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Abstract: In this paper, we study some properties such as translativity and consistency of the Taylor method of summability in
complete, non-trivially valued, ultrametric fields of characteristic zero and also prove few tauberian theorems on such a method .
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1 Introduction and Preliminaries

Throughout the present paper,K denotes a complete, non-
trivially valued, ultrametric field of characteristic zero(Qp,
the p-adic field for a primep, is one such field). Infinite
matrices, sequences, and series considered in the sequel
have entries inK. Given an infinite matrixA= (ank), ank∈
K, n,k = 0,1,2, . . . and a sequencex= {xk}, xk ∈ K, k =
0,1,2, . . . , by theA-transform ofx = {xk}, we mean the
sequenceAx= {(Ax)n}, where

(Ax)n =
∞

∑
k=0

ankxk, n= 0,1,2, . . . ,

it being assumed that the series on the right converge. If
{(Ax)n} converges toS, we say thatx= {xk} is summable
Aor A-summable to s. If lim

n→∞
(Ax)n = s whenever

lim
k→∞

xk = s, we say thatA is regular. The following

theorem, which gives necessary and sufficient conditions
for A = (ank) to be regular in terms of the entries of the
matrix, is well known (see [4] for a proof using ‘Uniform
Boundedness Principle’ and [5] for a proof using ‘Sliding
Hump method’).

Theorem 1.A= (ank) is regular if and only if

1.sup
n,k

|ank|< ∞

2.lim
n→∞

ank = 0, k= 0,1,2, . . . ,

and

3.lim
n→∞

∞

∑
k=0

ank = 1.

An infinite series
∞

∑
k=0

xk, xk ∈ K, k = 0,1,2, . . . , is said

to beA-summable tos if {sn} is A-summable tos, where

sn =
∞

∑
k=0

xk, n= 0,1,2, . . . .

In the present paper, we prove some interesting
properties of the Taylor method of summability
introduced earlier by Natarajan [9].

General references for the study of summability
methods in the classical case are [3,10], while for
analysis in ultrametric fields, see [1].

Definition 1.Let r ∈ K be such that|r| < 1. The Taylor
method of order r or the[T, r] method is given by the

infinite matrix(t(r)n,k) which is defined as follows:
If r 6= 0,

t(r)n,k =

{

kCnrk−n(1− r)n+1, k≥ n
0, k< n

If r = 0,

t(r)n,k =

{

1, k= n
0, k 6= n

(t(r)n,k) is called the[T, r] matrix.

Remark.We note thatr 6= 1, since|r|< 1.
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The following results are needed in the sequel.

Theorem 2.Let x= sup{|x|/x ∈ K, |x| < 1}. Let r ∈ K

satisfy|r|< x−
1

x−1 . Then the[T, r] method is regular.

Theorem 3.The product of the[T, r] and [T,s] matrices is
the matrix(1− r)(1− s)[E,(1− r)(1− s)].

Corollary 1.The [T, r] matrix is invertible and its inverse
is the

[

T,− r
1−r

]

matrix.

2 Main Results

In this section, we prove some interesting properties of the
Taylor method.

Theorem 4(Limitation theorem). If
∞

∑
k=0

xk is [T, r]

summable, then{xk} is bounded.

Proof.Let {σ (r)
n } be the [T, r] transform of{sn}, where

sn =
n

∑
k=0

xk, n= 0,1,2, . . . , i.e.,

σ (r)
n =

∞

∑
k=n

kCnrk−n(1− r)n+1sk, n= 0,1,2, . . . .

By hypothesis lim
n→∞

σn = σ (say). So{σn} is bounded.

i.e., there existsM > 0 such that|σn| ≤ M, n= 0,1,2, . . . .
Note that, in view of Corollary1,

sn =
∞

∑
k=n

kCn

(

−
r

1− r

)k−n(

1+
r

1− r

)n+1

σk, n= 0,1,2, . . .

=
∞

∑
k=n

kCn(−r)k−n(1− r)k+1σk, n= 0,1,2, . . .

≤ M.max
k≥n

{|r|0|1− r|−(n+1)|r||1− r|−(n+2) . . .}

≤ M,

since|kCn| ≤ 1, |r|< 1, |1− r|= max{|r|,1}= 1.
Consequently,

|xk|= |sk− sk−1| ≤ max{|sk|, |sk−1|} ≤ M,k= 0,1,2, . . . ,

so that{xk} is bounded.

Remark.We recall that the classical Mazur-Orticz theorem
says that if a conservative matrix sums a bounded
divergent sequence, then it sums an unbounded one. It
was pointed out in [8] that the above theorem fails to hold
in the ultrametric case, a counter examples being any
regular(N, pn) and[E, r] methods. Theorem4 shows that
any [T, r] method is also a counter example to show that
the Mazur-Orticz theorem fails to hold in the ultrametric
set up.

Definition 2.Given a sequence{xk}, define the sequence
{xk} byxn = 0, xk = xk−1, k≥ n, n= 0,1,2, . . . . A= (ank)
is said to be left translative if the A-summability of{xk} to
s implies the A-summability of{xk} to s.

Theorem 5.[T, r] is right translative but not left.

Proof.Let {σn(r)} be the [T, r] transform of {xk} and
{τn(r)} be the [T, r] transform of{xk}. We shall now
prove that

lim
n→∞

τn(r) = s⇒ lim
n→∞

σn(r) = s.

Now,

σn(r) =
∞

∑
k=n

kCnrk−n(1− r)n+1xk, sincexk−1 = xk

=
∞

∑
k=n

kCnrk−n(1− r)n+1xk+1, sincexn = 0

=
∞

∑
j=n+1

j −1Cnr j−1−n(1− r)n+1x j , put k= j −1

=
∞

∑
j=n+1

j −1Cnr j−1−n(1− r)n+1

(

∞

∑
k= j

kCj

(

−
r

1− r

)k− j (

1+
r

1− r

) j+1

τk(r)

)

=
∞

∑
k=n+1

rk−1−n(1− r)n−kτk(r)

(

k

∑
j=n+1

(−1)k− j kCj j −1Cn

)

Using the identity

∞

∑
k=n+1

(

k

∑
j=n+1

(−1)k− j j −1Cn

)

zk =
∞

∑
k=n+1

zk,

We note that

∞

∑
k=n+1

(−1)k− j j −1Cn = 1, k≥ n+1. (1)

In view of (1), we have

σ (r)
n =

∞

∑
k=n+1

rk−1−n(1− r)n−kτ(r)k .

Since|r|< 1, all the conditions of Theorem1 are fulfilled
and so lim

k→∞
τk(r) = s implies that lim

k→∞
σn(r) = s. Thus[T, r]

is right translative.
Now,

τn(r) =
∞

∑
k=n

kCnrk−n(1− r)n+1xk

=
∞

∑
k=n

kCnrk−n(1− r)n+1xk−1

=
∞

∑
j=n−1

j +1Cnr j+1−n(1− r)n+1x j put k= j +1

=
∞

∑
j=n−1

j +1Cnr j+1−n(1− r)n+1
∞

∑
k= j

kCj

(

−
r

1− r

)k− j (

1+
r

1− r

) j+1

σk(r)

=
∞

∑
k=n−1

rk+1−n(1− r)n−kσk(r)

(

∞

∑
j=n−1

(−1)k− jkCj j −1Cn

)

(2)

c© 2015 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theor.3, No. 1, 75-78 (2015) /www.naturalspublishing.com/Journals.asp 77

We note that

k

∑
j=n−1

(−1)k− jkCj j +1Cn 6= 1, k≥ n−1 (3)

In view of (3) and |r| < 1 (2) does not satisfy all the
conditions of Theorem1.
[T, r] is not left translative.

Definition 3.The inifnite matrix methods A= (ank),
B = (bnk) are said to be ‘consistent’ if no sequence is
summable to different values by A and B, i.e., if a
sequence{xn} is A-summable toℓ and B summable to m,
thenℓ= m.

As in the case of regular(N, pn) methods (see [11],
Theorem 4.1) we have the following result.

Theorem 6.Any two Taylor methods are consistent.

Proof.Consider the Taylor methods[T, r] and [T,s]. We
then have|r|, |s| < 1. Let {σn(r)}, {τn(s)} be the[T, r],
[T,s] transforms of{xn} respectively. Let lim

n→∞
σn(r) = σ

and lim
n→∞

τn(s) = τ. We claim thatσ = τ. Now,

σn(r) = [T, r]({xn})

and
τn(s) = [T,s]({xn})

So

σn(r) = [T, r][T,s]−1({τn(s)})

= [T, r]

[

T,−
s

1− s

]

({τn(s)}), using Corollary1

=

[

T,
r − s
1− s

]

({τn(s)}) [see[9]] (4)

Note that
∣

∣

∣

∣

r − s
1− s

∣

∣

∣

∣

= |r − s|, since|1− s|= 1,

using

|s|< 1

= |(1− s)− (1− r)|

≤ max{|1− s|, |1− r|}

< 1

so that
[

T, r−s
1−s

]

is regular, in view of Definition1 and
Theorem2. Using (4), it follows that σ = τ, completing
the proof.

We shall now prove a few Tauberian theorems for the
method[T, r] modelled on those proved for[N, pn] and
[E, r] methods by Natarajan [7] and Deepa et al. [2]
respectively.

Theorem 7.If
∞

∑
k=0

ak is [T, r] summable toσ and if an → ℓ,

n→ ∞, then
∞

∑
k=0

ak converges toσ .

Proof.In view of Theorem1 of [7], it suffices to prove that
the sequence{k} of integers is not[T, r] summable. Let
{σn(r)} be the[T, r] transform of{k}, i.e.,

σn(r) =
∞

∑
k=n

kCnrk−n(1− r)n+1k, n= 0,1,2, . . . .

Now,

σn(r)−σn+1(r) =
∞

∑
k=n

kCnrk−n(1− r)n+1k−
∞

∑
k=n+1

kCn+1rk−(n+1)(1− r)n+2k

= (1− r)n+1n+
∞

∑
k=n+1

(

kCnrk−n(1− r)n+1−kCn+1rk−(n+1)(1− r)n+2
)

k

= (1− r)n+1n+
∞

∑
k=n+1

kCnrk−n(1− r)n+1k−
∞

∑
k=n+1

kCn+1rk−(n+1)(1− r)n+2k

Using|r|< 1, |1− r|= 1, |k| ≤ 1, k= 0,1,2, . . . , we have,
∣

∣

∣

∣

∣

∞

∑
k=n+1

kCnrk−n(1− r)n+1k

∣

∣

∣

∣

∣

≤ Max
k≥n+1

{|n+1Cn||r||1− r|n+1, |n+2Cn||r|
2|1− r|n+1, . . .}

< Max{|r||1− r|n+1, |r|2|1− r|n+1, . . .}

< 1, since|r|< 1and|1− r| = 1, |n+kCn| ≤ 1.

Similarly,
∣

∣

∣

∣

∣

∞

∑
k=n+1

kCnrk−n(1− r)n+1k

∣

∣

∣

∣

∣

< 1

|(1− r)n+1n|= 1, ∵ |1− r|= 1, |n| ≤ 1

so that

|σn(r)−σn+1(r)| = 1, n= 0,1,2, . . . .

Thus {σn(r)} is not a Cauchy sequence and hence
diverges, i.e.,{k} is not [T, r] summable, completing the
proof.

Using Theorem??of [7], we have,

Theorem 8.If
∞

∑
k=0

ak is [T, r] summable toσ and if an+1−

an → ℓ, n→ ∞, then
∞

∑
k=0

ak converges toσ .

As in the case of regular(N, pn) method ([7], Theorem
5), we have the following thoerem too.

Theorem 9.If
∞

∑
k=0

ak is [T, r] summable, then the following

Tauberian conditions are equivalent:

(i)an → ℓ, n→ ∞;
(ii)an+1−an → ℓ′, n→ ∞

If, further, an 6= 0, n= 0,1,2, . . . , each of
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(iii) an+1
an

→ ℓ, n→ ∞;
and

(iv)an+2+an
an+1

→ 2, n→ ∞

is a weaker Tauberian condition for the[T, r] summability

of
∞

∑
k=0

ak.
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