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Abstract: In this paper, some schemes are developed to study numericalsolution of the Heston partial differential equation with an
initial and boundary conditions, by the variational iteration method (VIM). The numerical solutions obtained by the variational iteration
method are compared with those of Adomian decomposition method (ADM) and Homotopy perturbation method (HPM). The results
show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian decomposition
method.
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1 Introduction

Generally, real-world physical problems and financial
problems are modeled as partial, integral and integro
differential equations. Since finding the solution of these
equations is too complicated, in recent years a lot of
attention has been devoted by researchers to find the
analytical and numerical solution of these equations. The
Adomian decomposition method (ADM) is introduced by
the American engineer, G. Adomian (1923–1996). It is
based on the canonical form of the equations, considering
the solution as a power series, and nonlinear operator of a
series of Adomian polynomials [1-3]. The Homotopy
perturbation method (HPM), He (1999), is an alternative
useful non-perturbative method which has been used to
tackle nonlinear problems successfully, by many
scientists and researchers and the variational iteration
method (VIM) plays an important role in recent
researches in this field. This method is proposed by the
Chinese mathematician He [4-7] as a modification of a
general Lagrange multiplier method [8-9]. It has been
shown that this procedure is a powerful tool for solving
various kinds of problems. In this paper we discuss the
applicability of these numerical schemes for European
option valuation of Heston stochastic volatility model.

The paper is organized as follows: Section 2 describes
Heston stochastic volatility model. Section 3 discusses the
main point of VIM, ADM, and HPM methods. Sections
4-6 explain how to apply these methods for European
option pricing under Heston model. Section 7 summarizes
the most important results and concludes the paper.

2 Heston stochastic volatility model

Suppose that under a risk-neutral measure a stock price is
governed by [10-12]

dS(t)
S(t) = rdt +

√

V (t)dW̃1(t)
dV (t)

dt = (a− bV(t))dt +σ
√

V (t)dW̃2(t)

wherer is the interest rate, the parametersa, b, andσare
positive constant, andW̃1(t)and W̃2(t) are correlated
Brownian motions under the risk-neutral measure with
the correlation coefficientρ ∈ (−1,1), i.e.

dW̃1(t)dW̃2(t) = ρdt.

The risk-neutral price of a call expiring at timet ≤ T in the
Heston stochastic volatility model is as follows
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c(t,S(t),V(t)) = Ẽ
[

e−r(T−t)(S(T )− k)+
]

, 0≤ t ≤ T.

(1)
The Heston partial differential equation (PDE) for the fair
values of European style options forms a time-dependent
convection-diffusion-reaction equation with mixed spatial
derivative terms as,

∂c
∂ t

+ rs
∂c
∂ s

+(a− bv)
∂c
∂v

+
1
2

s2v
∂ 2c
∂ s2+

ρσsv
∂ 2c

∂ s∂v
+

1
2

σ2v
∂ 2c
∂v2 − rc = 0 (2)

On the unbounded two- dimensional spatial domain
s > 0,v > 0 with 0< t ≤ T. c(s,v, t) denotes the fair value
of a European- style option if at the timeτ = T − t,the
asset price and its variance be equal tos,vrespectively.
The equation (2) usually appears with initial and
boundary value conditions which are determined by the
specific option under consideration. Initial and boundary
conditions in European call options equation is denoted
by,

c(s,v, t) = max(0,s−K),
c(0,v, t) = 0 (3)

With a given strike price,K > 0.

3 The methods

In what follows we will illustrate briefly the main point of
each the methods, where details can be found in [13-17].

3.1 Variational iteration method

To show the basic concepts of VIM, consider the following
general non-linear partial differential equation [18-20],

.
Lu(x, t)+Ru(x, t)+Nu(x, t) = 0,
u(x,0) = f (x), (4)

Where,L = ∂
∂ t ,R is a linear operator andNu(x, t) is the

nonlinear term.Ru(x, t) and Nu(x, t)don’t have partial
derivatives with respect tot.
According to the variational iteration method [27, 28], an
iteration formulation can be constructed in the following
way

.Un+1(x, t) =Un(x, t)+
∫ t

0
λ






LUn +

∼
︷︸︸︷

RUn +

∼
︷︸︸︷

NUn






dτ,

(5)
Whereλ is a general Lagrange multiplier, which can be

identified optimally via variational theory,

∼
︷︸︸︷

RUn and

∼
︷︸︸︷

NUn

are considered as restricted variations, i.e.δ
∼

︷︸︸︷

RUn = 0,

δ
∼

︷︸︸︷

NUn = 0, and its stationary conditions can be obtained
as:

1+ λ |τ=t = 0,
λ ′ = 0.

The Lagrange multiplier, therefore, can be identified as
λ = −1, and the following variational iteration formula
can be obtained as

Un+1 =Un −

∫ t

0
{ L(Un)+R(Un)+N(Un )) dτ, (6)

The second term on the right is called the correction term.
Eq. (6) can be solved iteratively usingU0(x) as the initial
approximation, with possible unknowns.

3.2 Adomian Decomposition method

The Adomian decomposition method is a technique for
solving functional equation in the following canonical
form [21-22]:

u = f +N(u). (7)

The solutionu is considered as the summation of a series,
say:

u =
∞

∑
n=0

un.

And N(u) as the summation of the following series,

N(u) =
∞

∑
n=0

An(u0, ..,un). (8)

Where An is called Adomian polynomials, has been
introduced by Adomian, as the following:

An(u0, ..,un) =
1
n!

dn

dλ n [N(
n

∑
i=0

uiλ i)] |λ=0 . (9)

Where λ ,is an auxiliary parameter and for functional
equations, with several variables, the following extension
of (9) can be used.

An(u10, ..,u1n,u20, ..,u2n, ..,um0, ..,umn) =

1
n!

dn

dλ n [N(
∞

∑
n=0

u1nλn, ..,

∞

∑
n=0

umnλn)] |λ=0. (10)

where N(u1, ..,un) is a functional depending on n
variables, each of them is an unknown function which are
considered as the summation of series say,

u j =
∞

∑
n=0

u jnλn, j = 0,1, ...,n. (11)
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3.3 Homotopy perturbation method

In this method the solution is considered as the
summation of an infinite series, which usually converges
rapidly to the exact solution. To illustrate the basic
concepts of this method, consider the following nonlinear
differential equations.

A(u)− f (r) = 0, r ∈ Ω . (12)

With boundary conditions
B(u, ∂u

∂n ) = 0, r ∈ Γ .B(u, ∂u
∂n ) = 0, r ∈ Γ .

Where A is a general differential operator,B is a boundary
operator,f (r)is a known analytic operator, andΓ is the
boundary of the domainΩ .

Generally speaking the operator A can be divided into two
parts L, and N, where L is linear, and N is a nonlinear
operator Eq.(12), therefore, can be rewritten as follow

L(u)+N(u)− f (r) = 0. (13)

Let
′
s construct the HomotopyV (r, p) : Ω × [0,1] → ℜ,

which satisfies:

H(v, p)= (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)] = 0,r∈Ω .

(14)
whereu0 is an initial approximation of the solution of Eq.
(12) satisfies boundary condition.

4 Methods for Solving Heston PDE

4.1 VIM to solve Heston PDE

In this part, extends variational iteration method is used to
find approximate solution Eq. (2), according to the VIM,
we can write the iteration formula as follows:

cn+1(s,v, t) = cn(s,v, t)+
∫ t

0
λ (τ) [

∂c
∂τ

− rs
∂c
∂ s

−

(a− bv)
∂c
∂v

−
1
2

s2v
∂ 2c
∂ s2 − ρδ sv

∂ 2c
∂ s∂v

−
1
2

δ 2v
∂ 2c
∂v2 + rc)] dτ,

(15)

Imposing the stationary condition leads to

δcn+1(s,v, t) = δcn(s,v, t)+ δ
∫ t

0
λ (τ) [

∂c
∂τ

−

rs
∂c
∂ s

− (a− bv)
∂c
∂v

−
1
2

s2v
∂ 2c
∂ s2 −ρδ sv

∂ 2c
∂ s∂v

−

1
2

δ 2v
∂ 2c
∂v2 + rc)] dτ. (16)

Or

δcn+1(s,v, t) = δcn(s,v, t)+ δ
∫ t

0
λ (τ)(

∂c
∂τ

)dτ. (17)

Thus, we have

δcn+1(s,v, t) = δcn(s,v, t)+ δλ cn(s,v, t) |τ=t−
∫ t

0
δλ ′cn(s,v, t)dτ = 0. (18)

Hence we have the following stationary conditions:

λ ′(τ) = 0 |τ=t ,

1+λ (τ) = 0 |τ=t ,
(19)

which yields to
λ (t) = −1. (20)

Therefore, we obtain the following iteration formula:

cn+1(s,v, t) = cn(s,v, t)−
∫ t

0
(

∂c
∂τ

− rs
∂c
∂ s

− (a− bv)
∂c
∂v

−
1
2

s2v
∂ 2c
∂ s2 −ρδ sv

∂ 2c
∂ s∂v

−
1
2

δ 2v
∂ 2c
∂v2 + rc)dτ.

(21)

4.2 ADM for solve Heston PDE

To solve equation (1a), by ADM, well addressed in
[21-22], let’s take the following canonical form of the
equation, Lets the Eq. (2) have applied and if we used
c(s,v,0) = max(0,s−K)as the initial condition by using
ADM structure explained we construct:

c(s,v, t) = u0(s,v,0)−
∫ t

0
−(rs

∂c
∂ s

+(a− bv)
∂c
∂v

+
1
2

s2v
∂ 2c
∂ s2 +ρδ sv

∂ 2c
∂ s∂v

+
1
2

δ 2v
∂ 2c
∂v2 − rc)dt. (22)

Let’s take the solution as a series, say
c = c0 + c1λ + c2λ 2 + ... and following an alternate
algorithm for Adomian polynomials [13] we get

A0 = rs
∂c0

∂ s
+(a− bv)

∂c0

∂v
+

1
2

s2v
∂ 2c0

∂ s2 +ρδ sv
∂ 2c0

∂ s∂v

+
1
2

δ 2v
∂ 2c0

∂v2 − rc0,

A1 = rs
∂c1

∂ s
+(a− bv)

∂c1

∂v
+

1
2

s2v
∂ 2c1

∂ s2 +ρδ sv
∂ 2c1

∂ s∂v

+
1
2

δ 2v
∂ 2c1

∂v2 − rc1,

A3 = rs
∂c2

∂ s
+(a− bv)

∂c2

∂v
+

1
2

s2v
∂ 2c2

∂ s2 +ρδ sv
∂ 2c2

∂ s∂v

+
1
2

δ 2v
∂ 2c2

∂v2 − rc2, (23)

...
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and
c1(s,v, t) =−

∫ t
o A0(c0)dt,

c2(s,v, t) =−
∫ t

o A1(c0,c1)dt,
c3(s,v, t) =−

∫ t
o A1(c0,c1,c2)dt,

...

(24)

All of cn are calculable, andC = ∑∞
n=0cn.

4.3 HPM for solve Heston PDE

In this section, homotopy perturbation method is used to
find approximate the model of Hesston partial differential
equation Eq. (2), according to the HPM, we have,

H(s,v, t) := (1− p)(L(c)−L(v0))+ p(
∂c
∂ t

− rs
∂c
∂ s

−

(a− bv)
∂c
∂v

−
1
2

s2v
∂ 2c
∂ s2 − ρδ sv

∂ 2c
∂ s∂v

−
1
2

δ 2v
∂ 2u
∂v2 + ru) = 0.

(25)

Considerv0(s,v,0) = 2s2t2as an initial approximation that
satisfies in initial condition. Substituting solution series,
into Eq. (25) and equating the terms with identical powers
of p,leads to:

p0 := ∂c0
∂ t − ∂v0

∂ t = 0,

p1 := ∂c1
∂ t − rs ∂c0

∂ s − (a− bv) ∂c0
∂v − 1

2s2v ∂ 2c0
∂ s2 −

ρδ sv ∂ 2c0
∂ s∂v −

1
2δ 2v ∂ 2c0

∂v2 + rc0+
∂v0
∂ t = 0,

p2 := ∂c2
∂ t − rs ∂c1

∂ s − (a− bv) ∂c1
∂v − 1

2s2v ∂ 2c1
∂ s2 −

ρδ sv ∂ 2c1
∂ s∂v −

1
2δ 2v ∂ 2c1

∂v2 + rc1 = 0,
...

(26)

The HPM uses the homotopy parameterp as an expansion
parameter to obtain

C =
∞

∑
n=0

pncn, (27)

Whenp ? 1 Eq. (27) corresponds to the original one and
will gained the approximate solution of Eq. (2).
Theorem1. If a functionalv(u(x)) which has a variation
achieves a maximum or a minimum atu = u0(x), where
u(x) is an interior point of the domain of definition of the
functional, then atu = u0(x),δv = 0.
Theorem 2. (Banach’s fixed point theorem). Assume that
X be a Banach space and

A : X → X

Is a nonlinear mapping, and suppose that
∥
∥
∥A[u]−A[

−
u]
∥
∥
∥≤ γ

∥
∥
∥u−

−
u
∥
∥
∥ , u,

−
u ∈ X ,

For some constantγ < 1.thenA has a unique fixed point.
Furthermore, the sequence

un+1 = A(un),

with an arbitrary choice ofu0 ∈ X , converges to the fixed
point ofA and

‖uk − u1‖ ≤ ‖u1− u0‖
k−2

∑
j=l−1

γ i
.

According to Theorem 2, for the nonlinear mapping

A[u] = u(x, t)+
∫ t

0
λ F(u,

∂u
∂τ

,
∂u
∂x

,
∂ 2u
∂x2 ,

∂ 2u
∂τ2 ,

∂ 2u
∂x∂τ

)dτ,
(28)

a sufficient condition for convergence of the variational
iteration method is strictly contraction ofA. Furthermore,
the sequence (28) converges to the fixed point ofA which
also is the solution of the partial differential.
Consider the sequence (28) in the following form:

un+1(x, t)− un(x, t) =
t∫

0

λ F(u,
∂u
∂τ

,
∂u
∂x

,
∂ 2u
∂x2 ,

∂ 2u
∂τ2 ,

∂ 2u
∂x∂τ

)dτ, (29)

It is clear that the optimal value ofλ must be chosen such
that extremities the residual functional

∫ t

0
λ F(u,

∂u
∂τ

,
∂u
∂x

,
∂ 2u
∂x2 ,

∂ 2u
∂τ2 ,

∂ 2u
∂x∂τ

)dτ,

which is equivalent to the extermination ofA. But in
Theorem 1, the necessary condition for minimization is
given.

5 Numerical results

In this section we will discuss numerical example. We
tested the performance of ADM, HPM, and VIM on
Heston stochastic volatility model.

5.1 Example

∂c
∂ t

+ rs
∂c
∂ s

+(0.16−0.055v)
∂c
∂v

+
1
2

s2v
∂ 2c
∂ s2+

(−00.45)sv
∂ 2c

∂ s∂v
+

1
2
(0.81)v

∂ 2c
∂v2 − rc = 0 (30)

T = 15, K = 100, a = 0.16, b = 0.055, δ = 0.9, ρ =−0.5

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 1, 63-68 (2015) /www.naturalspublishing.com/Journals.asp 67

Table 1: numerical result of ADM,HPM,VIM

C(t,s,v) CADM CHPM CV IM

C(1,10,0.1) 413.2583333 413.2583333 209.5038332

C(2,50,0.2) 81406.34666 81406.34666 82474.33729

C(4,70,0.3) 1.734519680E6 1.734519680E6 1.147814970E6

C(6,90,0.4) 1.335877440E7 1.335877440E7 1.950175983E7

C(8,120,.05) 7.485848701E7 7.485848702E7 7.796505675E7

C(10,150,06) 2.937374855E8 2.937374856E8 2.317375113E8

C(14,200,08) 2.198733198E9 2.198733197E9 2.576414314E9

Fig. 1: Solution of European option pricing, Eq. (2), using VIM
iterative method

6 Conclusion

The iterative methods have been shown to solve
effectively, easily and accurately a large class of nonlinear
problems, these methods have been successfully
employed to obtain the approximate solution to analytical
solution of the Hesston partial differential equation.
These techniques are very powerful tools for solving
various partial differential equations; Of course one of the
main advantages of the variational iteration method over
decomposition procedure of Adomian is that the former
method provides the solution of the problem without
calculating Adomian’s polynomials. However the
numerical results in last table proved that these method
goals in gaining of approximation solution are closed to
exact ones.

Fig. 2: Solution of European option pricing, Eq. (2), using HPM
iterative method

Fig. 3: Solution of European option pricing, Eq. (2), using HPM
iterative method
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