in the Bäcklund transformation
(2.10), we find new solution as the following:

u2 =
a2
0 − a2

1 + 2a0a1 tan[ξ]
a0 + a1 tan[ξ]

, v2 = b0 +
k0

2b0

[a1 − a0 tan[ξ]
a0 + a1 tan[ξ]

]
. (4.2)
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Similarly, we can find new solution from (4.2) by substituting it in the Bäcklund transfor-
mation (2.10) as the following:

u3 =
a0(a2

0 − 3a2
1) + a1(3a2

0 − a2
1) tan[ξ]

a2
0 − a2

1 + 2a0a1 tan[ξ]
,

v3 = b0 +
k0

2b0

[2a0a
2
1 + (a2

1 − a2
0) tan[ξ]

a2
0 − a2

1 + 2a0a1 tan[ξ]

]
. (4.3)

and so on.

Case 2. When A = C = −1 and B = 0, then (3.4) or (3.8) has the solution cot[ξ] where
ξ = k0 t + k0 x/(2b0) + a1 y. The solutions of the system of Burgers equations (2.2) are
in the forms

u1 = a0 + a1 cot[ξ], v1 = b0 +
k0

2b0
cot[ξ], (4.4)

u2 =
a2
0 − a2

1 + 2a0a1 cot[ξ]
a0 + a1 cot[ξ]

, v2 = b0 − k0

2b0

[a1 − a0 cot[ξ]
a0 + a1 cot[ξ]

]
, (4.5)

u3 =
a0(a2

0 − 3a2
1) + a1(3a2

0 − a2
1) cot[ξ]

a2
0 − a2

1 + 2a0a1 cot[ξ]
,

v3 = b0 +
k0

2b0a1

[
a0 +

(a2
0 + a2

1)(a0 + a1 cot[ξ])
a2
1 − a2

0 − 2a0a1 cot[ξ]

]
, (4.6)

and so on.

Case 3. When A = 1, C = −1 and B = 0, then (3.4) or (3.8) has the solutions tanh[ξ]
or coth[ξ] where ξ = k0 t + k0 x/(2b0) + a1 y. The solutions of the system of Burgers
equations (2.2) take the forms

u1 = a0 + a1 tanh[ξ], v1 = b0 +
k0

2b0
tanh[ξ], (4.7)

u2 =
a2
0 + a2

1 + 2a0a1 tanh[ξ]
a0 + a1 tanh[ξ]

, v2 = b0 +
k0

2b0

[a1 + a0 tanh[ξ]
a0 + a1 tanh[ξ]

]
, (4.8)

u3 =
a0(a2

0 + 3a2
1) + a1(3a2

0 + a2
1) tanh[ξ]

a2
0 + a2

1 + 2a0a1 tanh[ξ]
,

v3 = b0 +
k0

2b0a1

[
a1 +

(a2
0 − a2

1)(a1 + a0 tanh[ξ])
a2
0 + a2

1 + 2a0a1 tanh[ξ]

]
, (4.9)

and so on.
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Case 4. When A = 1/2, C = −1/2 and B = 0, then (3.4) or (3.8) has the solutions
tanh[ξ] ± ı sec h[ξ], coth[ξ] ± csc h[ξ], tanh[ξ]/(1± sec h[ξ]), coth[ξ]/(1± ı csc h[ξ]),
tanh[ξ/2] or coth[ξ/2] where ξ = k0 t + k0 x/(2b0) + 2a1 y and ı =

√−1. The solutions
of the system of Burgers equations (2.2) take the forms

u1 = a0 + a1

(
tanh[ξ]± ı sec h[ξ]

)
, v1 = b0 +

k0

4b0

(
tanh[ξ]± ı sec h[ξ]

)
, (4.10)

u2 =
a2
0 + a2

1 + 2a0a1(tanh[ξ]± ı sec h[ξ])
a0 + a1(tanh[ξ]± ı sec h[ξ])

,

v2 = b0 +
1

2b0

[ ı k0

2
− a1 + ı a0 tanh[ξ/2]

a1 − a0 ı + (a0 − a1 ı) tanh[ξ/2]

]
, (4.11)

u3 =
(a4

1 − a4
0)ı + (a4

0 + 6a2
0a

2
1 + a2

1) sinh[ξ] + 4a0a1(a2
0 + a2

1) cosh[ξ]
a0(a2

1 − a2
0)ı + a0(a2

0 + 3a2
1) sinh[ξ] + a1(3a2

0 + a2
1) cosh[ξ]

,

v3 = h3 +
[k0(ı + 1)(a2

0 − a2
1)

4b0(a0 + a1 ı)

][ a0 − a1 − (a0 + a1) exp [ξ]
(a0 − a1)2 + (a0 + a1)2 ı exp [ξ]

]
, (4.12)

where h3 = a0(4b2
0 + k0 ı) + a1(k0 + 4b2

0 ı)/
[
4b0(a0 + a1 ı)

]
and so on.

Case 5. When A = C = 1/2 and B = 0, then (3.4) or (3.8) has the solutions
tan[ξ] ± sec[ξ], ± cot[ξ] − csc[ξ], tan[ξ]/(1± sec[ξ]), − cot[ξ]/(1± csc[ξ]), tan[ξ/2]
or− cot[ξ/2] where ξ = k0 t+k0 x/(2b0)−2a1 y. The solutions of the system of Burgers
equations (2.2) take the forms

u1 = a0 + a1(tan[ξ] + sec[ξ]), v1 = b0 − k0

4b0
(tan[ξ]− sec[ξ]), (4.13)

u2 =
a2
0 − a2

1 + 2a0a1(tan[ξ] + sec[ξ])
a0 + a1(tan[ξ] + sec[ξ])

,

v2 = b0 − k0

4b0

[
1 +

2(a1 − a0 tan[ξ/2])
a0 + a1 + (a1 − a0) tan[ξ/2]

]
, (4.14)

u3 =
a4
0 − a4

1 − (a4
0 − 6a2

0a
2
1 − a2

1) sin[ξ] + 4a0a1(a2
0 − a2

1) cos[ξ]
a0(a2

0 + a2
1) + a0(3a2

1 − a2
0) sin[ξ] + a1(3a2

0 − a2
1) cos[ξ]

,

v3 = h3 +
k0(a2

0 + a2
1)

2b0(a0 + a1)

[ a1 − a0 tan[ξ/2]
a2
0+ 2a0a1− a2

1 + (a2
1 + 2a0a1 − a2

0) tan[ξ/2]

]
, (4.15)

where h3 = a0(4b2
0 + k0) + a1(k0 + 4b2

0)/
[
4b0(a0 + a1)

]
and so on.

Case 6. When A = C = −1/2 and B = 0, then (3.4) or (3.8) has the solutions
cot[ξ]/(1± csc[ξ]), − tan[ξ]/(1± sec[ξ]), ± sec[ξ]− tan[ξ], cot[ξ]± csc[ξ], − tan[ξ/2]
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or cot[ξ/2] where ξ = k0 t + k0 x/(2b0) + 2a1 y. The solutions of the system of Burgers
equations (2.2) are

u1 = a0 +
a1 cot[ξ]
1 + csc[ξ]

, v1 = b0 +
k0

4b0

cot[ξ]
1 + csc[ξ]

, (4.16)

u2 = a0 + a1

[ cot[ξ]
1 + csc[ξ]

+
2a1 csc[ξ]

a0(csc[ξ])− 1) + a1 cot[ξ]

]
,

v2 = b0 +
k0

4b0

[
1− 2(a0 + a1 cot[ξ/2])

a0 − a1 + (a0 + a1) cot[ξ/2]

]
. (4.17)

Case 7. When A = 1, C = −4 and B = 0, then (3.4) or (3.8) has the solutions
coth[ξ]/(1 + coth2[ξ]), tanh[ξ]/(1 + tanh2[ξ]), (1/2) tanh[2ξ] or (1/2) coth[2ξ] where
ξ = k0 t + k0 x/(2b0) + (a1/4) y. The solutions of the system of Burgers equations (2.2)
take the forms

u1 = a0 +
a1 coth[ξ]

1 + coth2[ξ]
, v1 = b0 +

2k0

b0

[ coth[ξ]
1 + coth2[ξ]

]
, (4.18)

u2 =
4a0a1 + (4a2

0 + a2
1) coth[2ξ]

2a1 + 4a0 coth[2ξ]
, v2 = b0 +

k0

b0

[2a0 + a1 coth[2ξ]
a1 + 2a0 coth[ξ]

]
, (4.19)

and so on.

Case 8. When A = 1, C = 4 and B = 0, then (3.4) or (3.8) has the solu-
tions tan[ξ]/(1− tan2[ξ]), cot[ξ]/(cot2[ξ]− 1), (1/2) tan[2ξ] or −(1/2) cot[2ξ] where
ξ = k0 t + k0 x/(2b0) − (a1/4) y. The solutions of the system of Burgers equations (2.2)
take the forms

u1 = a0 +
a1 tan[ξ]

1− tan2[ξ]
, v1 = b0 − 2k0

b0

[ tan[ξ]
1− tan2[ξ]

]
, (4.20)

u2 =
a2
1 − 4a2

0 − 4a0a1 tan[2ξ]
4a1 + 2a0 tan[2ξ]

, v2 = b0 +
k0

b0

[a1 − 2a0 tan[2ξ]
2a0 + a1 tan[2ξ]

]
, (4.21)

and so on.

Case 9. When A = −1, C = −4 and B = 0, then (3.4) or (3.8) has the solutions
cot[ξ]/(1− cot2[ξ]), tan[ξ]/(tan2[ξ]− 1), −(1/2) tan[2ξ] or (1/2) cot[2ξ] where ξ =
k0 t + k0 x/(2b0) + (a1/4) y. The solutions of the system of Burgers equations (2.2) are

u1 = a0 +
a1

2
cot[2ξ], v1 = b0 − k0

b0
cot[2ξ], (4.22)

u2 =
4a2

0 − a2
1 + 4a0a1 cot[2ξ]

4a0 + 2a1 cot[2ξ]
, v2 = b0 +

k0

b0

[2a0 cot[2ξ]− a1

2a0 + a1 cot[2ξ]

]
, (4.23)
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and so on.

Case 10. When A = 1, C = 2 and B = −2, then (3.4) or (3.8) has the solutions
tan[ξ]/(1 + tan[ξ]), cot[ξ]/(cot[ξ]− 1), (1/2)(1 + tan[ξ]) or 1/2)(1 − cot[ξ]) where
ξ = (2b0k1 − 1)/(2k2

1)(t + k1 x) − (a1/2) y. The solutions of the system of Burgers
equations (2.2) take the form

u1 = a0 +
a1 tan[ξ]
1 + tan[ξ]

, v1 = b0 − 1
k0

[b0k1 + (1− b0k1) tan[ξ]
1 + tan[ξ]

]
, (4.24)

u2 =
2a0(1 + tan[ξ])

[
a0 + (a0 + 2a1) tan[ξ]

]
− a2

1

2(1 + tan[ξ])
[
a0 + (a0 − a1) tan[ξ]

] ,

v2 = b0 +
2b0k0 − 1

2k1

[a1 − (2a0 + a1) tan[ξ]
a0 + (a0 + a1) tan[ξ]

]
, (4.25)

and so on.

Case 11. When A = 1, C = 2 and B = 2, then (3.4) or (3.8) has the solutions
tan[ξ]/(1− tan[ξ]), − cot[ξ]/(cot[ξ] + 1), (tan[ξ] − 1)/2 or −(1 + cot[ξ])/2 where
ξ = (1− 2b0k1)/(2k2

1)
[
t + k1 x

] − (a1/2) y. The solutions of the system of Burgers
equations (2.2) take the forms

u1 = a0 − a1

2
(1 + cot[ξ]), v1 =

1 + (1− 2b0k1) cot[ξ]
2k1

, (4.26)

u2 = a0 + a1

[a0 + (a0 + a1) cot[ξ]
2a0 − a1(1 + cot[ξ])

]
,

v2 =
1

2k1

[
1 + (1− 2b0k1)

(
cot[ξ] +

a1 csc2[ξ]
2a0 + a1(1 + cot[ξ])

)]
, (4.27)

and so on.

Case 12. When A = −1, C = −2 and B = 2, then (3.4) or (3.8) has the solu-
tions tan[ξ]/(tan[ξ]− 1), cot[ξ]/(cot[ξ] + 1), (1 − tan[ξ])/2 or (1 + cot[ξ])/2 where
ξ = (1− 2b0k1)/(2k2

1)(t + k1 x) + (a1/2) y. The solutions of the system of Burgers
equations (2.2) take the forms

u1 = a0 +
a1

2
(1− tan[ξ]), v1 =

1 + (2b0k1 − 1) tan[ξ]
2k1

, (4.28)

u2 = a0 + a1

[+a0 − (a0 − a1) tan[ξ]
a1 + 2a0 − a1 tan[ξ]

]
,

v2 =
1

2k1

[
1 + (2b0k1 − 1)

(
tan[ξ] +

a1 sec2[ξ]
2a0 + a1(1 + tan[ξ])

)]
, (4.29)
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and so on.

Case 13. When A = −1, C = −2 and B = −2, then (3.4) or (3.8) has the solutions
−tan[ξ]/(tan[ξ] + 1), cot[ξ]/(1− cot[ξ]), −(1 + tan[ξ])/2 or (cot[ξ] − 1)/2 where ξ =
(2b0k1 − 1)/(2k2

1)(t+ k1 x)+ (a1/2) y. The solutions of the system of Burgers equations
(2.2) are

u1 = a0 +
a1 cot[ξ]
1− cot[ξ]

, v1 =
1 + (2b0k1 − 1) cot[ξ]

k1(1− cot[ξ])
, (4.30)

u2 =
[2a2

0 + 2a0a1 − a2
1 + 2a0(a0 + a1) sin[ξ] + a1(2a0 − a1) cos[ξ]

2(1 + cot[ξ])
(
a0 + (a0 − a1) cot[ξ]

)
]
csc2[ξ],

v2 =
1− b0k1

k1
+

2b0k1 − 1
2k1

[2a0 + 2(a0 − a1) cot[ξ]− a1 csc2[ξ]

(1 + cot[ξ])
(
a0 + (a0 − a1) cot[ξ]

)
]
, (4.31)

and so on.

Case 14. When A = 0 and B = 0, then (3.4) or (3.8) has the solution k0k1/(b0ξ − k0k1β)
where ξ = k0(t + k1 x + (a1k1/b1) y) and β is an arbitrary constant. The solutions of the
system of Burgers equations (2.2) take the forms

u1 = a0 +
a1k0k1

k0k1β + b1 ξ
, v1 =

1
2k1

+
k0k1b1

k0k1β + b1ξ
, (4.32)

u2 = a0

[2a1k0k1 + a0(k0k1β + b1ξ)
a1k0k1 + a0(k0k1β + b1ξ)

]
,

v2 =
a1k0k1 + a0

(
k0k1β + b1(ξ + 2k0k

2
1)

)

2k1

(
a1k0k1 + a0(k0k1β + b1ξ)

) , (4.33)

and so on.

5 Conclusion

We have obtained some traveling wave solutions expressed in terms of hyperbolic and
trigonometric functions for the system of (2+1)-dimensional Burgers equations by using
the generalized tanh function expansion method. The main advantage of this study is to
obtain various sequences of exact solutions of the system of (2+1)-dimensional Burgers
equations using Bäcklund transformations. Moreover, this method can be applied to obtain
new solutions for other nonlinear evolution equations.
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