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1 Introduction

Let ∆ = {z∈ C : |z| < 1} be the open unit disk in the
complex planeC, ∂∆ its boundary andH(∆) the space
of all analytic function on the unit disk. For an analytic
function f on the unit disk and 0< r < 1, we define the
delay functionfr by fr(eiθ ) = f (reiθ ). It is easy to see that
the functionsfr are continuous on∂∆ for eachr.
The theory of harmonic functions motivates the following
classes of analytic functions, determined by their limiting
behavior as their arguments approach to the boundary∂∆ .
For 0< p< ∞, the Hardy spaceH p is defined as the set of
analytic functionsf : ∆ → C such that

‖ f‖p
H p = sup

0<r<1

∫ 2π

0
| fr(eiθ )|p dθ

2π
< ∞.

By the Littlewood Subordination Theorem (see [7]), we
see that the supremum in the above definition ofH p is
actually a limit, that is,

‖ f‖p
H p = lim

r→1

∫ 2π

0
| fr(eiθ )|p dθ

2π
< ∞.

It should be mentioned that the function‖.‖p
H p : H p →R+

is a norm onH p, and makesH p into a Banach space for
1≤ p< ∞ (see [8]). For more studies on Hardy space, we
refer to [8,11,13].
Recently Fatehi [10], introduced the following definition

Definition 1. Let F : H(∆)→ H(∆) be a linear operator
such that F( f ) = 0 if and only if f = 0, that is, F is1−1.

For 1 ≤ p < ∞, the generalized Hardy space HF,p(∆) =
HF,p is defined to be the collection of all analytic functions
f on ∆ for which

sup
0<r<1

∫ 2π

0
|(F( f ))r(e

iθ )|p dθ
2π

< ∞.

Denote thepth root of this supremum by‖ f‖HF,p. Since,
|F( f )|p is a subharmonic function, so by [7], we have

‖ f‖p
HF,p

= lim
r→1−

∫ 2π

0
|F( f )r(e

iθ )|p dθ
2π

< ∞.

Therefore,f ∈ HF,p if and only if F( f ) ∈ H p and

‖F( f )‖p
p = ‖ f‖p

HF,p
= lim

r→1−

∫ 2π

0
|F( f )r(e

iθ )|p dθ
2π

.

It is easy to see thatHF,p is a normed space with the norm
‖.‖HF,p.
For 0< p < ∞, the Bergman spaceAp is the set of all
f ∈ H(∆) such that

∫

∆
| f (z)|pdA(z)< ∞,

where dA(z) = dxdy = r drdθ is the Lebegue area
measure. We mention [9] as general reference for the
theory of Bergman spaces.

We assume from now on thatK : [0,∞) → [0,∞) to
appear in this paper is right-continuous and nondecreasing
functions such that the integral

∫ 1/e

0
K(log(1/ρ))ρdρ =

∫ ∞

1
K(t)e−2tdt < ∞.
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We can define an auxiliary function as follows:

ϕK(s) = sup
0<t≤1

K(st)
K(t)

, 0< s< ∞,

we assume that
∫ 1

0
ϕK(s)

ds
s

< ∞, (1)

and
∫ ∞

1
ϕK(s)

ds
s

< ∞. (2)

From now on we suppose that the above weight function
K satisfies the following properties:
(a)K is nondecreasing on[0,∞),
(b) K is twice differentiable on(0,1),

(c)
∫ 1

e
0 K(log 1

r )rdr < ∞,
(d)K(t) = K(1)> 0, t ≥ 1 and
(e)K(st)≈ K(t), t ≥ 0.

We will need the following result in the sequel.

Theorem 1. ([16]) If K satisfies condition(2), then for
anyα ≥ 1 and0≤ β < 1, we have
∫ 1

0
rα−1(log

1
r
)−β K(log

1
r
)dr

≈C(β )
(

1−β
α

)1−β
Φ
(

1−β
α

)
, (3)

where C(β ) is a constant depending only onβ .

An important tool our study is the auxiliary functionΨω1
defined by

Ψω1(s) = sup
0<t<1

ω1(st)
ω1(t)

, 0< s< 1.

Lemma 1. (see [4]) If ω1 satisfies, the following
condition ∫ 1

t

1
Ψω1(s)

ds
s2 < ∞.

ω∗(t) = t
∫ 1

t

ω1(s)
s2 ds (where,0< t < 1),

has the following properties :

(A) ω∗ is nondecreasing on(0,1).

(B) ω∗(t)/t is nonincreasing on(0,1).

(C) ω∗(t)≥ ω1(t) for all t ∈ (0,1).

(D) ω∗ . ω1 on (0,1).

If ω1(t) = ω1(1) for t ≥ 1, then we also have

(E) ω∗(t) = ω∗(1) = ω1(1) for t ≥ 1, so ω∗ ≈ ω1 on
(0,1).

Throughout this work,P denotes the set of all analytic
polynomials and for a functionF,RF denotes the range of

F. We assume also,Φ(r) =
K(log 1

r )

ω1(1−r) , whereω1 is a given

reasonable functionω1 : (0,1] → (0,∞) with ω1 6= 0, for
more properties of the reasonable functionω1, we refer to
[4,14] and [15].
For p,q∈ (0,∞), the weighted Bergman spaceAp

Φ ,q is the
set of all f ∈ H(∆) such that

‖ f‖Ap
Φ ,q

= sup
0<ρ<1

∫ 1

0

∫ 2π

0
| fρ(e

iθ )|pΦ(r)r dθ dr < ∞. (4)

The above formula defines a norm that turnsA2
Φ ,q into a

Hilbert space whose inner product is given by

〈 f ,g〉A2
Φ ,q

=
∞

∑
n=0

f̂ (n)ĝ(n) =
∫ 2π

0

(
fr(e

iθ )
)(

gr(eiθ )
)

r drdθ (5)

for eachf ,g∈ A2
Φ ,q.

Remark.By using known technique, it is easy to prove that
(Ap

Φ ,q,‖.‖Ap
Φ ,q

) is a Banach space, that is, the norm‖.‖Ap
Φ ,q

is complete.

2 The generalized space

Definition 2. Let F : H(∆)→ H(∆) be a linear operator
such the F( f ) = 0 if and only if f = 0, that is,F is1−1.

Suppose thatΦ(r) =
K(log 1

r )

ω1(1−r) is a nondecreasing and right-

continuous function. For p,q∈ (0,∞), the(F,Φ)-Bergman
space ApF,Φ ,q(∆) = Ap

F,Φ ,q is defined to be the collection of
all analytic function f on∆ for which

‖ f‖Ap
F,Φ ,q

= sup
0<ρ<1

∫ 1

0

∫ 2π

0
|F( fρ(e

iθ ))|pΦ(r)rdrdθ < ∞. (6)

The importance of this definition is that it contains some
known classes of analytic function spaces like Bergman
and Hardy classes as we mention in the following remark:

Remark.We note that if
∫ 1

0 Φ(r)r dr = 1, then we obtain
the generalized Hardy space as defined and studied in [10].
Also, if Φ(r) = 1, q= 0, andF( fρ(eiθ )) = f (z), then we
obtain the Bergman spaceAp.

Theorem 2. Let p,q∈ (0,∞) and P⊆ RF . Then Ap
Φ ,q is a

subspace of RF if and only if Ap
F,Φ ,q is a Banach space.

Proof. Suppose thatAp
Φ ,q ⊆ RF . SinceAp

F,Φ ,q is a normed
space, it suffices to show that it is complete. Let{ fn} be
Cauchy sequence inAp

F,Φ ,q and setF( fn) = gn. Then{gn}
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is a Cauchy sequence inAp
Φ ,q. Since Ap

Φ ,q is complete,
there is ag∈ Ap

Φ ,q such that

‖gn−g‖Ap
Φ ,q

→ 0, asn→ ∞

SinceAp
Φ ,q ⊆ RF , there is anf ∈ A(∆) such thatF( f ) = g.

Now we show that thisf is theAp
F,Φ ,q-limit of { fn}. We

have

‖ fn− f‖Ap
F,Φ ,q

= ‖gn−g‖p
Φ ,q → 0, asn→ ∞

Hence fn → f ∈ Ap
F,Φ ,q for sufficiently large positive

integern, which implies that f ∈ Ap
F,Φ ,q. So fn → f in

Ap
F,Φ ,q asn→ ∞.

Conversely, suppose thatAp
F,Φ ,q is a Banach space. If

Ap
Φ ,q ⊆ RF , then there is ag ∈ Ap

Φ ,q such thatg is not in
Rf . Since the polynomials are dense inAp

Φ ,q, there is a
sequence{pn} in P such that‖pn−g‖Ap

Φ ,q
→ 0 asn→ ∞.

Let qn = F−1(pn). Then {qn} is a Cauchy sequence in
Ap

F,Φ ,q and so there is aq ∈ Ap
F,Φ ,q such that

‖qn − q‖Ap
F,Φ ,q

→ 0 as n → ∞. Hence

‖F(qn)− F(q)‖Ap
Φ ,q

→ 0 asn → ∞. On the other hand,

‖F(qn)−g‖Ap
Φ ,q

→ 0 asn→ ∞. This shows thatg= F(q)

which is a contradiction.

Proposition 1. If A2
Φ ,q ⊆ RF , and suppose that

J (Φ ,q) =
∫ 1

0
Φ(r)r dr < ∞, (7)

then A2
F,Φ ,q is a Hilbert space.

Proof. We define the scalar product onA2
F,Φ ,q by

〈 f ,g〉A2
F,Φ ,q

=
∫ 1

0

∫ 2π

0
F( fρ(e

iθ ))F(gr(eiθ ))Φ(r)r drdθ

≤C
∫ 2π

0
F( fρ(e

iθ ))F(gr(eiθ ))dθ

= 〈F( f ),F(g)〉H2.

It is easy to show that this scalar product defines an inner
product onA2

F,Φ ,2.

There is a Banach spaceAp
Φ ,q, such that it does not satisfy

the condition of Theorem 2. For example, let
1≤ p,q< ∞, F( f ) = z f for each f ∈ H(∆). Then 1∄RF .
By the following proposition, we see that although
Ap

Φ ,q ⊆ RF , Ap
F,Φ ,q is a Banach space.

Proposition 2. Suppose that1 ≤ p < ∞, 0 < q < ∞, h ∈
H(∆), h 6= 0, and F( f ) = f h for every f∈ H(∆). Then
Ap

F,Φ ,q is a Banach space.

Proof. If Ap
Φ ,p ⊆RF , then by Theorem 2.1, the proposition

holds. Otherwise, letfn be a Cauchy sequence inAp
F,K,q.

SettingF( fn) = gn, so{gn} is a Cauchy sequence inAp
Φ ,q.

Therefore, there is ag∈ Ap
Φ ,q such that‖gn−g‖Ap

Φ ,q
→ 0

asn→ ∞. If g∈ RF , then the proof is similar to the proof
of Theorem 2.
Now suppose thatg is not in RF . Then there arez0 ∈ ∆ ,
m1 ≥ 0, andm2 > m1 such that

g(z) = (z−z0)
m1g0(z),

h(z) = (z−z0)
m2h0(z),

where h0,g0 ∈ H(∆), g0(z0) 6= 0, and h0(z0) 6= 0.
Therefore, we have

‖gn−g‖Ap
Φ ,q

= ‖h fn−g‖Ap
Φ ,q

=
∫ 1

0

∫ 2π

0

∣∣T(ρ ,θ)
∣∣pΦ(r)r drdθ ,

where

T(ρ ,θ)
= (ρ eiθ −z0)

m2h0(ρ eiθ ) fn− (ρ eiθ −z0)
m1g0(ρ eiθ ).

Since‖gn−g‖Ap
Φ ,q

→ 0 asn→ ∞, we have

lim
n→∞

∫ 1

0

∫ 2π

0

∣∣T(ρ ,θ)
∣∣pΦ(r)r drdθ = 0. (8)

Hence, ‖(z − z0)
m2h0 fn − (z − z0)

m1g0‖Ap
Φ ,q

→ 0 as

n → ∞. Since the point evaluation atz0 is a bounded
linear functional onAp

Φ ,q, we have

(z0−z0)
m2h0 fn(z0)− (z0−z0)

m1g0(z0)→ 0, n→ ∞. (9)

Sog0(z0) = 0, which is a contradiction.

In the following proposition, we will find a dense subset in
Ap

F,Φ ,q, wheneverP⊆ RF .

Proposition 3. Suppose that1≤ p< ∞, 0< q< ∞, and
P⊆ RF . Then{F−1(p) : p∈ P}= Ap

F,Φ ,q.

Proof. It is clear that{F−1(p) : p∈ P} ⊆ Ap
F,Φ ,q. Suppose

that f ∈ Ap
F,Φ ,q. Then there is a sequence{hn} in P such

that‖hn−F( f )‖Ap
Φ ,q

→ 0 asn→ ∞. Setting fn = F−1(hn),

we have

‖ fn− f‖Ap
F,Φ ,q

= ‖hn−F( f )‖Ap
Φ ,q

, (10)

so the result follows.

Corollary 1. Suppose that1≤ p<∞, 0< q<∞,, P⊆RF ,

and F−1(p) ∈ P for each p∈ P. ThenP∩Ap
F,Φ ,q = Ap

F,Φ ,q.
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3 Point Evaluations

Let eω be the point evaluation atω, that is,
eω( f ) = f (ω). It is well known that point evaluations at
the point of∆ are all continuous onA2

K,q.
Let ω ∈ ∆ andH be a Hilbert space of analytic functions
on ∆ . If eω is a bounded linear functional onH, then the
Riesz Representation Theorem implies that there is a
function (which is usually calledKω ) in H that induces
this linear functional, that is,eω( f ) = 〈 f ,Kω〉.

In this section, we investigate the continuity of the
point evaluations onAp

F,Φ ,q.
Next, we prove that an analytic functionf on the unit disk
with Hadamard gaps, that is,f (z) satisfyingnk+1

nk
≥ c > 1

for all k∈ N belongs to the spaceAp
F,Φ ,q.

Theorem 3. If Φ(r) =
K(log 1

r )

ω1(1−r) and

f (z) =
∞

∑
j=1

b jz
nj−1

, (11)

is in the Hadamard gap class, then f∈ Ap
F,Φ ,q if

∞

∑
j=1

|b j |pΦ
(

1
n j

)
< ∞. (12)

Proof. First assume that condition(12) holds. We write
z= reiθ in polar form and observe that

| f (z)| ≤
∞

∑
j=1

|b j |rn j−1.

Then, by Theorem 2.1 and Lemma 1, letF( f ) = g, we
obtain

‖ f‖Ap
F,φ ,q

=

∫ 1

0

∫ 2π

0
|F( f (reiθ ))|pΦ(r)rdrdθ

=

∫ 1

0

∫ 2π

0
|g(reiθ )|pΦ(r)rdrdθ

=
∫ 1

0

∫ 2π

0

( ∞

∑
j=1

|b j |rn j−1
)p

Φ(r)rdrdθ

= 2π
∫ 1

0
r−p+1

[ ∞

∑
j=1

|b j |rn j

]p

Φ(r)dr

Using the Cauchy-Schwarz inequality to produce
[ ∞

∑
j=1

|b j |rn j

]p

=

[ ∞

∑
n=0

∑
n j∈In

|b j |rn j

]p

≤
[ ∞

∑
n=0

∑
n j∈In

|b j |r2n
]p

≤
[ ∞

∑
n=0

(2n/2r2n
)1−1/p(r2n

2(1−p)n/2)1/p ∑
n j∈In

|b j |
]p

≤
[ ∞

∑
n=0

r2n
2((1−p)/2)n

(
∑

n j∈In

|b j |
)p][ ∞

∑
n=0

2n/2r2n
]p−1

≤C

(
log

1
r

)−(p−1)/2 ∞

∑
n=0

r2n
2((1−p)/2)n

(
∑

n j∈In

|b j |
)p

where In = { j : 2n ≤ j < 2n+1, j ∈ N}. To this end, we
combine the elementary estimates:

∞

∑
n=0

2
n
2 r2n

=
√

2
∞

∑
n=0

∫ 2n+1

2n
t−

1
2 r

t
2 dt

≤
√

2
∫ ∞

0
t−

1
2 r

t
2 dt

≤ 2Γ (
1
2
)

(
log

1
r

)− 1
2

This very useful tool can now be applied to the calculation
above to obtain

‖ f‖Ap
F,Φ ,q

≤C
∞

∑
n=0

(2n)
1−p

2

[
∑

n j∈In

|b j |
]p

×
∫ 1

0
r2n−p+1

(
log

1
r

) 2q−p−3
2

Φ(r)dr (13)

where (1− r2) ≤ 2log1
r . This together with(13) and

Theorem 1.2 forα = 2n− p+2,β = 2q−p−3
2 , we obtain

‖ f‖Ap
F,Φ ,q

≤C
∞

∑
n=0

[
∑

n j∈In

|b j |
]p( 1

2n

) p−1
2
(

5+ p−2q
2n+1−2(p−2)

) 5+p−2q
2

×Φ
(

5+ p−2q
2n+1−2(p−2)

)

≤C
∞

∑
n=0

[
∑

n j∈In

|b j |
]p( 1

2n

) p−1
2
(

1
2n

) 5+p−2q
2

Φ
(

1
2n

)

≤C
∞

∑
n=0

[
∑

n j∈In

|b j |
]p( 1

2n

)p−q+2

Φ
(

1
2n

)
(14)

If n j ∈ In, then n j < 2n < 2n+1. It follows from the
monotonicity of k, Lemma 1 andK(2t) ≤ CK(t) for all
0≤ 2t ≤ 1, such that

(
1
2n

)p−q+2

Φ
(

1
2n

)
< n(p−q+2)

j Φ
(

1
n j

)
.
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Combining this with(14), we obtain

‖ f‖Ap
F,Φ ,q

.
∞

∑
n=0

[
∑

n j∈In

|b j |
]p

np−q+2
j Φ

(
1
n j

)
. (15)

Since f is in the Hadamard gap class, there exists a
constantc such thatn j+1 ≥ cnj for all j ∈ N. Hence, the
Taylor series off (z) has at most([logc2]+1) termsa jzn j

such thatn j ∈ In. By (15) and Ḧolder’s inequality,

‖ f‖Ap
F,Φ ,q

. (logc2+1)p−q+2
∞

∑
n=0

∑
n j∈In

|b j |pΦ
(

1
n j

)

Then, f ∈ Ap
F,Φ ,q

Lemma 2. If f ∈ Ap
Φ ,q(0< p,q< ∞), then

lim
ρ→1

∫ 1

0

∫ 2π

0
|F( f (ρ eiθ ))|pΦ(r)r drdθ

=
∫ 1

0

∫ 2π

0
|F( f (eiθ ))|pΦ(r)r drdθ

and

lim
ρ→1

∫ 1

0

∫ 2π

0
|F( f (ρ eiθ ))−F( f (eiθ ))|pΦ(r)rdrdθ = 0.

Proof. First let us prove

lim
ρ→1

∫ 1

0

∫ 2π

0
|F( fρ(e

iθ ))−F( f (ρ eiθ ))|pΦ(r)rdrdθ = 0

for p = 2. If F( f (z)) = ∑bp
j Φ

(
1
n j

)
( f (z))n is in A2

F,Φ ,q ,

then
∞
∑
j=1

|b j |pΦ
(

1
n j

)
< ∞.

But by Fatou’s lemma, we have
∫ 1

0

∫ 2π

0
|F( fρ(e

iθ ))−F( f (ρ eiθ ))|2Φ(r)r drdθ

≤ lim inf
ρ→1

∫ 1

0

∫ 2π

0
|F( fρ(e

iθ ))−F( f (ρeiθ ))|2Φ(r)drdθ

=
∞

∑
n=1

∫ 1

0

∫ 2π

0

∣∣∣∣b jΦ
(

1
n j

) 1
2

f (ρ eiθ )−b jΦ
(

1
n j

) 1
2

f (eiθ )

∣∣∣∣
2

×Φ(r)r drdθ

=
∞

∑
n=1

|b j |2Φ
(

1
n j

)∫ 1

0

∫ 2π

0
| f (ρ eiθ )− f (ρ eiθ )|2

×Φ(r)rdrdθ

which tends to zero asρ → 1. Now, we proof

lim
ρ→1

∫ 1

0

∫ 2π

0
|F( f (ρ eiθ ))|pΦ(r)r drdθ

=
∫ 1

0

∫ 2π

0
|F( f (eiθ ))|pΦ(r)r drdθ

in the casep= 2, If f ∈ Ap
F,Φ ,q (0< p,q< ∞), we use the

factorizationf = BgwhereB(z) is a Blaschke product and

g(z) is anAp
F,Φ ,q. Since(g(z))p/2 ∈ A2

F,Φ ,q, it follows from
what we have just proved that
∫ 1

0

∫ 2π

0
|F( f (ρ eiθ ))|pK(log

1
r
)rdrdθ

≤
∫ 1

0

∫ 2π

0
|F(g(ρ eiθ ))|pΦ(r)r drdθ →

∫ 1

0

∫ 2π

0
|F(g(eiθ ))|pK(log

1
r
)rdrdθ

=

∫ 1

0

∫ 2π

0
|F( f (eiθ ))|pΦ(r)drdθ .

This together with Fatou’s lemma complete the proof.

Theorem 4. If Φ(r) =
K(log 1

r )

ω1(1−r) and Ap
Φ ,q ⊆ RF . For 1 ≤

p< 2, 0< q< ∞ and
∞
∑
j=0

F−1(zj)(ω) zj ∈ H∞. If for each

0 < ρ < 1, f ∈ A1
F,Φ ,q, and (F( f ))ρ = F( fρ), then eω is

continuous on ApF,Φ ,q.

Proof. Let f ∈ A1
F,Φ ,q. Then for each

0< ρ < 1, fρ ∈ A2
F,Φ ,q and then

fρ(ω) = 〈 fρ ,Kω〉A2
F,Φ ,q

= 〈F( fρ),F(Kω)〉A2
Φ ,q

=
∫ 1

0

∫ 2π

0
F( fρ(e

iθ ))F(Kω(ρ eiθ ))Φ(r)r drdθ .

Also by Lemma 3.1, we have
‖(F( f ))ρ −F( f )‖A1

F,Φ ,q
→ 0 asr → 1.

Hence, using Ḧolder’s inequality and the fact that

F(Kω) =
∞
∑
j=0

F−1(zj)(ω) zj , we obtain

∣∣∣∣
∫ 1

0

∫ 2π

0

(
F(( f ))ρ −F( f )

)
(ρ eiθ )F(Kω)(ρ eiθ )Φ(r)rdrdθ

∣∣∣∣

≤ ‖F(Kω)‖∞

∫ 1

0

∫ 2π

0
F( fρ(e

iθ ))−F( f (ρ eiθ ))Φ(r)r drdθ

≤ ‖F(Kω)‖∞‖(F( f ))ρ −F( f )‖A1
F,Φ ,q

→ 0 as ρ → 1,

so we obtain

f (ω) = lim
ρ→1

fρ(ω)

=
∫ 1

0

∫ 2π

0
F( lim

ρ→1
fρ(ρ eiθ ))F(Kω)(ρ eiθ )Φ(r)rdrdθ

=
∫ 1

0

∫ 2π

0
F( f (eiθ ))F(Kω)(re

iθ )Φ(r)rdrdθ .

Hence,

| f (ω)| =
∣∣∣∣
∫ 1

0

∫ 2π

0
F( f (eiθ ))Φ(r)rdrdθ

∣∣∣∣
≤ ‖F(Kω)‖∞‖ f‖A1

F,Φ ,q
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for eachf ∈ A1
F,Φ ,q. Now let 1≤ p< 2. If f ∈ Ap

F,Φ ,q, then

| f (w)| ≤ ‖F(Kω)‖∞‖ f‖A1
F,Φ ,q

≤ ‖F(Kω)‖∞‖ f‖Ap
F,Φ ,q

,

so, the result follows.

Theorem 5. Let Φ : [0,∞) → [0,∞) be a non-decreasing
and right-continuous function satisfying (7) and let1 ≤
p< ∞, 0< q< ∞, ω ∈ ∆ , h∈ H(∆), h 6= 0. For each f∈
H(∆), F( f ) = f h. Then eω is continuous on ApF,Φ ,q.

Proof. We break the proof in to two parts.
(1) Let h(w) 6= 0. If |ω| < ρ < 1 andΓρ is the circle of
radiusρ with center at the origin, then the Cauchy formula
shows that for anyf in Ap

F,Φ ,q,

f (ω)h(ω) =
1

2π i

∫

Γρ

f (ζ )h(ζ )
ζ −ω

dζ

=
1

2π i

∫ 2π

0

f (ρ eiθ )h(ρ eiθ )

ρ eiθ −ω
ρ ieiθ dθ

=
1

2π

∫ 2π

0
f (ρ eiθ )h(ρ eiθ )

ρ
ρ −ωe−iθ dθ ,

Then,
∫ 1

0
f (ω)h(ω)Φ(r)rdr

=
1

2π

∫ 1

0

∫ 2π

0

f (reiθ )h(ρ eiθ )

ρ −ωe−iθ Φ(ρ)r ρ drdθ .

By Hölder’s inequality, it follows that

| f (ω)||h(ω)|
∫ 1

0
Φ(r)r dr

≤ 1
2π

‖( f h)ρ‖Ap
φ ,q

∥∥ ρ
ρ −ωe−iθ

∥∥
p∗ (16)

where 1
p + 1

p∗ = 1. Now if r tends to 1,
∣∣ ρ
(ρ−ωe−iθ )

∣∣
converges uniformly to the bounded function|1−ωeiθ |−1

and
‖( f h)ρ‖Ap

Φ ,q
≤ ‖ f h‖Ap

Φ ,q
.

Hence there in anM = ‖ρ/(ρ−ωe−iθ )‖
2πJ (Φ ,q) < ∞ such that

| f (ω)| ≤ M
|h(ω)| ‖ f‖Ap

F,Φ ,q
,

and the result follows.
(2) Let h(ω) = 0. Thenh(z) = (z−ω)mh0(z), wherem∈
N, h0 ∈ H(∆), andh0(ω) 6= 0.
Let F1( f ) = f h0 for each f ∈ H(∆), it is easy to see that
Ap

F,Φ ,q ⊆ Ap
F1,Φ ,q. Then by the preceding part, there is a

constant 0<C< ∞ such that

| f (ω)|p ≤C‖ f h0‖Ap
Φ ,q

=C
∫ 1

0

∫ 2π

0

∣∣ f (ρ eiθ )
∣∣p ∣∣h0(ρ eiθ )

∣∣p
E(ρ)Φ(r)rdrdθ

≤ C
(1−|ω|)mp

∫ 1

0

∫ 2π

0

∣∣ f (ρ eiθ )
∣∣p ∣∣h(ρ eiθ )

∣∣p Φ(r)rdrdθ

=
C

(1−|ω|)mp‖ f‖Ap
F,Φ ,q

for eachf ∈ Ap
F,Φ ,q. Soeω is continuous onAp

F,Φ ,q, where

E(ρ) = |ρ eiθ−ω|mp

|ρ eiθ−ω|mp.

Remark. It should be remarked that our results in this
paper generalize and improve the recent results in [3,10].
It is still an open problem to extend these results to
Clifford Analysis. For more information on studies of
function spaces in Clifford analysis, we refer to [1,2,5,6,
12] and others.
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