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Abstract: In this paper, we introduce a general class of analytic functions whitdnéxhe generalized Hardy space. Moreover,
investigate the continuity of the point evaluations on this space.
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1 Introduction For 1 < p < o, the generalized Hardy spacerl§(A) =
Hrp is defined to be the collection of all analytic functions
f on A for which
LetA = {ze C: |7 < 1} be the open unit disk in the o
complex planeC, dA its boundary andd(A) the space sup |(|:(f))r(ei9)|p% < o,
of all analytic function on the unit disk. For an analytic 0<r<1/0 2n
function f on the unit disk and & r < 1, we define the

delay functionf, by f,(€9) = f(rel®). It is easy to see that SOt thepth root of this supremum byf |y .. Since,

the functionsf, are continuous oA for eachr. [F(f)[Pis a subharmonic function, so by][ we have
The theory of harmonic functions motivates the following . 2n 9500
classes of analytic functions, determined by their lingjtin 118, = r'lffll/o IF(f)r(€ )|p§_[ <.

behavior as their arguments approach to the boundlary

For 0< p < o, the Hardy spacklP is defined as the set of Therefore,f € Hg , if and only if F(f) € HP and

analytic functionsf : A — C such that 46
p

2n )
IR = 1118, = tim [ IR (D) ()P,

2n i\ nd0
1£1Bo= sup [ 16E@0)P5 <o | | |
0<r<17/0 Itis easy to see thadr  is a normed space with the norm

By the Littlewood Subordination Theorem (seg)] we 1-l1He p- .
see that the supremum in the above definitiorHd¥ is 'f:0r|9|<A p< T:vﬂt]h? Bergman spacéP is the set of all
actually a limit, that is, € H(4) such tha

[ 1f@[PdAD) < e,
A

where dA(z) = dxdy = rdrd6 is the Lebegue area
It should be mentioned that the functipn|f, : HP — R* measure. We mentior9] as general reference for the
is a norm onHP, and makedHP into a Banach space for theory of Bergman spaces.
1 < p < o (see B]). For more studies on Hardy space, we We assume from now on th#t : [0,00) — [0,) to
referto B,11,13]. appear in this paper is right-continuous and nondecreasing
Recently Fatehi0], introduced the following definition  functions such that the integral

an o od
P OyIp
71 = lim [~ 1595 <.

Definition 1. Let F: H(A) — H(A) be a linear operator 1/e ® o
such that K f) = 0if and only if f= 0, that is, F is1— 1. /0 K(log(1/p))pdp = /1 K(t)e " dt < co.
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We can define an auxiliary function as follows:

Throughout this workP denotes the set of all analytic
polynomials and for a functioR, R denotes the range of

K (st 1
P (s) = SUle((t)), 0<s< o, F. We assume alsap(r) = ﬁ'&%’r;, wherew; is a given
<
o<t reasonable functiony : (0,1] — (0,c0) with ey # 0, for
we assume that more properties of the reasonable function we refer to
[4,14] and [15].
/ P (9% <o, (1) Forp,qe (0,), the weighted Bergman spagé, , is the
setof allf € H(A) such that
/ ¢K —_— < 0. (2) || f ||A2:,q
1 2m "
From now on we suppose that the above weight function = sup / /0 [fo(€°)|P@(r)rd@dr < . (4)
O<p<1 .

K satisfies the following properties:
(a)K is nondecreasing 0, ),
(b) K is twice differentiable orf0, 1),
1

() Jy K(log})rdr < e,
(dK(t)=K(1)>0,t >1and
(e)K(st) =~ K(t), t >0.

We will need the following result in the sequel.
Theorem 1. ([16]) If K satisfies condition(2), then for
anya >1and0< f3 <1, we have

1
/ r7L(log 2)~BK (log 1)dr
0 r r

~C(B) (1;’3)1B¢(1;’3) @)

where Gf3) is a constant depending only ¢h

An important tool our study is the auxiliary functicH,,
defined by

wi(st)
Wy (s) = sup ——=, O0<s<1
() o<t<p1 wi(t)
Lemmal. (see B]) If w; satisfies, the following

condition
1 ds
/1 L'le(s)? <

ds (where0<t<1),

0=t [ &

has the following properties :
(A) w* is nondecreasing of0,1).
(B) w*(t)/t is nonincreasing ori0, 1).

(C) w*(t) > wi(t)forallt € (0,1).

The above formula defines a norm that tuA§ into a
Hilbert space whose inner product is given by

<f7g>A%D1q
_ i?(n)g(n) - ./O'Z'T(fr(ée)) (6:(€9))rdrde (5

for eachf,ge A .

Remark.By using known technique, it is easy to prove that
(A5 " ||.||A53q) is a Banach space, that is, the nqtr‘[hAg
s X |

is complete.

2 The generalized space

Definition 2. Let F: H(A) — H(A) be a linear operator
such the Ff) =0if and only if f=0, thatis,F is1—1.

Suppose tha®(r) = wﬂog ; is a nondecreasing and right-

continuous function. For g € (0, »), the(F, ®)-Bergman
space £ , 4(4) = AL ¢, is defined to be the collection of
all analytic function f omA for which

[1f1la2

F.®,q
- [
0<p<1/0

The importance of this definition is that it contains some
known classes of analytic function spaces like Bergman
and Hardy classes as we mention in the following remark:

5 (€9))[Po(r)rdrd6 < . (6)

Remark. We note that iff; @(r)rdr = 1, then we obtain
the generalized Hardy space as defined and studiddjin [
Also, if ®(r) =1,q=0, andF(f,(€9)) = f(2), then we

obtain the Bergman spaéé.

Theorem 2. Let pg e (0,0) and PC Re. Then A, is a

(D) w" <wpon(0,1).

subspace of Rif and only if qu,,q is a Banach space.
If wi(t) =wi(1) fort > 1, then we also have

Proof. Suppose that}, q ERe. SmceAFd, is a normed
(E) w'(t)=w"(1l) =w(l) fort >1 sow" ~w on  space, it suffices to show that it is complete L&t} be
(0,1) Cauchy sequence m,‘:’ g and sef (fn) = gn. Then{gn}
© 2014 NSP
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is a Cauchy sequence ihf,’,ﬂ. SinceAf,’m is complete,  Proof. If Af,’,,p C Rr, then by Theorem 2.1, the proposition
thereis g € Af;,,q such that holds. Otherwise, lef, be a Cauchy sequence AE,K,q'
SettingF (f,) = gn, SO{gn} is a Cauchy sequenceAd, p
Therefore, there is g € Al q such that|g, — g||Ap e 0

SinceA? CRe. there is arf € A(A) such thaf (f) — g. asn— o. If g € Rg, then the proof is similar to the proof
@.,q of Theorem 2.

Now we show that thigf is the A ;, -limit of {fn}. We  Now suppose thag is not in Re. Then there areg € A,

||9n—g||qu — 0, asn— o«

have my > 0, andmy > my such that
0= Tllag,,, = llh—9llgq 0, asn— e 9(2) = (2-20) %0 (2),
Hence f, — f € A‘Fjﬁq,‘q for sufficiently large positive h(z) = (z— 20)™ho(2),

integern, which implies thatf € A2, .. So f — f in
Af ¢4 @SN — .
Conversely, suppose th:atét,ﬁ’ﬁ,7q is a Banach space. If

where hp,go € H(A),90(z0) # 0, and ho(z) # O.
Therefore, we have

A}, C Re, then there is @ € Afy  such thaigis notin G0 —0llag =[P *QHAQ
R¢. Since the polynomials are dense/hﬁ, there is a
sequence pn} in P such thaf|pn — gl — 0 asn— o, = / / @(r)rdrd®,

Let gy = F~%(pn). Then {qn} is a Cauchy sequence in \here
A,:q,OI and so there is aq ¢ AF(I,q such that

lon = alle, — O a n — o Hence T(p,6)

L®.q . . . .
IF (an) — F(@)lap 5. 0 asn — «. On the other hand, = (p€® —2)™hy(p€®)f,— (p€® —20)™go(p€?).
IF (ain) =gl a5, , — 0 asn— . This shows thag = F(q)

Since|lgn—9|[pp  — 0 asn — o, we have
which is a contradiction. 4

Proposition 1. If qu_’q C Rr, and suppose that M}n / / (p,0) pq, (r)rdrd@ = 0. ©)
1
(@4 = [ ordr <o, (1) Hence, |z~ %)™hofn — (- )™l — O as
0 n — oo, Since the point evaluation &, is a bounded
then 4 o, , is a Hilbert space. linear functional omAg, ,, we have
Proof. We define the scalar product 8@ ;, , by (20— 20)™hofn(20) — (20 — 20)™go(20) = 0, N— . (9)
(f,0) Sogo(z0) = 0, which is a contradiction.
Af g
. I =rP W T:Ie) In the following proposition, we will find a dense subset in
_/ / F(fp(€))F (gr(€9))@(r)rdrde N g Whenever & R
2 [
<C /0 F(fo(€9))F (g (€9))do Proposition 3. Suppose that < p < ©, 0 < g < », and
= (F(1).F(@)uz- PCRe. Then{F1(p): PE P} = ALoq

It is easy to show that this scalar product defines an innepqof. |t is clear that{F~1(p): pe P} C AF o.q Suppose

product onAg o,,. that f € A2 ;, - Then there is a sequenéen} in P such

i _ -1
There is a Banach spa@(—ﬁ7 P such that it does not satisfy that|[hn — (f)HA&q — 0asn— . Settingfn = F~"(hn),

the condition of Theorem 2. For example, let We have
1< p,g< o, F(f)=zffor eachf € H(A). Then ¥Rr. -
By the foIIowmg proposition, we see that although ||f“_fHA|‘3,¢,q_ ”h”_F(f)”A%‘q’ (10)

AP is a Banach space.
0q < RF AF @ P so the result follows.

Proposition 2. Suppose that < p< o, 0<g< o, he
H(A), h#0, and F(f) = fh for every fe H(A). Then  Corollary 1. Suppose that < p <, 0<q<», PCRF,
Af ¢ 4 I @ Banach space. and F~*(p) € P for each pc P. ThenPNAE ;, . = Af ¢ -
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3 Point Evaluations

Let e, be the point evaluation atw, that is,

ew(f) = f(w). Itis well known that point evaluations at

the point ofA are all continuous oAK

Let w € A andH be a Hilbert space of analytic functions

onA. If e, is a bounded linear functional d#, then the

Riesz Representation Theorem implies that there is

function (which is usually called,) in H that induces
this linear functional, that i, (f) = (f,Ky,).

In this section, we investigate the continuity of the

point evaluations 014\,: o,
Next, we prove that an analytlc functidnon the unit disk
with Hadamard gaps, that i§(z) satisfying ":1 >c>1

for all k € N belongs to the spackf , .

Theorem 3. If ®(r) = Eﬂolg_%rﬁ and

=y bz (11)
=1

is in the Hadamard gap class, thenefAE?q,’q if

S bj|Pa>(nlj) <o, (12)

=1

Proof. First assume that conditiofi2) holds. We write
z=re' in polar form and observe that

8

f@l< 5 [bjlrh
j=1

Then, by Theorem 2.1 and Lemma 1, Fetf) = g, we
obtain

[11lap

F.e.q

—/ /27T f(re'®))[Po(r)rdrd6
—/ / g(re'®)|Pa(r)rdrd @
—/ /Zn(ib L ) (r)rdrd@

p
:Zn/ r‘p+1[ |b-r”i] o(r)dr
PR

Using the Cauchy-Schwarz inequality to produce

3]
_ Zon]%nm,rm] _[inj%nb”rznr

p
< (2n/2 2”)1 1/p( n o1 p)n/Z)l/p b]|:|
a _nZO n%n

r oo p =) p
< r2r12((1p)/2)n< |b|> :| [ 2n/2r2”:|
_nZO n;‘n : HZO
( 1\ P2 o apyan | P
<C Iog) re 24 ( b-)
r n; n;n :

wherel, = {j : 2" < j < 2" j € N}. To this end, we
combine the elementary estimates:

on+1

izgr fzo/z t~2radt

< \@/ t=3rbdt

< 2/‘(1)<Iog )

This very useful tool can now be applied to the calculation
above to obtain

© 1p p
Iflg,,<C5 @)% | 5 Iy

29—p-3

x/olrzn’”l(Iog:)Tcp(r)dr (13)

where (1 —r?) < 2log%. This together with(13) and
Theorem 1.2 foo = 2" — p+2, = 2-2=3 e obtain

S

Illag,.

Elaml () (255
< . P S S
=C2, Z’ 2" 271 -2(p—2)
® 54+ p—2q

27 1-2(p—2)

5+p—2q
2E-a

<5[snl'(2)(3) o)
gcni[nj%nm”]p(zln)pq+2¢(21n> (14)

If nj € In, thenn; < 2" < 21 |t follows from the
monotonicity of k, Lemma 1 an&(2t) < CK(t) for all
0< 2t <1, such that

1\P%2 1 (p-q12) 4 (1
(z)  o(z)<me(s)

© 2014 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theor2, No. 1, 25-31 (2014) www.naturalspublishing.com/Journals.asp

Combining this with(14), we obtain

< : P2 ( =
Il S 3 L%nbj'} n} “°<n,-)-
- ]

(15)

Since f is in the Hadamard gap class, there exists a

constantc such thatn;j 1 > cn; for all j € N. Hence, the
Taylor series off (z) has at most[log, 2] + 1) termsa;z"
such than; € In. By (15) and Hdlder’s inequality,

_ = 1
I1lhg, , < (og2+0772 5 5 IoPo( )

Then,f € AL,

Lemma 2. If f € A, ,(0< p,q < ), then
Iim/ /
p—1

27r
Iim//
p—1
Proof. First let us prove
Iim//
p—1
for p=21If F(f(2) = szCD( )(f(z))“ isin AZ g g

then 2 |b,|p¢>( ) < oo,

But by Fatou’s lemma, we have
1 r2m ei@
F(f
/0 /o IF(fo(
< lim inf

oL

(f(pe?)[Po(r)rdrd6

f(€9))[Po(r)rdrd6

(f(pe?) —F(f(d?)|Pa(r)rdrd6 = 0.

F(fo(€9) —F(f(p€?)|P@(r)rdrd8 =0

F(f(p€?)|?®(r)rdrd6

F(fo(€9) —F(f(pe?))|?®(r)drda

B L[ e(2) roe-0e(3) e
x@(r)rdrdo

-5 blo( ) [0~ toet)
x@(r)rdrd6

which tends to zero g3 — 1. Now, we proof

9(2) is anAR , .. Since(g(2))P/? € AZ o, it follows from
what we have just proved that

I
//

I,
—//

This together with Fatou’s lemma complete the proof.

f(pe?))|PK(log= )rdrde

(9(p€®))[Po(r)rdrdo —

g(¢9))|PK (log = )rdrde

f(€9))|Po(r)drde.
(I
wlfg D and A, C Re. For 1 <

p<2,0<q<ooansz 1(Z)(w) 2l € H*. If for each
j=0

Theorem 4. If &(r) =

0<p<l, feAlyy and(F(f)),=F(fp), thene,is
continuous on B, ..

Proof. Let f € Atp, Then for each
0<p<1,fpehiy andthen

= <F(fP)7F(K(u)>A(ZD‘q

- / / F(Ko(p €)@ (r)rdrd6.
Also by Lemma 3.1, we have
I(F(f)p —F(F)llaz, —0asr—1

Hence, usmg Idlders inequality and the fact that
F(Kp) = z F-1(z))(w) 2, we obtain

27‘[

F(1))(p€®)F(Ko)(pe®)@(r)rdrd6

< IF(Ke) ||m// F(f,(€9)) — F(f(0€®)) ®(r)rdrde
< IF(Ke)llwI(F F(Dllaz, 0g 70 BSP— L

SO we obtain

f(@) = lim f5(w)

F(lim fo(p€?))F(Ky)(p€®)@(r)rdrdd

p—>1

-}, /2"

2n
Iiml/ / (f(pe®)[Po(r)rdrd8 _/ / F(f(6°))F (Ko) (ré®) & (r)rdrd.
p—

Hence,
_/ / (%)) Po(r)rdrde oo
w)| = ‘/ / F(f(€) @ (r)rdrd@
inthe casgp=2,If f € A,:Aq,)q (0< p,g< ), we use the 0 /0
factorizationf = BgwhereB(z) is a Blaschke product and < IF(Ko)lleoll Fllag
@© 2014 NSP
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for eachf € AL 5, . Nowlet 1< p<2.If f € AR, ., then
[fW)] < IF (K)ol Tllaz , . < IF (Keo)lleoll Tl

so, the result follows.

Theorem 5. Let @ : [0,00) — [0,) be a non-decreasing
and right-continuous function satisfying (7) and e
p<o,0<qg<o welA heH(A), h#£0. Foreach fe
H(4), F(f) = fh. Then g, is continuous on A, .

Proof. We break the proof in to two parts.
(1) Leth(w) # 0. If |w| < p < 1 andl, is the circle of

for eachf € AL ;. So€y, is continuous om¢ , ., where
E(p) = 25—

lpe®—wmp*
Remark. It should be remarked that our results in this
paper generalize and improve the recent result8,ibd.
It is still an open problem to extend these results to
Clifford Analysis. For more information on studies of
function spaces in Clifford analysis, we refer 92,5, 6,
12] and others.

radiusp with center at the origin, then the Cauchy formula References

shows that for anyf in AF o.q

1 [ f(O)h
flh(@) = 5= [ %dz
)

- 2m f(pe)h Pe'e) 0

N Zm/  péi_w pie”do

_ 0\h 6 P

= o [T t0dnioe )5 .
Then,

/ fw

2nf el@ pe|6)
271// p— we*'e

By Holder’s inequality, it follows that

1
|f<w>||h<w>|/ P(rrdr

@(r)rdr

®(p)rpdrdf.

p
< 271H(fh)pHAqum o (16)
where £ + 1 = 1. Now if r tends to 1, Il

converges uniformly to the bounded functidn- we'®| 1
and
1CEMpllag . < lIThllag, -

Hence there in am = 1R/~ )H < oo such that

271/
and the result follows.
(2) Leth(w) = 0. Thenh(z) = (z— w)™ho(z), wherem €

N, ho € H(A), andhp(w) # 0.

Let F1(f) = fho for eachf € H(A), it is easy to see that
AL o4 C A o Then by the preceding part, there is a

constant 0< C < o such that
()P <Cllfhoap,

:C/l/zn’f(peiaﬂp Iho(p€®)|PE(p) @(r)rdrd 6

e b 1

= W)H HAqu

1T(p€%)|n(pe®) | o(r)rdrd6
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