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Abstract: The purpose of this text is twofold. First we discuss some problems imgpRaul Erds (1913-1996), whose centenary
of birth is this year. In the second part some recent results on divisbtgms are discussed, and their connection with the powers
moments OM(% +it)] is pointed out.
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1 Introduction survey of theSelberg clasf L-functions generalizing
¢(9)
The classical number of divisors function of a positive  The functiondk(n) is a also multiplicative function of
integern is n, meaning thatl,(mn) = dx(m)d(n) if mandn (¢ N) are
d(n):= 21. coprime, and
oln

We haved(mn) = d(m)d(n) whenever(m.n) = 1, so that d(p?) = (-1)° ( a)” al

d(n) is a multiplicative arithmetic function. Further
d(p?) = a+1 for a € N, where p, p; denote generic
primes andN is the set of natural numbers. Therefore, if
n=j-1 p‘f" is the canonical decomposition of into
prime powers, then

—k) k(k+1)---(k+a—-1)
for primesp anda € N.

2 Iterations of d(n)

d(n)=(a1+1)(az2+1)---(ar+1).
From the wealth of problems involving the divisor

In general function d(m) we shall concentrate on some problems
- connected with the work of Paul Ed (1913-1996), one
Kiq) -s of the greatest mathematicians of the XXth century. We
= k R 1 Lo . . .

s n;dk(n)n (keN, Res>1), begin with the iterations ad(n). Thus let, fork € N fixed,
where the (general) divisor functiak(n) represents the d¥(n) :=d(n), d¥(n):=d (d<kfl>(n)) (k> 1)
number of way$ can be written as a product kfactors,
so that in particulard;(n) = 1 andd(n) = dx(n). The
Riemann zepta-functio;(is) (n) = dz(n) be the k-th iteration of d(n). Already d®(n) is not

multiplicative! This fact makes the problems involving
o el d®(n) and iterates of other multiplicative functions quite
(9= n>=11-p7) (Re s> 1), it P ’

=t P The great Indian mathematician S. Ramanujan (1887-

otherwise it is defined by analytic continuation. It is the 1920) [40] proved in 1915 that (for the connection between
simplest and most important example of the so-calledErdés and Ramanujan seg)

class of L-functions Y, f(n)n° satisfying certain

natural properties. See e.g., J. Kaczorows] [for a d@(n) > 4v2logn/loglogn
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for infinitely many n. This lower bound follows if one and the boundd(n) = ¥ 1 is the number of distinct

considers g; is the j-th prime) prime factors oh > 1, w(1) = 0)
_ ol o2 4 pk—1 1/2
N=2"-3°.5"....p (2.1) w(d(n)) (Iognloglogn) .
logloglogn
and letsk — o. Namely
For some other work of P. Eéd and A. IvE ond(n) see
d(N)=2-3-5-...-p, d@(N)=2¥ [12] and [B], the last paper bring a joint work with S.W.

Graham and C. Pomerance.
and one easily boundsfrom (2.1) by the prime number . . .
theorem. Ramanujan’s pape#(] contains many other A. Smati [42], [43] improved the upper bound in (2.4)
results on the divisor functiod(n) to
) .
Important results on the order df¥) (n) were obtained d@(n) < exp(C\/@)

in 1967 by P. Erds and |. katai [L3]. Let £ denote thé-th C>0n>no), (25)

Fibonacci number: which turned out to be only by a factor of loglngin the
exponent) smaller than the true upper bound. Namely, in
t1=0,lo=1 l=licitblcz (k=1). 2011 Y. Buttkewitz, C. Elsholtz, K. Ford and J.-C.

Schlage-Puchta3] practically settled the problem of the

Then the result of P. Efis and |. Katai says that maximal order ofi®) () by proving that

d¥(n) < exp((logn)l/gk”) (2.2) masdog d (n) — 0g% (1, o ( 09loglogx
n<x loglogx loglogx ’

for fixed k andn > no(g,k), and that for everg > 0 _ .
whereD = 2.7958... is an explicit constant. Note: We

use throughout the paper the notati@hdenotes generic
postive constants)
f(x) < g(x) <= f(x) = O(g(x)) <= [ F(x)| <CYX) (x> Xo).

d®(n) > exp((logn)l/fk‘g) (2.3)

for infinitely manyn. Here and latee denotes arbitrarily
small positive constants, not necessarily the same ones at R. Bellman and H.N. Shapir@] conjectured that, for
each occurrence. The lower bound in (2.3) followsrfes fixedk > 1,
N;, where inductivelyN; =2-3-...- pr, and if
Z d®(n) = (1+0(1))cxlogex  (x— ), (2.6)
n<x

S
N: = l li
1= i'] B where log is thek times iterated natural logarithm. For
k =1 this s trivial, but fork > 1 it is a difficult problem. P.
say, then Erdds [8] and |. Katai [34] obtained (2.6) fok = 2, while
I. Katai [35] proved it fork = 3. Finally Erdbs and Katai
Njs1=(p1-...- prl)pifl(prﬁl o pr1+r2)p271 [14] proved it fork = 4, where the matter seems to stand
at present.
)ij—l Finally we mention a problem related to the iteration
' of d(n). In 1992 the author42] conjectured that

Then one hagl®(Ny) = 2", and the proof reduces to )3 d(n+d(n)) =Bxlogx+0(x) (B>0). (27
finding the lower bound for. The proof of the upper e

bound in (2.2) is more involved.

Improvements of (2.2) and (2.3) in the general casel- Katai [36] obtained this formula with the error term
have been obtained by A. Smadid. Extensive work has ~ O(xlogx/loglogx). He indicated that a formula
been done in the case whir= 2. Thus in L1] P. Erdés  analogous to (2.7) holds also for the summatory function

A (pr1+...rsj71+1 teest prl+...rsj

and A. Ivic proved, fom > ng and suitableC > 0, of d(n+ f(n)), where for example,
1/2 f(n) = w(n), Q(n) := ; a,dk(n).
d?(n) <exp(C lognloglogn ) (2.4) pan
logloglogn
This follows from 3 P. Erd6s’s work ond(n) in short intervals

From the rich legacy of P. Eé$ concerning results and

r
logd(n) = i;log(ai +1) <rloglogr = () logloge(n), problems involvingd(n) we single out his classical paper
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[7] (for some of his other papers involvirg(n), see ]
(with J.-L. Nicolas and A. 8rkdzy) and [LO] and [15], the
last two written jointly with R.R. Hall and L. Mirsky,
respectively). He begins in7] (we keep his German
original): d(n) sei der Anzahl der Teiler von n. Folgende
asymptotische Formel ist wohl-bekannt:

X

Z d(n) = xlogx+ (2C—1)x+0O(xY), a =15/46

=1
(3.1)
(C ist die Eulersche Konstante)
Note that the function in th&®-term is commonly
denoted byA(x), thus

Zd

n<x

X(logx+2C—1). (3.2)

The constant 15/46 = 0.32608 due to H.-E. Richert
[41] (1952), can be replaced by M.N. Huxley's (2003)
[19] value 131/416 = 0.31493..

Erdés’s theorem is as followsEs sei lix) eine
beliebige wachsende Funktion, die mit x gegestrebt.
Es sei

f(x) > (Iogx)z'ogz’lexp(h(x)\/IogIogx).
Dann gilt fur fast alle x

d(x+n)=

n<f(x)

(1+0(2))f(x)logx (Xx— ). (3.3)

Diese Formel &sst sich nicht weiter versahfen. Ist
namlich

f(x) = (Iogx)z'ogz‘lexp(c\/log Iogx)

so gilt (3.3) nicht mehrifr fast alle x.

(c>0),

showed later that in fact (3.4) is true for
k < (logx)'°94-Lexp{ —& (x)/log Togx } where& (x) — .

Furthermorey ., D;" (n) = o(kxlogx) if

> (Iogx)'og“ﬁlexp{f(x)\ /log Iogx}.

Further results on this and on related topics were obtained
by R.R. Hall and G. Tenenbaurh{].

4 The additive divisor problem

We turn now to modern developments involving the
divisor function in short intervals. The importance of
these results is that they have applications to power
moments oﬂZ(% +it)], which is one of central topics in
the theory of the Riemann zeta-function. The autt2af [
proved in 1997 the folllowing.

THEOREM 1.For a fixed integer k> 3 and any fixed
€ >0, we have

T

/ (3 +it) | dt <y e THE (L4 SUP1se o iz ST
0

(4.1)
if, for M < M/ < 2M,T1e < M <« TX/?2,
Gk(M;T):=  sup z Ay(X, h)‘.
M<x<M’'  'h<
1<t<mIte/T

The bound (4.1) provides a direct link between upper
bounds for the Rth moment of|{ (3 +it)| and sums of
Ag(x,h) over the shift parameteh, showing also the
limitations of the method, wheréy(x,h) denotes the
error term in the asymptotic formula for the sum
Yn<xdk(ndg(n + h). Of course the problem greatly
increases in complexity dsincreases, and this is one of

It is commonly conjectured that the error term in (3.1) the reasons why in2@] only the casek = 3 was

is Og (x¥/4*€), while it is known long ago that it i€ (x¥/4)
(f(x) = Q(g(x)) asx — e means thaf (x) = o(g(x)) does

considered. The case= 2 was not treated at all, since for
the fourth moment of{ (5 +it)| we have an asymptotic

not hold). The conjecture on the upper bound is one offormula with precise results for the corresponding error
the most difficult problems in analytic number theory, asterm (see e.g., Chapter 5 o21] and the paper of Y.

it does not appear to follow from the Lindd#lhypothesis
(LH, Z(3 +it) < [t|¥) or from the Riemann hypothesis

(RH, all complex zeros of (s) satisfyRe s= %). Both the

LH and RH are unsettled to this day, and it is known that

the RH implies the LH (see e.g., Chapter 1 21][

Let Dy (n) = maxp<h<kd(n+ h), whered(n) is the
number of divisors ofn. P. Erdds and R.R. Hall 10
showed that, for fixed,

2,00~

(3.4) k(1+0(1))xlogx (X — o).

R.R. Hall conjectured that (3.4) is true so long as

k < (logx)®
fails if k > (logx)?

with a < log4— 1. He showed that (3.4)
with a > log4— 1. R.R. Hall [Lg]

Motohashi and the autho2]).
As for the functionAy(x, h), one writes

Z dk(n)dk(n+h) = xPy_2(logx; h) 4+ Ax(x, h),

where it is assumed th& > 2 is a fixed integer, and

Px_2(logx; h) is a suitable polynomial of degre& 2 2 in

logx, whose coefficients depend ok and h, while

A (x,h) is supposed to be the error term. This means that

we should have
A(X,h)=0(x) as Xx— oo,

but unfortunately this is not yet known to hold for aky

3, even for fixedh, while for k = 2 there are many results.
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This is the so-calledinary additive divisor problernn the
case whelk = 2, and thegeneral additive divisor problem
whenk > 2. The binary additive divisor problem consists
of the evaluation of the sum

D(N; ) := ENd(n)d(nJr ), (4.2)

< MFETIMS M T« T2,

namely fork = 3 we haveag = 0,b; = 1 in (4.4). Hence
we obtain from (4.5)

)
/O C(3+it)[6dt <ee THE,

wheref is a natural number, not necessarily fixed. One canWhich was already shown to hold irg4] if (5.10) is

write

D(N; f) =M(N; f)+E(N;f), (4.3)
whereM(N; f) andE(N; f) are to be considered the “main
term” and the “error term”, respectively, in the asymptotic
formula for the sunD(N; f) in (4.2) asN — co. Already
A.E. Ingham RQ] showed that the main term in (4.3) has
the form

M(N; f) = {cl(f)logZN+cZ(f)|ogN+c3(f)}N,

where the coefficients;(f) (which depend orf) can be
written down explicitly. For some modern results on
E(N; f) we refer the reader t@8p], [29] and [38].

It seems reasonable to expect that for the quaity
in (4.1) we shall have a bound of the form

Gy <ke THTEMPTE (g, >0bc>1)  (4.4)

with suitable constantsy,byx. Hence assuming (4.4) it
follows that

GkM—l < Tak+£M(bk—l+£) < Tak+5(bk—l)+£
for M < T*/2, Therefore from Theorem 1 we obtain.

Corollary 1. If (4.4) holds, then for a fixed integerk
3 we have

)
/O Z(5+i*dt e THE (14 THEBD) | (a5)

The case& = 3 was investigated by the author i24].
Therein it was conjectured that

z A3(x,h) < HX%+€ (1<H< X%'HS)

h<H

(4.6)

for somed > 0. If k= 3 we haveT ¢ <M < T¥2 and

Gs3

sup ‘ZA?,(X, h)|.

M<x<M’1<t<M+€/T At

1 . . e .
Moreovert < x319 is satisfied, since

becauseM 3+6-9 < T for € < & and sufficiently largeT.
Thus if (4.6) holds we have
tx5remM—t

GsM <« sup

M<x<2M,1<t<M1+é /T

assumed. We also havefrom (4.5)
Corollary 2. For a fixed integer k> 3 we have

T
/0 (5 +it)[2Xdt e T (47)
provided that (4.4) holds withya= 0, b, = 1.

The bounds (4.5) and (4.7) provide the means to
bound the R-th moment of|{(} +it)|. It remains to be
seen, of course, whether there is any hope of proving the
2k—th moment fork > 4 by (4.7), namely whether
ax = 0,by = 1 can hold at all for sufficiently larg&. It
would be highly interesting if one could even get any
non-trivial results concerningay,by and improve
unconditionally the existing bounds (see Chapters 7 and 8
of [21] for the moments of|{(3 + it)|. For more
connections between divisor problems and power
moments ofi{ (3 +it)|, see e.g. the author's pape25]
and 26].

5 New bounds for the sumg(x, h) over the
shift parameter h

S. Baier, T.D. Browning, G. Marasingha and L. Zhdd [
recently proved that

Y A3(N;h) < NF(H?+HY2ND12) (1<H <N),
h<H
(5.1)
Az(N;h) = dz(n)ds(n+h) — NRy(logN;h),

N<n<2N

and ifNY/3+¢ <H < N'~¢, then there exist§ = 5(¢) > 0
for which

S [43(N;h) 2 < HN?0(E),
h<H

Note that (5.1), in the intervall/6t¢ < H < N1~¢, gives
an asymptotic formula for the averaged sum
ZhSH D3(N7 h)
Jie Wu and the authoBp] proved the following:
THEOREM 2.For a fixed integer k> 3 we have
(5.2)

;Ak(N;h) <eNE(HZENMA)  (1<H <N),
hS

wheref is defined by

X
B = inf{bk :/ |Ak(x)|2>_<<<x1+2bk}
1
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and Ay(x) is the remainder term in the asymptotic Qu(x,q) is a polynomial of degree K— 2 whose
formula for y < dx(n). coefficients depend og, and may be explicitly evaluated
- (see e.g.,1)). Further we set
We have (see e.g., Chapter 13 21])

> () =xP-1(109X) -+ (X, MNH) = 5 k() F;ef<f S )
where g R(N,H) = 5 d(n) (A(n+H) = A(n)),
s—1
pe-s(log) = Res (9~ ). e

and use complex integration to estim®g(N, h) and then
so thatpx_1(2) is a polynomial of degrek—1inz allof  connectR¢«(N,H) to mean square estimates ffy(x). We

whose coefficients depend &nin particular, have
— _ - 2N
@ = z+zy-1 =-IQ) M(N.H) = H [ (Rest (95 %) dx
It is known thatfx = (k—1)/(2k) for k= 2,3,4, 35 <
9/20,85 < 1/2, etc. andB > (k— 1)/(2k) for everyk € +Og(H2Ns 1 NHOHE N1+Bk+€)

N. It is conjectured thagc = (k— 1)/(2k) for everyk €
N, and this is equivalent to the Lind#IHypothesis (that and

{(3+it) <¢ (|t| + 1)).From the Theorem 1 we obtain, 2N6 (x, h) dx
for1<H <N, A
Z{ A3(N;h) < NE(H2 4 NY3), The constantsy, B¢ are defined as
h<

Z 24(N:h) < NS(H2+N11/8)7 ak:inf{ a : Ak(x) <<ak}

h<H

and
Z_{ A5(N; h) < N“:(H2 + N29/20),
h<

X

B=int{ b : / AR(x)dx< X |
;AG(N;h) <e NF(HZ+N¥/2). .
hs and (k—1)/(2k) < Bx < ax < 1 for k = 2,.... By
Since it is known thagy < 1 for anyk, this means that the completing the estimations one obtains the assertion of
bound in (5.2) improves on the trivial bourtdN*¢ in the theorem.

the rangeNf+¢ < H < N1~¢. Our result thus supports the

assertion thatAg(N;h) is really the error term in the

asymptotic formula foDy(N,h), as given above. In the @ New results involvingA (x+U) — A(x)
case wherk = 3, we have an improvement on the result

of Baier et al. wherH > N*/2, The final topic will be a discussion (see (3.2)) of
The basic idea of proof is to start from A(x+U)—A(x) = z d(n)+0OUX5) (1<U <x),
X<n<x+U
;Ak(th) (6.1)
h< so that we are considering the divisor functidm) in
N “short intervals” [x,x+ U] if U = o(x) asx — . The
= dy(n) z dk(n+4h) — Z Sk(x,h)dx interest in this topic comes from the work of M. Jutila
N<n=Z2N h<H h<H /N [32], who proved that
2N
= Mi(N,H) +R«(N,H) — ; Si(x,h)dx, T 2
Heu N [ (8x+0)-a) dx=
say. Here T
< S 2 2y o1 2
GK(Xv h) = TQK(Xaq) 5 1 d (n) 1/2 . n
qu q yres 372 /x exp| 2my X -1 dx
N<g T
where  u(n) is the Mobius function,
cq(h) = Ygngdu(a/d) is the Ramanujan sum and +0(TYE + HUY?T?), (6.2)
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for1<U < TY2 <« H < T.From (6.2) one deduceax b
meansa < b < a)
) (6.3)

/T+H
T

for HU >> T1¢ andT¢ < U < 1/T. In [33] Jutila proved
that the integral in (6.3) is

U

2
(A(x+U) —A(x)) dx= HU log® ( 5

< THHU+T?RUY®) (1< H.U <X).

In the case wheR =T the author27] improved (6.2) and
proved.
THEOREM 3.For 1 < U = U(T) < 3T we have

(c3=8m?)
T+H
.

3 T
TU Y cjlog! (~— ) +Os(TY2H6U2) + O (THHEUY?).
3 ciod ()

(A(erU)fA(x))zdx:

(6.4)

In (6.4) all the constants; may be made explicit. Note
that, for T¢ < U = U(T) < TY2¢ (6.4) is a true

The most recent results @n(x+U) — A(x) have been
obtained by the author and W. Zh&1]. We state just
two of their theorems.

THEOREM 4.Supposéog® T < U < TY2/2,T1?2 «
H < T, then we have

T+H
/T

HUL® + T L*logL + HY3T2/3u2/3.10/3(10gL)%/3,

whereL :=logT.

This generalizes and sharpens a result of D.R.
Heath-Brown & K.-M. Tsang (1994)1B]. From Theorem
3 we obtain then.

2
max |A(X+u) —A(x)| dx<

o<u<u

THEOREM 5.Suppose JU,H are large parameters
and C> 1is a large constant such that

TI3YA46te y <CITY2L-5, CcTY*ULlogL<H <T.
Then in the interval[T,T + H] there are > HU™!

subintervals of length> U such that on each subinterval
one hastA(x) > ¢, T4 for some ¢ > 0.

asymptotic formula. From (6.4) one can deduce that, forReferences

1< U < 3T, we have ¢ = 812

2
(A(n+U)—A(n)) -
T<h<oT
(VT
¢;log! (T) O (TY2+U2) 4 O (TLHeUY/2),

(6.5)

The asymptotic formula (6.5) is a considerable
improvement over a result of Coppola—Salerdq {vho
had shown that T¢ < U < 3VT,L logT)

2
S enear (A(n+U) —A(n)) - 57U |og3(€) +O(TULS),

The starting point for the above results is the explicit
expression (see e.g., Chapter 321f])
1
w2

Ax) =

1 3 1
x4y d(n)n~ 4 cog4my/nx— =)
ngv 4

+O(XZTENT2)  (2< N < X),

which is flexible, since the parametdmmay be arbitrarily
chosen. It is sometimes called theuncated \Vorond
formula, in honour of G.F. Voronio[44], who more than a
century ago obtained an explicit formula fofi(x)
containing the familiar Bessel functions.
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