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Abstract: In this paper, some schemes are developed to study numsoiction of the Heston partial differential equation with a
initial and boundary conditions, by the variational itewatmethod (VIM). The numerical solutions obtained by theatéonal iteration
method are compared with those of Adomian decompositiomagetADM) and Homotopy perturbation method (HPM). The resul
show that the variational iteration method is much easierengonvenient, and more stable and efficient than Adomiaardposition
method.
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1 Introduction The paper is organized as follows: Section 2 describes
Heston stochastic volatility model. Section 3 discusses th
main point of VIM, ADM, and HPM methods. Sections
. i . 4-6 explain how to apply these methods for European
Generally, real-world physical problems and financial i, bricing under Heston model. Section 7 summarizes

problems are modeled as partial, integral and integrgyq 1y qqtimportant results and concludes the paper
differential equations. Since finding the solution of these P paper

equations is too complicated, in recent years a lot of

attention has been devoted by researchers to find the

analytical and numerical solution of these equations. The2 Heston stochastic volatility model

Adomian decomposition method (ADM) is introduced by

the American engineer, G. Adomian (1923-1996). It is g ppose that under a risk-neutral measure a stock price is
based on the canonical form of the equations, Cons'de””%overned by [10-12]

the solution as a power series, and nonlinear operator of a

series of Adomian polynomials [1-3]. The Homotopy

perturbation method (HPM), He (1999), is an alternative dsit) _ AT AR
useful non-perturbative method which has been used to RN rdt+ vV ML) -
tackle nonlinear problems successfully, by many % = (a—bV(1))dt + o/V(t)dWx(t)

scientists and researchers and the variational iteration

method (VIM) plays an important role in recent wherer is the interest rate, the parametard, andoare
researches in this field. This method is proposed by thepositive constant, and\y(t)and Ws(t) are correlated
Chinese mathematician He [4-7] as a modification of aBrownian motions under the risk-neutral measure with
general Lagrange multiplier method [8-9]. It has beenthe correlation coefficien € (—1,1), i.e.

shown that this procedure is a powerful tool for solving dW (t)dVik(t) = pdit.

various kinds of problems. In this paper we discuss the

applicability of these numerical schemes for EuropeanThe risk-neutral price of a call expiring at time< Tin the
option valuation of Heston stochastic volatility model. Heston stochastic volatility model is as follows
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~

5/l\-l/U\n =0, and its stationary conditions can be obtained
ot S,V () = E [e"TU(ST) - K], 0<t<T.  as
(1) 1+ A, =0,
The Heston partial differential equation (PDE) for the fair A'=0.
values of European style options forms a time-depende
convection-diffusion-reaction equation with mixed sphti
derivative terms as,

n‘1’he Lagrange multiplier, therefore, can be identified as
A = —1, and the following variational iteration formula
can be obtained as

@+rs@+(a—bv)@+}szva—2c+ '
at "5 o250 Unsx =Un— [ {L(Un)+RWU)+N(Un ) dT, (6)
d’c 1 , d%c °
PoSay 29 Vo =0 @ The second term on the right is called the correction term.

. . , . Eq. (6) can be solved iteratively usindp(x) as the initial
On the unbounded two- dimensional spatial doma‘“approximation with possible unknowns.

s>0,v>0with0<t <T.c(s,v,t) denotes the fair value

of a European- style option if at the tinre= T —t,the

asset price and its variance be equalstarespectively.

The equation Z) usually appears with initial and 3.2 Adomian Decomposition method
boundary value conditions which are determined by the

specific option under consideration. Initial and boundarythe adomian decomposition method is a technique for
conditions in European call options equation is denotedsg)ying functional equation in the following canonical

by, form [21-22]:
c(s,v,t) = max0,s— K), '
cEO,v,t)) =0 . ) ®) u=f-+N(u). (7)
With a given strike pric& > 0. The solutionu is considered as the summation of a series,
say:
3 The methods U i}uﬂ'
n=

In what follows we will illustrate briefly the main point of ) ) )
each the methods, where details can be found in [13-17]. And N(u) as the summation of the following series,

N = IEEP R IV 8
3.1 Variational iteration method (W n;An(UO Un) (8)

To show the basic concepts of VIM, consider the following Where A, is called Adomian polynomials, has been
general non-linear partial differential equation [18-20]  introduced by Adomian, as the following:

Lu(x,t) + Ru(x,t) + Nu(x,t) = 0, n n )
O @) Anwo,..,uro=n—1!%m<_;um hoo- ()

Wherel. = %,R is a linear operator antllu(x,t) is the
nonlinear term.Ru(x,t) and Nu(x,t)don’t have partial
derivatives with respect tio

According to the variational iteration method [27, 28], an
iteration formulation can be constructed in the following

Where A jis an auxiliary parameter and for functional
equations, with several variables, the following extensio
of (9) can be used.

An(Uloa -+, U1p, U20, .., U2n, .., Umo, --aUrm) =

way
1 dn 00 00
t n! dAn = =
Unpa(xt) = Un(x,t) + / A LUy + ROy N0 ar,
Jo
where N(us,..,un) is a functional depending on n

. . ) () variables, each of them is an unknown function which are
WhereA is a general Lagrange multiplier, which can be .nsidered as the summation of series say

A~ A~
identified optimally via variational theorfgU, andNU,

A UJ - Z)ujn)\n, J = O, 1,...,n. (11)
are considered as restricted variations,dijJ, = 0, n=
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3.3 Homotopy perturbation method Thus, we have

In this method the solution is considered as the

summation of an infinite series, which usually converges OChr1(S,vit) = dcn(S,Vit) + SACa(S,Vit) | —
rapidly to the exact solution. To illustrate the basic t

concepts of this method, consider the following nonlinear / dA'cn(s,v,t)dT = 0. (18)
differential equations. 0

Hence we have the following stationary conditions:
Alu)—f(r)=0, re Q. (12) we hav wing stationary conditi

!/
With boundary conditions /1\ j(LT)\) (?) 0:|T6t| ’ (19)
B(u,g8) =0, rerB(ug) =0, rer. =t

Where A'is a general differential operatBris a boundary ~ which yields to

operator,f(r)is a known analytic operator, arfd is the At = -1 (20)
boundary of the domaif.

Generally speaking the operator A can be divided into two
parts L, and N, where L is linear, and N is a nonlinear

Therefore, we obtain the following iteration formula:

- t dc ac
operator Eq12), therefore, can be rewritten as follow Cni1(S Vi) = Ca(s,Vit) —/ (E - rsd_s
L(u)+N(u)— f(r)=0. () N d%c d%c , 0%
, (a—bv)—° 32 S~ PONH -~ 5 s ¢ roydr.
Lets construct the Homotopy (r,p) : Q x [0,1] — O, (21)

which satisfies:

H (v, p) = (1—p)[L(V) —L(Uo)] + p[A(v) — f(r)] =O,r (6122).
whereup is an initial approximation of the solution of Eq. 4.2 ADM for solve Heston PDE

(12) satisfies boundary condition. ) )
To solve equation (1a), by ADM, well addressed in

[21-22], let's take the following canonical form of the

; equation, Lets the Eq2) have applied and if we used
4 Methodsfor Solving Heston PDE c(s,v,0) = max0,s— K)as the initial condition by using
4.1 VIM to solve Heston PDE ADM structure explained we construct:
t 7} 0
In this part, extends variational iteration method isusedt  ¢(s,v,t) = up(s,v,0) —/ —(rsa—C +(a— bv)a—C
find approximate solution Eq2), according to the VIM, 5 0 S 5 v
we can write the iteration formula as follows: Lz 32 4 C+p55v d9%c Lz 52 4 C “rodt. (22)
0<? dsov
vt Vi) AT 00 o dc Let's take the solution as a series, say
Cn+1(S, 1) = Cn(s, +/ Va7 Sd_s_ C=cy+ciA + A2+ ... and following an alternate
92c 92c algorithm for Adomian polynomials [13] we get
(a— bv)— _leoC POV —— — —52 9% 1 vy dr,
ov 2 0s? Jsov ov2 (15) 000 132 0200
Ao_rsa—+(a b)d + ¥l +p55\/—asav
Imposing the stationary condition leads to i %52\,3;\/020 —rep,
00 2 2
5Cni1(S,V,t) = 8cn(S,Vit) +6/)\ _da o a9a 1, 0% 0°¢y
ot M=rss @b Go+ 55V g HP0,
dc d°c d°c 1. 9%
- _ I 2 1
"S55~ (@ )3 av 252 o8 POieey + 50V —rey,
1.5 0% i i 92 02
6 v—+rc)] dr. (16) %2 o g 92 C2 G
EV Ag=rs—=+(a—bv) ==+ 3 1oy Vg PO =
1 2 02(:2
or + 505 —1Cy, (23)

3Cni1(S,V,t) = 8Cn(S, Vi) + 5/;)\ (1) (%)dr. 17)
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and For some constant < 1.thenA has a unique fixed point.
ci(s.vit) = — [ Ao(Co) dit, Furthermore, the sequence
CZ(Sa Vvt) == f Al(COa Cl) dta
= _fo Al(%aclacz) dta (24) un+1 = A(Un)a

c3(s,vit)
with an arbitrary choice ofig € X, converges to the fixed
All of ¢ are calculable, an@ = 3o cn. point of A and

4.3 HPM for solve Heston PDE =l < flua =toll 3 V-

According to Theorem 2, for the nonlinear mapping
In this section, homotopy perturbation method is used to

find a;pproExmate the rg'odetl clth?_'ssr\cA)n parglal differential Al = u(x t)+/t)\F @ @ 5_2u 5_2u d2u o
equation Eq.Z), according to the , we have, = u(x, 5 3T I 2 T2’ IxoT on
dc  dc a sufficient condition for convergence of the variational
H(svt) 1= (1-p)(L(c) — L(vo)) + p(— - rsd_s_ iteration method is strictly contraction 8 Furthermore,
o 1. 92 22 the sequence2@) converges to the fixed point éf which
(a—bv) 2 - _52\,_2 — posv 2 _52 _2 +ru) = 0. also is the solution of the partial differential.
ov 2 0s dsov ov (25) Consider the sequencg§] in the following form:
ConsideNy(s,v,0) = 2s’t?as an initial approximation that Un+1068) = Un(,t) =
satisfies in initial condition. Substituting solution s : du du d2u 92u 92
- - ith identi /)\F s - LA 1)
|0nfthJ) E%dQSSt)Ognd equating the terms with identical powers 9T Ox 0@ T2 IXIT
poi=2%0 _db_q Itis clear that the optimal value df must be chosen such
pli— %4 rs"—‘:@—(a bv)—CO—lsz ey that extremities the residual functional
T ot ds av 22 Vo
POV — §6PGE + e+ G2 =0, /t/\ du ou 0% o°u o*u
P = 2 s — (a— b) % — v vy o (@0 Y91 9% 92 312 axat
955\/%——5%0@\?} +rc1 =0, which is equivalent to the extermination @t But in
Theorem 1, the necessary condition for minimization is
given.

The HPM uses the homotopy paramgiers an expansion
parameter to obtain

. 5 Numerical results
C= Zop”cn, (27)
= In this section we will discuss numerical example. We
tested the performance of ADM, HPM, and VIM on

Whenp ? 1 Eq. 7) corresponds to the original one and Heston stochastic volatility model.

will gained the approximate solution of EQ)(
Theoreml. If a functionalv(u(x)) which has a variation
achieves a maximum or a minimumuat up(x), where
u(x) is an interior point of the domain of definition of the 5.1 Example
functional, then ati = up(x),0v = 0.

Theorem 2. (Banach'’s fixed point theorem). Assume that

X be a Banach space and

dc _dc z?c d°c
A-X - X 3¢ 155 T (0.16— 0055\/)0 2szvasﬁ
d°c d’c
00.45)sv——— 0.81)v =0 30
Is a nonlinear mapping, and suppose that (- )Svdsd *2 ( WV o2 - (30)

) T =15 K = 100, a_o.16, b=0.055 6 =09, p=—0.5

HA[u]—A[a]H < yHu_a . uuex,
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Table 1: numerical result of ADM,HPM,VIM

Cl(t,s,v) Capm CHpm Cvim
C(1,10,0.1) 413.2583333 413.2583333 209.5038332

1108

LT T
/]

T, L]
fi fmﬁ%""”“"

C(250,0.2)  81406.34666  81406.34666  82474.33729 i ity
] T
C(4,70,0.3)  1.734519680E6 1.734519680E6 1.147814970E "™ h lﬁﬁa}a{f‘
115 uF
C(6,90,0.4)  1.335877440E7 1.335877440E7 1.950175983F . T

C(8,120,.05)  7.485848701E7 7.485848702E7 7.796505675E oni-

C(10,150,06) 2.937374855E8 2.937374856E8 2.317375113F ” _
(I

C(14,200,08) 2.198733198E9 2.198733197E9 2.576414314F s et S

Fig. 2: Solution of European option pricing, EQ)( using HPM
iterative method
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Fig. 1. Solution of European option pricing, E®)(using VIM
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Fig. 3: Solution of European option pricing, E®)(using HPM
6 Conclusion iterative method
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