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This paper concentrates on the study of propagation of waves in a homogenous isotropic
micropolar thermoelastic plate possessing cubic symmetry subjected to stress free
boundary conditions in context of Lord and Shulman (L-S) and Green and Lindsay
(G-L) theories of thermoelasticity. The secular equations for homogeneous isotropic
micropolar thermoelastic plate possessing cubic symmetry for symmetric and skew
symmetric wave modes of propagation are derived. The amplitudes of displacement
components, microrotation and temperature distribution are also computed during the
symmetric and skew symmetric motion of the plate. Finally, in order to illustrate and
verify the analytical developments, numerical solution of secular equation correspond-
ing to stress free thermally insulated micropolar thermoelastic cubic crystal plates is
carried out for magnesium crystal material.
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1 Introduction

As one knows, in the classical theory of thermoelasticity the velocity of heat propa-
gation is assumed to be infinitely large. However, in studying dynamic thermal stresses
in deformable solid bodies, when the inertia terms in the equations of motion cannot be
neglected, one must take into account that heat propagates not with an infinite but with a
finite velocity; a heat flow arises in the body not instantly but is characterized by a finite
relaxation time.

Presently, there are at least two different generalizations of the classical theory of ther-
moelasticity. The first of them, Lord-Shulman’s generalization [1] admits only one relax-
ation time constant; the other one, Green-Lindsay’s generalization [2] is based on using
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two heat relaxation time constants. Both generalizations were developed as an attempt at
explaining the paradox of the classical case that the heat propagation velocity is an infinite
value.

The classical theory of elasticity is inadequate to represent the behavior of some modern
engineering structures such as polycrystalline materials and materials with fibrous or coarse
grain. The study of these materials requires incorporation of theory of oriented media.
“Micropolar elasticity”, termed by Eringen [3] is used to describe the deformation of elastic
media with oriented particles. A micropolar continuum is a collection of interconnected
particles in the form of small rigid bodies undergoing both translational and rotational
motions. The force at a point of a surface element of bodies of these materials is completely
characterized by a stress vector and a couple stress vector at that point.

Following various methods, the elastic fields of various loadings, inclusion and inho-
mogeneity problems, and interaction energy of point defects and dislocation arrangement
have been discussed extensively in the past. Generally all materials have elastic anisotropic
properties which mean the mechanical behavior of an engineering material is characterized
by the direction dependence. However the three-dimensional study for an anisotropic ma-
terial is much more complicated to obtain than the isotropic one, due to the large number
of elastic constants involved in the calculation.

A wide class of crystals such as W, Si, Cu, Ni, Fe, Au, Al, etc., which are some fre-
quently used substances, belong to cubic materials. The cubic materials have nine planes
of symmetry the normals of which are on the three coordinate axes and on the coordinate
planes making an angle π/4 with the coordinate axes. With the chosen coordinate system
along the crystalline directions, the mechanical behavior of a cubic crystal can be charac-
terized by four independent elastic constants A1, A2, A3 and A4.

To understand the crystal elasticity of a cubic material, Chung and Buessem [4] pre-
sented a convenient method to describe the degree of the elasticity anisotropy in a given
cubic crystal. Later, Lie and Koehler [5] used a Fourier expansion scheme to calculate the
stress fields caused by a unit force in a cubic crystal. Minagawa et al. [6] discussed the
propagation of plane harmonic waves in a cubic micropolar medium. Kumar and Rani [7]
studied time harmonic sources in a thermally conducting cubic crystal. However no at-
tempt has been made to study source problems in micropolar cubic crystals. Kumar and
Ailawalia [8] investigated elastodynamics of inclined loads in a micropolar cubic crys-
tals. Kumar and Ailawalia [9] studied time harmonic sources at micropolar thermoelastic
medium possessing cubic crystals with one relaxation time. Kumar and Ailawalia [10]
discussed interactions due to mechanical/thermal sources in a micropolar thermoelastic
medium possessing cubic crystals. Kumar and Ailawalia [11] presented interaction due
to mechanical sources in micropolar cubic crystals. Kumar and Ailawalia [12] considered
deformation due to time harmonic sources in micropolar thermoelastic medium possessing
cubic symmetry with two relaxation times.
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The present investigation is concerned to study the propagation of plane waves in an
infinite homogeneous isotropic micropolar thermoelastic plate possessing cubic symme-
try. The secular equations for different conditions of solutions have been deduced from
the present one. Numerical solutions of the dispersion equations and amplitudes of dis-
placement components, microrotation and temperature distribution for symmetric and skew
symmetric modes are presented graphically.

2 Formulation of the Problem

We consider a homogeneous isotropic micropolar thermoelastic plate with cubic sym-
metry of thickness 2d initially at uniform temperature T0. We take the origin of the co-
ordinate system (x, y, z) on the middle surface of the plate. The x − y plane is chosen to
coincide with the middle surface of the plate and z-axis normal to it along the thickness as
shown in Fig. 2.1.

Figure 2.1: Geometry of the problem

If we restrict our analysis to plane strain problem parallel to x − z plane with dis-
placement vector ~u = (u1, 0, u3) and microrotation vector ~φ = (0, φ2, 0), then the field
equations and constitutive relations for micropolar thermoelastic solid with cubic symme-
try in the absence of body forces, body couples and heat sources given by Minagawa et
al. [6], Lord and Shulman [1], and Green and Lindsay [2] are
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t33 = A1
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)T, (2.5)
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∂x
+ (A4 −A3)φ2, (2.6)

m32 = B3
∂φ2

∂z
. (2.7)

where A = A1 − A2 − A3 − A4, B = B1 − B2 − B3 − B4, ν = (A1 + 2A2)αt.
A1, A2, A3, A4, B1, B2, B3, B4 are material constants, αt is coefficient of linear thermal
expansion, ρ is the density, j is the microinertia, tij and mij are the components of force
stress and couple stress tensors respectively, K∗ is the coefficient of thermal conductivity,
C∗ is specific heat at constant strain,τ0 and τ1 are thermal relaxation times, δij is Kronecker
delta. The comma notation denotes spatial derivatives.

We introduce the dimensionless quantities defined by the expressions
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where c2
1 = A1/ρ, ω∗ = ρc2

1C
∗/K∗ and ω∗ is the characteristic frequency of the medium.

Using Eq. (2.8) in Eqs. (2.1) - (2.4), and after suppressing the primes for convenience,
we obtain
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3 Formal Solution of the Problem

We assume the solution of Eqs. (2.9)–(2.12) of the type

(u1, u3, φ2, T ) =
[
1, ū3, φ̄2, T̄

]
ū1e

ιξ(x+mz−ct) (3.1)

where c = ω/ξ is the phase velocity of the waves, ω is the angular frequency and ξ is the
wave number, m is an unknown parameter which signifies the penetration depth of the
wave, ū3, φ̄2, T̄ are the amplitude ratios of displacement u3, microrotation φ2 and temper-
ature T to that of displacement u1 respectively.

Using Eq. (3.1) in Eqs. (2.9)–(2.12), we obtain

m2

c2
+ a1 + ma2ū3 + ma3φ̄2 + a4T̄ = 0, (3.2)

ma5 +
(m2 + a6)

c2
ū3 + a7φ̄2 + ma8T̄ = 0, (3.3)

ma9 − a9ū3 −
(m2 + 1

c2
+ a10 + a13

)
φ̄2 = 0, (3.4)

a11 + ma11ū3 − m2

c2
T̄ + a12T̄ = 0. (3.5)

The system of Eqs. (3.2)–(3.5) has a nontrivial solution if the determinant of coefficients
of (1, ū3, φ̄2, T̄ )T vanishes, which yields an algebraic equation relating m to c.

Solving the above equations, we obtain an eight degree equation of the form

m8 + A′m6 + B′m4 + C ′m2 + D′ = 0. (3.6)

The roots of the Eq. (3.6) give four values of m2. Using a computer program of Descard’s
method following Cardan’s method, Eq. (3.6) leads to the following solution for displace-
ments, microrotation and temperature:

(u1, u3, φ2, T ) =
4∑

i=1

[Ei cos ξmiz + Fi sin ξmiz]{1, ri, li, ti}eιξ(x−ct), (3.7)

where

A′ = A∗c2 + 4, B′ = B∗c4 + 3A∗c2 + 6,

C ′ = C∗c6 + 2B∗c4 + 3A∗c2 + 4, D′ = D∗c8 + C∗c6 + B∗c4 + A∗c2 + 1,

A∗ = [(a16 − a20 − k0 + a21) + c2(a8a20 − a2a5 + a3a9)],

B∗ = (k0a20 − k0a16 − a16a20 − a7a9 − a8a20 + a2a5 + a21a16 − a21a20 − k0a21

− a3a9 + a4a11) + c2(k0a2a5 − a8a20a11 + a2a5a20 − a2a7a9 + a2a8a11

+ a21a20a8 + a3a5a9 − k0a3a9 − a3a16a9 − a4a5a11 + c2a3a8a9a11),
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C∗ = (a8a20a11 + k0a16a20 + k0a7a9 − k0a2a5 − a2a5a20 + a2a7a9 − a2a8a11

− a3a5a9 + k0a3a9 + a3a6a9 − a4a20a11 + a4a5a11 + a4a6a11)

+ a21(k0a20 − k0a6 − a16a20 − a7a9 − a8a20)

+ c2(k0a2a7a9 − k0a2a5a20 − a2a8a20a11 − a21a8a20a11 + k0a3a5a9

+ k0a3a16a9 − a3a8a9a20 − a4a7a9a11 + a2
4a5a20),

D∗ = k0a2a5a20 − k0a2a7a9 + a2a8a20a11 + a21a8a20a11 + k0a21a16a20

+ k0a21a7a9 + k0a3a5a9 + k0a3a16a9 + a4a5a20a11 + a4a16a20a11,
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2
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),

k0 = τ0 + ιω−1, k′0 = η0τ0 + ιω−1, k1 = τ1 + ιω−1.

3.1 Boundary conditions

We consider the following mechanical and thermal boundary conditions at the plate
surfaces z = ±d .

3.1.1 Mechanical conditions

The nondimensional mechanical boundary conditions at z = ±d are given as follows:

t33 = 0, t31 = 0, m32 = 0, (3.8)
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where

t33 =
4∑

i=1

Ei(−d1ξmiriSi+d7ιξCi+ιωk1tiCi)+
4∑

i=1

Fi(d1ξmiriCi+d7ιξSi+ιωk1tiSi)

t31 =
4∑

i=1

Ei(d2ξmiSi + d8ιξriCi − d4liCi) +
4∑

i=1

Fi(d2ξmiCi + d8ιξriSi − d4liSi)

m32 =
4∑

i=1

Ei(liξmiSi) +
4∑

i=1

Fi(liξmiCi),

Si = sin ξmid, Ci = cos ξmid, i = 1, 2, 3, 4.

3.1.2 Thermal conditions

The thermal boundary conditions at z = ±d are given by

T,z + hT = 0, (3.9)

where h is the surface heat transfer coefficient. Here h → 0 corresponds to thermally
insulated boundaries and h →∞ refers to isothermal one.

4 Derivation of the secular equations

Substituting the values of u1, u3, φ2, and T in the boundary conditions (3.8) and (3.9)
on the surfaces z = ±d of the plate, we obtain

4∑

i=1

[(
(g1 − g1i)Ci − g2iSi

)
Ei +

(
(g1 − g1i)Si + g2iCi

)
Fi

]
= 0,

4∑

i=1

[
− g5iSiEi + g5iCiFi

]
= 0,

4∑

i=1

[
((g1 − g1i)Ci + g2iSi)Ei + (−(g1 − g1i)Si + g2iCi)Fi

]
= 0,

4∑

i=1

[
g5iSiEi + g5iCiFi

]
= 0,

4∑

i=1

[
(g3iCi − g4iSi)Ei + (g3iSi + g4iCi)Fi

]
= 0,

4∑

i=1

[
(g3iCi + g4iSi)Ei + (−g3iSi + g4iCi)Fi

]
= 0,

4∑

i=1

[
(−g6iSi − htiCi)Ei + (g6iCi + htiSi)Fi

]
= 0,
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4∑

i=1

[
(g6iSi + htiCi)Ei + (g6iCi − htiSi)Fi

]
= 0, (4.1)

where

g1 = d7ιξ, g1i = ιωk1ti, g2i = mirid1, g3i = ιξlid8 − lid4,

g4i = mid2, g5i = mili, g6i = miti, i = 1, 2, 3, 4.

The system of equations (4.1) has a nontrivial solution if the determinant of coefficients
of Ei and Fi , i = 1, 2, 3, 4 vanishes, which leads to a characteristic equation for the
propagation of waves in the plate. The characteristic equation for the waves in this case,
after applying lengthy algebraic reductions and manipulations of the determinant leads to
the following secular equations

AT1[T1T3]±1 =AT2[T1T2]±1 + AT3[T1T4]±1 + AT4[T2T3]±1 + AT5[T2T4]±1

+ AT6[T3T4]±1 (4.2)

where

Ti = tan ξmid, i = 1, 2, 3, 4.

AT1 = (g53g61 − g51g63)
[
(g1 − g12)g34 − (g1 − g14)g32

]
,

AT2 = (g52g61 − g51g62)
[
(g1 − g13)g34 − (g1 − g14)g33

]
,

AT3 = (g51g64 − g54g61)
[
(g1 − g13)g32 − (g1 − g12)g33

]
,

AT4 = (g53g62 − g52g63)
[
(g1 − g11)g34 − (g1 − g14)g31

]
,

AT5 = (g54g62 − g52g64)
[
(g1 − g13)g34 − (g1 − g14)g33

]
,

AT6 = (g54g63 − g53g64)
[
(g1 − g11)g32 − (g1 − g12)g31

]
.

Here the superscript +1 refers to skew symmetric and −1 refers to symmetric modes.

4.1 Special cases

4.1.1 Micropolar generalized thermoelastic plate with cubic symmetry and with one
relaxation time (L-S theory)

In this case, τ1 = 0, τ0 > 0 and η0 = 1.

4.1.2 Micropolar generalized thermoelastic plate with cubic symmetry and with two
relaxation time (G-L theory)

In this case, τ1 ≥ τ0 > 0 and η0 = 0.
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4.1.3 Micropolar elastic plate

In this case, A1 = λ + 2µ + K, A2 = λ, A3 = µ + K, A4 = µ, B3 = γ.

5 Amplitude of Displacements, Microrotation and Temperature Dis-
tribution

In this section the amplitudes of displacement components, microrotation and temper-
ature distribution for symmetric and skew symmetric modes of plate waves are obtained
as

(u1)sy, (u1)asy = Σ4
i=1(Ei cos ξmiz, Fi sin ξmiz)eiξ(x−ct),

(u3)sy, (u3)asy = Σ4
i=1ri(Fi sin ξmiz,Ei cos ξmiz)eiξ(x−ct),

(φ2)sy, (φ2)asy = Σ4
i=1li(Fi sin ξmiz,Ei cos ξmiz)eiξ(x−ct),

(T )sy, (T )asy = Σ4
i=1ti(Ei cos ξmiz, Fi sin ξmiz)eiξ(x−ct).

6 Example Results

For numerical computations, we take the following values of relevant parameters for
micropolar medium with cubic symmetry:

A1 = 19.6× 1010Nm−2, A2 = 11.7× 1010Nm−2, A3 = 5.6× 1010Nm−2,

A4 = 4.3× 1010Nm−2, B3 = 0.98× 10−09N.

Micropolar parameters are

ρ = 1.74× 103Kgm−3, λ = 9.4× 1010Nm−2, µ = 4.0× 1010Nm−2,

K = 1.0× 1010Nm−2, γ = 0.779× 10−09N, j = 0.2× 10−19m2.

Thermal parameters are

τ0 = 6.131× 10−13sec, τ1 = 8.765× 10−13sec, ε = 0.028, T0 = 298oK,

C∗ = 1.04× 103JKg−1deg−1, K∗ = 1.7× 1006Jm−1 sec−1 deg−1,

ν = 2.68× 106Nm−2deg−1, d = 0.01m.

A FORTRAN program has been developed for the solution of equation (4.2) to compute
phase velocity c for different values of n by using the relations tan θ = tan(nπ + θ).

The nondimensional phase velocity of symmetric and skew symmetric modes of wave
propagation in the context of L-S and G-L theories of thermoelasticity have been computed
for various values of nondimensional wave number from dispersion equation (4.2) for stress
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Figure 6.1: Variation of phase velocity of symmetric modes of wave propagation

Figure 6.2: Variation of phase velocity of skewsymmetric modes of wave propagation

free thermally insulated micropolar thermoelastic plate with cubic symmetry and have been
represented graphically for different modes (n = 0 to n = 2) in Figures 6.1 and 6.2. The
dashed curves refer to L-S theory and broken-line curves correspond to G-L theory of
thermoelasticity.
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6.1 Phase velocity

The phase velocities of lowest mode of propagation, symmetric and skewsymmetric
become dispersionless i.e. remain constant with variation in wave number. The phase ve-
locities of higher modes of propagation, symmetric and skewsymmetric attain quite large
values at vanishing wave number which sharply slashes down to become steady and asymp-
totic to the reduced Rayleigh wave velocity with increasing wave number.

It is observed for various symmetric modes of wave propagation from Fig.6.1 that (i)
for lowest mode (n = 0), phase velocity profiles for L-S and G-L theory coincide; (ii)
for n = 1, phase velocity for G-L theory is greater than that in the case of L-S theory for
wave number ξd ≤ 1.4 and for wave number lying between 2.6 and 4.2; phase velocity
for G-L theory is less than in case of L-S theory for wave number lying between 1.4 and
2.6; the phase velocity profiles in respect of L-S and G-L theory coincide for wave number
ξd ≥ 4.2; (iii) for n = 2, phase velocity for G-L theory is greater than that in the case of
L-S theory for wave number ξd ≤ 3.0 and ξd ≥ 3.8; phase velocity for G-L theory is less
than in case of L-S theory for wave number lying between 3.0 and 3.8.

For skewsymmetric modes of wave propagation, we observe the following from
Fig.6.2: (a) for modes n = 0 and n = 1, phase velocity for L-S theory is less than that
in the case of G-L theory for wave number ξd ≤ 5.2; (b) for n = 2, phase velocity for
L-S theory is slightly less than that in the case of G-L theory for wave number ξd ≤ 3.2
and phase velocity profiles in respect of L-S and G-L theories coincide for wave number
ξd ≥ 3.2.

6.2 Amplitudes

Figs. 6.3–6.10 depict the variations of symmetric and skew symmetric amplitudes of
displacements (u1), (u3), microrotation (φ2) and temperature distribution (T ) in the con-
text of L-S and G-L theories of thermoelasticity for stress free thermally insulated bound-
ary.

The displacement (u1) and temperature distribution (T ) of the plate is minimum at
the centre and maximum at the surfaces for symmetric mode and zero at the centre and
maximum at the surfaces for skewsymmetric mode as can be seen from Figs.6.3–6.4 and
Figs.6.9–6.10. The microrotation (φ2) of the plate is minimum at the centre and maximum
at the surfaces for symmetric mode and zero at the centre, minimum at the bottom surface
and maximum at the top surface of the plate for skewsymmetric mode as noticed from
Figs.6.7–6.8. From Fig. 6.5 and Fig. 6.6, it is noticed that the values of the displacement
(u3) of the plate is zero at the centre and maximum at the surfaces for symmetric mode and
maximum at the centre and minimum at the surfaces for skew symmetric mode. (u1)sym,
(u1)asym, (u3)sym, (u3)asym, (φ2)sym, (φ2)asym, (T )sym and (T )asym correspond to the
values of (u1), (u3), (φ2) and (T ) for symmetric and skew symmetric modes respectively.
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Figure 6.3: Amplitude of symmetric displacement u1

Figure 6.4: Amplitude of skewymmetric displacement u1
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Figure 6.5: Amplitude of symmetric displacement u3

Figure 6.6: Amplitude of skewsymmetric displacement u3
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Figure 6.7: Amplitude of symmetric microrotation φ2

Figure 6.8: Amplitude of skewsymmetric microrotation φ2
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Figure 6.9: Amplitude of symmetric temperature T

Figure 6.10: Amplitude of skewsymmetric temperature T
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It is observed that the behavior and trend of variations of (u1)sym, (φ2)sym and (T )sym

is same; whereas the behavior and trend of variations of (u1)asym, (u3)sym and (T )asym

is similar.
The values of the displacements of the plate in case of G-L theory are larger in com-

parison to L-S Theory for symmetric and skew symmetric modes, whereas the values of
the temperature distribution of the plate in case of G-L theory are smaller in comparison to
L-S Theory for symmetric and skew symmetric modes.

The values of the microrotation (φ2) of the plate are the same in cases of L-S and G-L
theories of thermoelasticity for symmetric and skew symmetric modes.

7 Conclusions

(i) The propagation of waves in a homogenous isotropic micropolar thermoelastic plate
possessing cubic symmetry subjected to stress free boundary conditions has been
studied in context of Lord and Shulman (L-S) and Green and Lindsay (G-L) theories
of thermoelasticity.

(ii) The secular equations for homogeneous isotropic micropolar thermoelastic plate pos-
sessing cubic symmetry for symmetric and skew symmetric wave modes of propa-
gation are derived.

(iii) The phase velocities of lowest mode of propagation, symmetric and skewsymmet-
ric become dispersionless i.e. remain constant with variation in wave number. The
phase velocities of higher modes of propagation, symmetric and skewsymmetric at-
tain quite large values at vanishing wave number which sharply slashes down to be-
come steady and asymptotic to the reduced Rayleigh wave velocity with increasing
wave number.

(iv) The values of the displacements of the plate in case of G-L theory are larger in
comparison to L-S theory, whereas the values of the temperature distribution of the
plate in case of G-L theory are smaller in comparison to L-S Theory for symmetric
and skew symmetric modes.
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