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Abstract: It is a common situation that the failure rate function has a bathtub shape for many mechanical and electronic components. A
simple model based on the median of tree /or four identical independent random variables drown from the well known power distribution
is presented for modeling this type of data. The failure ratecan also be upside-down bathtub shaped or increasing. Most properties of
the proposed distribution are investigated. Estimation procedures are introduced as well as a graphical approach via probability plot.
An application to a real data set is presented; and a simulation study is provided. Finally, some concluding remarks are presented.
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1 Introduction

Families of distributions for the medianX of an independent random sample,Y1, · · · ,YN, drawn from an arbitrary lifetime
distribution with survival functionSY(·; Θ), are introduced by Abd-Elrahman [1]. He shows that its survival function,
SX(·; Θ), has the following form:

SX(x;Θ) =
m

∑
k=0

Cm,k SY(x;Θ)2m+1−k, m= 0,1,2, · · · (1)

wherem= Int
(

N−1
2

)

, Int(·) is theElemental Intrinsic Function, and them+1 coefficients,Cm,k, are given by

Cm,k =
(−1)m−k (m+1− k)

( m+1
m+1−k

)(2m+1
m+1

)

2m+1− k
, k= 0,1, · · · ,m.

Using (1) with N=3 or 4 andSY(·; Θ) is the exponential survival function, he obtained a new distribution. He gave this
new lifetime distribution a name, theBilal(θ ) distribution.

Unfortunately, the failure rate function related to theBilal(θ ) distribution is always monotonically increasing with
finite limit. In this paper, a simple model based on the medianof tree /or four identical independent random variables
drown from the well known power distribution is presented. We show that its failure rate function can have a bathtub
shaped. The failure rate can also be upside-down bathtub shaped or increasing. It may be very desirable that our two-
parameter model can have such a flexible failure rate function. The layout of this paper is organized as follows:

In Section2, the proposed distribution and most of its properties are given, which are: the mode, median, mean, the
expected value, variance, therth moments, the coefficient of variation, Kurtosis coefficient, skewness, a closed form of the
qth quintilexq, the Shanon measure of entropy, the Fisher information measure aboutλ , the lower limit of Cram´er–Rao
inequality for the parameterλ . In Section3, some properties of the failure rate function are presented.

Estimation procedures are presented in Section4. In which, following Balakrishnanet. al.[2], we proved the existence
and uniqueness of the maximum likelihood estimate of the parameterλ . The(1−α)100% asymptotic confidence interval
for λ̂−1 is also given. We showed that, the moment estimate ofλ , when the parameterβ is assumed to be known, is
exists in a simple closed form. Its efficiency with respect to(w.r.t.) theminimum variance unbiased estimate(MVUE)
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Fig. 1: Profile of the pdf of the proposed distribution forλ=0.4 (solid), 0.5 (dot), 0.6 (dash), and 2 (dash dot), respectively, w.r.t. x
β (I);

and its corresponding failure rate function (II).

of λ is equal to 99.9165 %. Estimations of both of the two parameters are studied. Graphical approach is also provided
via probability plot.

For illustrative purposes, however, in Section5, an application to a real data set are considered. Our results are
compared with four recent studies to this data.

Section6 is presented for comparing the performance of the resultingestimators via simulation experiments. Finally
we gave some concluding remarks.

2 The proposed model and some properties of the density function

It is well known that, forβ , λ > 0, the survival distribution function related to the power distribution has the following
form

SY(y; β , λ ) =







1−
(

y
β

)λ
if 0 < y< β ,

1 if x> β .
(2)

In view of (1), let N=3 or 4, i. e. m= 1, and replacingSY(·; Θ) by the power survival function, given by (2), we
then obtained a new distribution. This distribution is refer to as theMMHB(β , λ ) distribution. The nameMMHB is refer
to as the initials of my four sons’ names. The probability density (pdf), cumulative distribution (cdf) and the failure rate
functions of theMMHB(β , λ ) distribution are, respectively, can be written as

fX(x;β , λ ) =
6λ
β

(

x
β

)2λ −1
(

1−
(

x
β

)λ
)

, 0< x< β , (β , λ > 0), (3)

FX(x;β , λ ) =







1−
(

1−
(

x
β

)λ
)2(

1+2
(

x
β

)λ
)

=
(

x
β

)2λ
(

3−2
(

x
β

)λ
)

if 0 < x< β ,

1 if x> β .
(4)

HX(x;β , λ ) =
6λ
(

x
β

)2λ−1
[1−( x

β )
λ ]

β [1−( x
β )

2λ (3−2( x
β )

λ )]
, 0< x< β . (5)

Figure1 depicts profile of the pdf of the proposed distribution; and its corresponding failure rate function. The shape
properties of (3) follow from the following theorem.

Theorem 2.1.The pdf of theMMHB(β , λ ) distribution is a decreasing function for 0<λ≤1/2; and unimodal forλ > 1/2

with mode atx0 = β
(

2λ−1
3λ−1

)
1
λ .

Proof. See the Appendix.
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In view of (3), therth moments of a random variableX, X ∼ MMHB(β , λ ) exist for allβ >0, λ >0; and it is then given
by:

E(Xr) = 6λ β r
∫ 1

0
yr+2λ−1(1− yλ)dy= 6λ β r

(

1
r +2λ

− 1
r +3λ

)

=
6λ 2β r

(r +2λ )(r +3λ )
. (6)

It may be clear that, the expected value, variance; and the variation (CV), Kurtosis (KU) and Skewness (SK)
coefficients, can then be easily obtained using (6); and they are respectively given by:

E[X] =
6β λ 2

(2λ +1)(1+3λ )
, Var(X) =

3β 2λ 2
(

1+10λ+13λ 2
)

(1+λ )(2+3λ )(1+2λ )2 (1+3λ )2
, (7)

CV =

√

Var(X)

(E[X])2 =
1

6λ

√

3(1+10λ +13λ 2)

(1+λ )(2+3λ )
,

KU =
E
[

(X−E(X)4)
]

E[(X−E(X))2]

=
(1+λ )(2+3λ )

(

6+139λ +1187λ 2+4308λ 3+5852λ 4+7963λ 5+12891λ 6+6534λ 7
)

3λ 2 (2+λ )(4+3λ )(3+2λ )(1+10λ +13λ 2)2 ,

SK=
E
[

(X−E(X)3)
]

E[(X−E(X))
3
2 ]

= (1−λ )Q(λ )

= 2 (1−λ )
[

2+35λ +185λ 2+210λ 3
]

[3(1+λ )(2+3λ )]
1
2

9λ (3+2λ )(1+10λ+13λ 2)
3
2











+ve if 0 < λ < 1,
0 if λ = 1,
−ve if λ > 1,

where forλ > 0, Q(λ )> 0. The coefficients CV, KU and SK depends only on the parameterλ .

If Y = ln(X), X ∼MMHB(β , λ ), then we have

E(Y) = ln(β )− 5
6λ

. (8)

Therefore, it may be easy to show that, forr=2,3 and 4, ther th moments ofY = ln(X) aroundE(Y), µ ′
r , are given by:

µ ′
2 =Var(Y) =

13
36λ 2 , µ ′

3 =− 35
108λ 3 , µ ′

4 =
121

144λ 4 . (9)

Hence, the KU ofY is equal to1089
1696= 0.4438; while the Skewness ofY is equal to− 70

169
√

13
=−1.4934.

Theqth quintile,xq, is an important quantity, specially for generating randomvarieties using the inverse transformation

method. Letaq=
1
3 arctan(

2
√

q(1−q)
2q−1 ), then theqth quintile can be obtained from (4) as

xq=β (γ(q))
1
λ , (10)

where

γ(q) =











1
2 − sin(aq+

π
6 ) if 0 < q< 1

2,
1
2 if q= 1

2,
1
2 + cos(aq+

π
3 ) if 1

2 < q< 1.

Hence, the median of a random variableX, X ∼ MMHB(β , λ ), is given byXmedian= β2
−1
λ .

Using (3), the Shanon measure of entropy, it may be easy to show that ithas the following form:

E[− ln( fX)] =
5
2
− ln

(

6λ
β

)

− 5
6λ

.
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Fig. 2: (a) Graphs ofξ ⋆
1 (solid) andξ ⋆

0 (dash), w.r.t. the parameterλ . (b) A graph of the failure rate function withβ = 10 andλ = 0.51.

Let x1, x2, · · · xn be an independent random sample of size n, taken fromMMHB(β , λ ), then the Fisher information
measure aboutλ is given by

J(λ ;n)=−nE

[

∂ 2ln( fX)
∂λ 2

]

=
n(12Zeta(3)−12.5)

λ 2 =
0.519566n

λ 2 , (Zeta(3)=
∞

∑
i=1

i−3). (11)

3 Some properties of the failure rate function

In view of (5), it may be easy to show that

ł1 = lim
x→0+

HX(x;β , λ ) =
6λ
β

lim
x→0+

(

x
β

)2λ−1

=











∞ if 0 < λ < 1
2,

3
β if λ = 1

2,

0 if λ > 1
2,

(12)

ł2 = lim
x→β−

HX(x;β ,λ ) = ∞ ∀ λ > 0, β > 0. (13)

The shape properties of (5) follow from the following theorem.

Theorem 3.1.The MMHB(β , λ ) distribution has a failure rate function with three different shapes i) bathtub shaped

for 0< λ ≤ 1
2 with a changing point atx⋆1=β

[

(1−λ )+
√

9−18λ+!λ 2

4

]
1
λ

; ii) upside-down bathtub shaped for1
2 < λ < λ♦,

λ♦=9−6
√

2 = 0.514718628, with two changing points atx⋆0 andx⋆1, wherex⋆0,1= β
[

(1−λ )∓
√

9−18λ+!λ 2

4

]
1
λ

; and iii) an

increasing function forλ ≥ λ♦.

Proof. The proof is provided in the Appendix.
In order to give another check for this theorem, one may compere Figure2-(a), where a profile of the functionsξ ⋆

0,1,

which are as the as the definition ofx⋆0,1, but without both of the power1λ and the coefficientβ each, are depicted. In this
figure, negative values ofξ ⋆

0 corresponds to non-real values forx⋆0. Furthermore, Figure??-(b) depicts graph of the failure
rate function withβ = 10 andλ = 0.51, i. e., 1

2 < λ < λ♦.

4 Estimation

Let X1, X2, · · · , Xn be independent random sample with observed valuex = (x1, x2, · · · , xn) from a MMHB(β , λ )
distribution.
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4.1 Whenβ is known

–Moment estimate: The unbiased moment estimate of the parameterλ−1, λ̂−1
β M, is given by

λ̂−1
β M =

6
5n

n

∑
i=1

ln(
β
xi
). (14)

We find thatλ̂−1
β M is very closed to the MVUE forλ−1, this is due to: i) It is an unbiased estimate forλ−1, ii)

Var(λ̂−1
M ) = 0.52

n λ−2; and using (11), its efficiency w.r.t. the lower bound of,Cramer-Roa Inequality, the MVUE of
λ−1 is 99.9165621%.

–Maximum likelihood estimate: Letyi = ln( β
xi
), i = 1, 2, · · · , n, it follows that, the normal equation ofλ is given by

ln(λ ) =
n
λ
+

n

∑
i=1

{

−2yi +
yie−λ yi

1−e−λ yi

}

= 0. (15)

The maximum likelihood (ML) estimate forλ , λ̂β ML, exists and it is unique (see the Appendix). The solution of

(15) givesλ̂β ML which can be obtained numerically using, e.g., the bisection method. It follows from (11) that, the

asymptotic(1−λ )100% confidence interval, ACI, of̂λβ ML is given by

λ̂−1
β ML ± Zα

2

0.7208λ̂−1
β ML√

n
, (16)

whereZα
2

is the quantile(1− α
2 ) of the standard normal distribution.

4.2 Whenλ is known

In the following, we introduce three unbiased estimators for the parameterβ with their corresponding variances. The first
estimator related to the moment method. In view of (7), the unbiased moment estimate of the parameterβ , β̂λ M; and its
corresponding variance are given by

β̆λ =
(1+3λ )(1+2λ )

6nλ 2

n

∑
i=1

xi , Var(β̆λ ) =
β 2
(

1+10λ +13λ 2
)

12nλ2 (λ +1)(2+3λ )
. (17)

The other two unbiased estimators are obtained together with their variances as follows:
Recall the indicator function which is define asI{x(n)<β}= 1 or 0 according asx(n) < β or x(n) ≥ β , wherex(n) is the

largest sample observation, it follows from (3) that, the likelihood function of the parameterβ is given by

Ln(β )=
6n λ n

β n

n

∏
i=1

{

(
xi

β
)
2λ−1

(1−(
xi

β
)

λ
)

}

I{x(n)<β}. (18)

Following Gibbons [3], see Johnsonet al. [4] Page 289 for reference, we investigate three estimators for the
parameterβ . The first one is biased while the other two estimators are not.

1.The maximum likelihood estimator̃βλ =X(n) with moments

E[β̃λ ] = η1(n, λ )β , Var(β̃λ ) = β 2 (η2(n, λ )−η2
1(n, λ )), (19)

where

ηk(n, λ ) = 1− k3n
n

∑
i=0

(−1)i (2/3)i
(n

i

)

k+λ (2n+ i)
, k= 1,2.

By (18), since 0< η1(n, λ )< 1 (compare Figure3), we may notice that̃βλ ML underestimatesβ .
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Fig. 3: Plots of the functionsη1(n, λ ) (left) andη⋆
1(n, λ ) (right) for n=10, 15, 20, 25, 30, 40, 50, and 100; and values of the parameter λ

in the range (0.01,6.0).
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Fig. 4: The relative efficienciese1(n, λ ) (a),e2(n, λ ) (b), ande3(n, λ ) (c), for n=10, 15, 20, 25, 30, 40, 50, and 100; andλ ∈ (0.01,6.0).

2.The unbiased estimatorβ̂λ ; and its corresponding moments are given by

β̂λ =
x(n)

η1(n, λ )
, Var(β̂λ ) = β 2

[

η2(n, λ )
η2

1(n, λ )
−1

]

. (20)

3.Other unbiased estimatorβ ⋆
λ ; and its corresponding moments are given by

β ⋆
λ =

x(1)+ x(n)
η⋆

1(n, λ )
, Var(β ⋆

λ ) = β 2
[

η⋆
2(n, λ )−ι2

1(n, λ )−η2
1(n, λ )

[η⋆
1(n, λ )]2

]

. (21)

wherex(1) is the smallest sample observation; and fork= 1,2,ηk(n, λ ) is as given in (19),

ιk(n, λ ) = 1+ k
n

∑
j=1

(

n
j

)

{

j

∑
i=0

(−1) j+i 2i3 j−i
( j

i

)

k+λ (2 j + i)

}

and
η⋆

k (n, λ ) = ιk(n, λ )+ηk(n, λ ).

Figure3 depicts graphes of the functionη1(n, λ ) (left) andη⋆
1(n, λ ) (right), for n= 10,15, 20, 25, 30, 40, 50, 100

and values of the parameterλ in the range (0.01, 6). Thesis figure may indicate that,η1(n, λ ) andι1(n, λ ) are bounded
functions forn¿1 andλ > 0; and

0< η1(n, λ ), ι1(n, λ )< 1.

For λ ∈ (0.01, 6); andn= 10, 15, 20, 25, 30, 40, 50 and 100, Figure4 (a), (b) and (c) depict the relative efficiency
e1(n, λ ), e2(n, λ ) ande3(n, λ ), respectively, where

e1(n, λ )=
Var(β̆λ )

Var(β̂λ )
, e2(n, λ )=

Var(β̆λ )

Var(β ⋆
λ )

and e3(n, λ )=
Var(β̂λ )

Var(β ⋆
λ )

.
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Fig. 5: Same as in Figure4 but forλ ∈ (0.01,0.7).

Figure5 is as the same as in Figure4 but forλ ∈ (0.01,0.7).
In view of Figures4 and5, we conclude that the value of the parameterλ determines which estimator is more efficient

than the other two estimators. However, these figures may indicate that, the estimator which has the lower variance is:β̆λ
for λ ∈ (0.01,0.12), β ⋆

λ for λ ∈ (0.12,0.61) andβ̂λ for λ ∈ (0.61, 6).

4.3 When bothβ andλ are unknown

In this case, however, in order to find estimates for bothβ andλ , initial value for each parameter is needed. We try two
different approaches.

Graphical approach:

MMHB(β , λ ) probability plotting (MMHBPP) can be achieved simply by plotting ln(x) on z= − ln[γ(Fn(x))], where
Fn(·) is the empirical distribution function; andγ(·) is as given in (10). This results in a least square lineδ1+δ2z= ln(x).
The corresponding estimates forβ andλ are then respectively given bŷβG = eδ1 and λ̂G = 1

δ2
, which can be used as

initial values for much better estimators.

Iterative methods:

DenoteV1 the sample variance of the transformed sample(ln(x1), ln(x1), · · · ln(xn)). Since the variance of a random
variable ln(X), X ∼ MMHB(β , λ ), which is given in (9), does not depend on the parameterβ then an initial value for an
estimator of the parameterλ can be calculated as

λ(0) =

√
13

6
√

nV1
. (22)

Once we obtainλ(0), three iterative methods can be used to obtain estimators for both of the unknown parametersβ and

λ . Let λ̆(0)=λ̂(0)=λ ⋆
(0) = λ(0). Then, fors= 0,1,2, · · · , N, N is the maximum number of iteration, say 1000, it follows from

(14), (17), (20) and (21) that, these proposed methods are as follow:

– Method I:

β̆(s) =
(1+2λ̆(s))(1+3λ̆(s))

6nλ̆ 2
(s)

n

∑
i=1

xi , λ̆(s+1) =

{

6
5n

n

∑
i=1

ln(
β̆(s)

xi
)

}−1

. (23)

– Method II:

β̂(s) =
x(n)

η1(n, λ̂(s))
, λ̂(s+1) =

{

6
5n

n

∑
i=1

ln(
β̂(s)

xi
)

}−1

. (24)
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Fig. 6: Estimated failure rate function corresponds to the data set.

– Method III:

β ⋆
(s) =

x(1)+ x(n)
[ι1(n, λ ⋆

(s))+η1(n, λ ⋆
(s))]

, λ ⋆
(s+1) =

{

6
5n

n

∑
i=1

ln(
β ⋆
(s)

xi
)

}−1

. (25)

Each of these iteration methods will be refined until its accuracy is reached according to the stoping rule|λ ı
(s+1)−λ ı

(s)| ≤
1.2×10−6, s= 1,2,3, · · · , where,λ ı

(·) stands for̆λ(·), λ̂(·) or λ ⋆
(·).

5 Data analysis

For illustration and comparison reasons, we use a real data set that is used in many recent studies which consists of 18
lifetime failure observations of an electronic device. This data set was first analyzed by Wang [5], Xie et. al. [6] and then
by Rezaeiet. al.[7]. This data are as follows [Wang [5], Page 309]: 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224,245,
293, 321, 330, 350, 420.

For this data set, estimates of the parameters of the proposed model according to MMHBPP, Methods I, II and III are
obtained as described in Section4.3and depicted in Table1 together with some corresponding measures of goodness of
fit, namely, the Kolmogorov-Smirnov (K-S) statistics with their correspondingp-values, Log Likelihood and the Akaike
Information Criterion (AIC). The graphical approach, MMHBPP, results in̂λG=0.4525 which may be used as an initial
value for the parameterλ instead ofλ(0). For this dataλ(0) is equal to 0.4663 . We use each ofλ(0) andλ̂G as an initial
value each, but the corresponding estimators remain the same. Note that, according to the results of Theorem 3.1., since
the estimated values of the parameterλ , using any of Method I, II, III or MMHBPP are inside the interval (0, 1

2], this data
set may then has a bathtub shaped failure rate function.
We compare our results with the four recent studies:

Xie et. al.[6] presented a modified Weibull extension (MWE) model with thesurvival function

S(x) = exp
[

α λ (1−e(x/α)β
)
]

, x> 0, (α, β , λ > 0).

Bebbingtonet. al. [8] presented a flexible Weibull extension (FWE) model , havingaging property, base on a
generalization of Weibull model, with the survival function

S(x) = exp[−exp(α x−β/x)] , x> 0, (α, β > 0).

Guptaet. al. [9] presented a complete Bayesian analysis of the Weibull extension (BWE) model, using Markov chain
Monte Carlo simulation. The survival function for this model is

S(x)=exp
[

−λ α−1/β (eα xβ −1)
]

, x> 0, (α, β , λ > 0).

Rezaeiet. al. [7] presented the Exponential Truncated Poisson Maximum (ETPM) model. The ETPM model is
obtained by mixing exponential and truncated Poisson maximum distribution, with the survival function

S(x) = 1− exp(−λ e−β x)−e−λ

(1−e−λ )
, x> 0, (β , λ > 0).
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Table 1: Parameter estimators and some measures of goodness of fit forthe data set.

Model α̂ β̂ λ̂
Other MWE 287.51 0.93 0.0035

FWE 0.003 24.72 -
BWE 0.76 0.32 0.007
ETPM - 0.0074 1.1251

Propoed MMHB (M I) - 607.0871 0.47
MMHB (M II) - 615.5529 0.4664
MMHB (M III) - 590.2820 0.4776
MMHB (PP) - 636.9531 0.4525

K-S p-value Log Likelihood AIC
0.1088 0.9765 -109.311 222.6225
0.3159 0.0428 -112.328 228.6559
0.1060 0.9821 -110.666 227.3315
0.1035 0.9860 -110.322 224.6449
0.0768 0.9999 -109.298 222.5961
0.0804 0.9998 -109.353 222.7057
0.0812 0.9998 -109.194 222.3875
0.0867 0.9993 -109.498 222.9962

The resulting estimators and their corresponding goodnessof fit measures related to each of these four models are as
in Table 3, on Page 1756 of Rezaeiet al. [7]. These results are also included in Table1. Although, Table1 shows that,
there is no significant differences between AICs or K-S’s, but this may indicate that the fit of our proposed model to this
data set is comparable with the corresponding fits obtained using the other four models. Furthermore, the properties of
our proposed model may help in estimating the changing point, x⋆1, of the estimated failure rate function. For this data set,
based on Method I, on applying Theorem 3.1., given in Section5, we may havex⋆1 = 65.241. Therefore, the coordinates
of the corresponding estimated value of the changing point is (65.241, 0.0048). This changing point occurs at the 0.2824
quintile. On the other hand, it follows from (16) that, the 95% ACI of̆λ for this data set is (0.353, 0.7047). Figure6 (a)
depicts graphs of the fitted failure rate function corresponds to this data set using Method I. Figure6 (b) is as the same as
in Figure6 (a), but in the domain (0.04, 0.01). This is to gain some focusabout the changing pointx⋆1.

6 Simulation experiments

To evaluate the performance of the estimators of the parameters of the proposed distribution, we designed Monte Carlo
experiments. In each experiment, for different values of the population parameters and sample sizes, 1000 pseudo–random
samples have been generated according to Equation (10) as:Xj =β [γ(U j)]

1/λ , j = 1, 2, · · · , n, whereU1,U2, · · · ,Un aren
identical independent random observations from the standard Uniform distribution, using theIMSL [10] routine DRNUN.

Forty five combinations of the parameters were considered:n= 20, 30, 100,β = 1, 2, 3,λ = 0.2, 0.4, 0.6, 1 and 2 .
For each parameters combination, a generated sample is obtained. Based on this sample, the estimators of the parameter
β andλ are computed according to Methods I, II and III as described in Section4. As an estimated risk of the parameter

ξ , ξ = β or λ , the squared deviations
(

ξ̂−ξ
)2

, can then be obtained and stored. For 1000 repetitions, as estimated

risks of the different estimators the root mean squared errors (RMSEs) are computed as the squared root of the average
of their corresponding squared deviations. Table2 displays the estimated risks. For Method I and II, non of the 45,000
generated samples, of course, plus the real data sample has been failed. While Method III failsNf times. This is because
the estimated value ofβ is less thanx(n) for some few cases of the generated samples. We notice that, this number,Nf ,
increases specially whenλ > 1. This is expected, since, compare Figure3, η⋆

1(n, λ )≥1 for all λ ≥ 1 andn> 1, thenβ ⋆

under estimate the parameterβ . Therefore, in Table3, only the estimated risks related to Methods I and II are displayed.

7 Concluding remarks

We have introduced a new two-parameters life time distribution. We show that its failure rate function can have a bathtub
shaped. The failure rate can also be upside-down bathtub shaped or increasing.

This proposed distribution is easy to be involved in statistical software libraries since its reliability function is based on
the well known power function. We provide different estimators for the two unknown parameters. Comparing the resulting
estimators in Tables2 and3 we may notice that, the parameterλ is independent of the parameterβ . The parameterλ
provides three different shapes for the failure rate function. For the bathtub (or upside-down bathtub) shape failure rate,
the changing point(s) of the failure rate function can be easily calculated. The parameterβ controls the died line of the
hole random phenomena under studying. We derived most of theimportant properties of the new distribution and closed-
form expressions for its moments are also obtained. In view of Table1, the proposed model fit of the real data set was
comparable to that obtained using the other four recent models which appear in the literatures. Due to the flexibility of
the failure rate function of our proposed model, we hope thatour proposed model can be applied for different practical
random phenomenons.
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Table 2: RMSE’s of the resulting estimators when bothβ andλ are unknown.

β λ n β̆ β̂ β ⋆ Nf
1 0.2 20 0.152806 0.129871 0.129949 -

30 0.106661 0.081168 0.081187 -
120 0.025057 0.018581 0.018581 -

0.4 20 0.056232 0.036956 0.037763 -
30 0.039202 0.022625 0.022948 -

120 0.009165 0.004859 0.004876 -
0.6 20 0.031186 0.017154 0.019669 3

30 0.021628 0.010467 0.011629 2
120 0.005092 0.002195 0.002301 -

2 0.2 20 0.611224 0.519482 0.519795 -
30 0.426645 0.324674 0.324750 -

120 0.100229 0.074324 0.074324 -
0.4 20 0.224928 0.147824 0.151054 -

30 0.156807 0.090498 0.091793 -
120 0.036660 0.019437 0.019504 -

0.6 20 0.124744 0.068615 0.078675 3
30 0.086513 0.041868 0.046516 2

120 0.020366 0.008779 0.009202 -
3 0.2 20 1.375253 1.168835 1.169538 -

30 0.959951 0.730516 0.730687 -
120 0.225514 0.167229 0.167228 -

0.4 20 0.506088 0.332604 0.339871 -
30 0.352816 0.203621 0.206534 -

120 0.082486 0.043734 0.043883 -
0.6 20 0.280674 0.154383 0.177019 3

30 0.194655 0.094204 0.104661 2
120 0.045824 0.019753 0.020706 -

β λ n λ̆ λ̂ λ ⋆ Nf
1,2, 0.2 20 0.001937 0.001841 0.001847 -

30 0.001284 0.001143 0.001144 -
120 0.000249 0.000240 0.000240 -

or 0.4 20 0.008895 0.007214 0.007600 -
30 0.005911 0.004504 0.004614 -

120 0.001118 0.000957 0.000958 -
3 0.6 20 0.021934 0.015672 0.018659 -

30 0.014571 0.009799 0.010705 -
120 0.002741 0.002151 0.002182 -
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Appendix

Proof of Theorem 2.1.
The first derivative of (3) w.r.t. x is given by

f ′X(x;β , λ ) = gp(x;λ )
fX(x;β , λ )

x

(

1−
(

x
β

)λ
) , gp(x;λ ) = (2λ −1)− (3λ −1)

(

x
β

)λ
. (A1)
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The functiongp(x;λ ) has exactly one root atx0 = β
(

2λ−1
3λ−1

)
1
λ . Table4 may give some analysis about this function. Hence,

the following three cases arise:

i) If 0 <λ < 1
3, thenx0 is an unbounded increasing function ofλ . Since, limλ→0+ x0=eβ and limλ→ 1

3
− x0= ∞, then the

minimum value ofx0 tends toeβ which is grater thanβ . This implies thatx0 is outside the interval(0,β ). e.g.the
value ofx0 at λ = 0.2 equal to 4.954β > β . Therefore,fX(x;β , λ ) is a decreasing function for 0<λ < 1

3.
ii) For 1

3 ≤ λ ≤ 1
2, the functionsgp(x;λ ) and f ′X(x;β , λ ) are negative for all 0< x< β . This implies thatfX(x;β , λ ) is

a decreasing function ofλ in the interval [1/3,1/2].
iii) Suppose now thatλ > 1

2, then 0< 2λ−1
3λ−1 < 1. Hence, 0< x0 < β , which implies that,x0 is a real root forgp(x) in the

interval 0< x < β , wheregp(x) > 0 for 0< x < x0 andgp(x) > 0 for x0 < x < β . Hence,fX(x;β , λ ) has a unique
mode atx= x0.

Proof of Theorem 3.1.

The first derivative of the logarithm of (5) w.r.t. x is

(ln[HX(x;β , λ )])′ =
gh(x; λ )

x

(

1−
(

x
β

)λ
)[

(

x
β

)λ
] , gh(x; λ ) = (2λ −1)+ (λ −1)

(

x
β

)λ
+2

(

x
β

)2λ
.

It may be clear that the functiongh(x; λ ) has exactly two roots atx⋆0 andx⋆1, which are given by

x⋆0,1 = β

[

(1−λ )∓
√

λ 2−18λ +9
4

] 1
λ

.

Hence, the following cases arise:

i) If 0 <λ < 1
2, since

λ 2−18λ+9= (λ 2−2λ+1)−16λ+8= (1−λ )2+8(1−2λ )>(1−λ )2.

Hence,x⋆1 is a real number, whilex0 is not. Note that,

lim
λ→0+

x⋆0 = i β lim
λ→0+

(

1
2

)
1
λ
= 0, i =

√
−1, lim

λ→0+
x⋆1 = e−1β < β , lim

λ→ 1
2

x⋆0 = 0, lim
λ→ 1

2

x⋆1 =
β
16

< β .

Therefore, the functiongh(x; λ ) is a decreing function ofx for 0 < x < x⋆1 and it is an increasing function ofx for
x⋆1 < x< β . This goes in line with (12) and (13), in which ł1= ł2 = ∞, for 0<λ < 1

2. This implies thatHX(x;β , λ ) has
a bathtub shaped failure rate for 0< λ ≤ 1

2 with a minimum value atx= x⋆1.

Table 3: RMSE’s of the resulting estimators̆β , β̂ , λ̆ andλ̂ .

β = 1 β = 2 β = 3 β = 1,2 or 3

λ n β̆ β̂ β̆ β̂ β̆ β̂ λ̆ λ̂
1 20 0.0143 0.0065 0.0572 0.0261 0.1288 0.0587 0.0686 0.0445

30 0.0098 0.0039 0.0394 0.0156 0.0886 0.0352 0.0455 0.0279
120 0.0023 0.0008 0.0093 0.0032 0.0211 0.0072 0.0084 0.0059

2 20 0.0044 0.0016 0.0179 0.0067 0.0404 0.0152 0.3081 0.1776
30 0.0030 0.0010 0.0123 0.0040 0.0278 0.0090 0.2045 0.1113

120 0.0007 0.0002 0.0030 0.0008 0.0067 0.0018 0.0384 0.0238
3 20 0.0021 0.0007 0.0086 0.0030 0.0195 0.0068 0.7249 0.3992

30 0.0015 0.0004 0.0060 0.0018 0.0135 0.0040 0.4821 0.2503
120 0.0003 < 0.00005 0.0014 0.0003 0.0033 0.0008 0.0911 0.0536
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Table 4: Some analysis about the functiongp(x;λ ), given in (A1).

λ → 0< λ < 1
3

1
3 < λ < 1

2
1
2 < λ < ∞

The sign of(3λ −1) −ve +ve +ve

The sign of(2λ −1) −ve −ve +ve

The sign ofgp(x;λ ) −ve −ve +ve

Type ofx0 Real Non-real Real

The value ofx0 x0 > β - 0< x0 < β
The maximum value offX(x;β , λ ) at x= 0 atx= 0 atx= x0

ii) For 1
2 <λ <9−6

√
2, then bothx⋆0 andx⋆1 are real numbers and 0< x⋆0 < x⋆1 < β . But from (12) and (13), for λ > 1

2,
ł1 = 0 andł2 = ∞ .This implies thatHX(x;β , λ ) has an upside-down bathtub shaped failure rate.

iii) When λ = 9−6
√

2, thenx⋆0 = x⋆1= 0.01661β . Therefore, using (12) and (13), HX(x;β , λ ) is an increasing function
of x.

iv) Suppose now thatλ > 9− 6
√

2, thengh(x; λ )) is negative for allx ∈ (0, β ). Hence,HX(x;β , λ ) is an increasing
function ofx, λ ≥ 9−6

√
2.

Proof of existence and uniqueness of the ML estimate:It follows from (15) that

∂ ln(λ )
∂λ

=− n
λ 2 −

n

∑
i=1

yi
2e−yiλ

(

1−e−yiλ
)2 < 0.

This implies that the ML estimate,λ̂ML, for λ is unique. To insure that̂λML exists, following Balakrishnanet. al. [2], we
rewrite (15) ash1(λ ) = h2(λ ), where

h1(λ ) =
n
λ

and h2(λ ) =
n

∑
i=1

{

2yi −
yie−yiλ

1−e−yiλ

}

.

Since
∂h2(λ )

∂λ
=

n

∑
i=1

yi
2e−λ yi

(

1−e−λ yi
)2 > 0,

limλ→0+ h2(λ )=−∞ and limλ→∞ h2(λ ) = 2n ∑n
i=1yi >0, h2(λ ) is then a pounded increasing function ofλ . But h1(λ ) is

a positive strictly decreasing function with right limit+∞ at 0. This insure thath1(λ ) = h2(λ ) holds exactly once at some
valueλ = λ⊛.
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