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Abstract: Itis a common situation that the failure rate function haathtub shape for many mechanical and electronic compangnts
simple model based on the median of tree /or four identicipendent random variables drown from the well known povgtribution

is presented for modeling this type of data. The failure cate also be upside-down bathtub shaped or increasing. Magéfties of
the proposed distribution are investigated. Estimati@t@dures are introduced as well as a graphical approachalialplity plot.
An application to a real data set is presented; and a simulatudy is provided. Finally, some concluding remarks aesgnted.
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1 Introduction

Families of distributions for the mediatof an independent random samplg,- - - , Yy, drawn from an arbitrary lifetime
distribution with survival functiorSy (-; ©), are introduced by Abd-Elrahmad][ He shows that its survival function,
Sx(+; ©), has the following form:

S (x0) = § CnkSr(x0)2™ 1 m=0,1,2,.. (1)
k=0

wherem=Int (%) Int(-) is theElemental Intrinsic Functioyand them+- 1 coefficientsCrk, are given by

(1™  (m+1-k) (1) (Bmeh

T . k=0,1,---,m.

Cnk =

Using (1) with N=3 or 4 andSy(+; ©) is the exponential survival function, he obtained a newrithistion. He gave this
new lifetime distribution a name, th&ilal (8) distribution.

Unfortunately, the failure rate function related to #i¢al (6) distribution is always monotonically increasing with
finite limit. In this paper, a simple model based on the mediaitiee /or four identical independent random variables
drown from the well known power distribution is presentede $ow that its failure rate function can have a bathtub
shaped. The failure rate can also be upside-down bathtyiedhar increasing. It may be very desirable that our two-
parameter model can have such a flexible failure rate fumclibe layout of this paper is organized as follows:

In Section2, the proposed distribution and most of its properties avergiwhich are: the mode, median, mean, the
expected value, variance, thtda moments, the coefficient of variation, Kurtosis coeffitjskewness, a closed form of the
gth quintilexq, the Shanon measure of entropy, the Fisher information uneabouti, the lower limit of Craner—Rao
inequality for the parametér. In Section3, some properties of the failure rate function are presented

Estimation procedures are presented in Seetion which, following Balakrishnaet. al.[2], we proved the existence
and unigueness of the maximum likelihood estimate of tharpate\ . The(1—a)100% asymptotic confidence interval

for A~ s also given. We showed that, the moment estimat&,ofvhen the parametg® is assumed to be known, is
exists in a simple closed form. Its efficiency with respecfwa.t.) theminimum variance unbiased estimgidVUE)
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Fig. 1: Profile of the pdf of the proposed distribution ##0.4 (solid), 0.5 (dot), 0.6 (dash), and 2 (dash dot), repey, w.r.t. % ny;
and its corresponding failure rate function (l1).

of A is equal to 99.9165 %. Estimations of both of the two paramsetee studied. Graphical approach is also provided
via probability plot.

For illustrative purposes, however, in Sectibpan application to a real data set are considered. Our seatsdt
compared with four recent studies to this data.

Section6 is presented for comparing the performance of the resudttignators via simulation experiments. Finally
we gave some concluding remarks.

2 The proposed model and some properties of the density funon

It is well known that, for3, A > 0, the survival distribution function related to the powéstdbution has the following
form

A

y :

S{(y;B,A)z{l () Ho<y<p, )
1 if x> .

In view of (1), letN=3 or 4,i. e. m= 1, and replacings,(-; ©) by the power survival function, given bg); we
then obtained a new distribution. This distribution is reteas theMMHB(S3, A) distribution. The nam&MHB is refer
to as the initials of my four sons’ names. The probability sign(pdf), cumulative distribution (cdf) and the failurate
functions of theMMHB(3, A) distribution are, respectively, can be written as

fx(x;B,A)z%(g)ZA_l (1_<%>A>, 0<x<p,(B,A>0), 3)
FX(X;B’)\):{1-(1—(§)A)2(1+2(5)A):(%)2A (3—2(§)A) if0 <x< B, @
1 if x> .

, 0<x<B. 5)

Figurel depicts profile of the pdf of the proposed distribution; atsctorresponding failure rate function. The shape
properties of 8) follow from the following theorem.

Theorem 2.1.The pdf of theMMHB(3, A) distribution is a decreasing function forxQ <1/2; and unimodal foA > 1/2
1

with mode ato = 8 (%ﬁ—j)

Proof. See the Appendix.

x
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In view of (3), therth moments of a random variab¥e X ~ MMHB(3, A) exist for all3 >0, A > 0; and it is then given
by:

1 6A2B"
E(X 6AB/W2A H(1-y)dy=62p" <r+2/\ r+3/\>:(r+2/\)(r+3/\)' ©)

It may be clear that, the expected value, variance; and thiatiem (CV), Kurtosis (KU) and Skewness (SK)
coefficients, can then be easily obtained usB)gdnd they are respectively given by:

6BA? 3B2A2(1+10A +13A%
E[X] = B , ar(X) = ( 5 ) 5 (7
(2A+1)(1+32) (14+A) (243A) (1421)%(1+32)
oV - Var(X) 1 [3(1+10A+13A2)
TV EXD2 A\ (1+A)(2+3A)
E
KU — [(X=E(X) 3]
E[(X—E(X))?]
~ (142)(2+3A)(6+139A +1187A%+ 4308 3+ 58524 *4-7963) >+ 128914 °+-6534A 7)
3A2(24+A)(4+3A1)(342A) (1+10A +1312) ’
E [(X—E(X)3
sk= EICECO _ 1 ) jom)
E[(X—E(X))?]
ifo<A<l
24 35) 4185024 210A%] [3(1+A)(2+3A)2 | V€ ! ’
:2(1_)\)[+ + + }[(4— )(3"’ )] 0 If)\:].,
9A (3+2A)(1+10A+13A2)2 —ve ifA>1,
where forA > 0,Q(A) > 0. The coefficients CV, KU and SK depends only on the parameter
If Y =In(X), X ~MMHB(, A), then we have
E(Y)=In(B) - > (8)
N 6A°

Therefore, it may be easy to show that, fe2,3 and 4, the™ moments ol = In(X) aroundE(Y), 1/, are given by:

13 35 121
! :V Y = —5 ! e / S

Ho ar( ) 36)\2’ M3 108)\37 Hy 144)\4 (9)

Hence, the KU of is equal to1352 = 0.4438; while the Skewness Wfis equal to— 169\/73 = —1.4934.

Theath quintile,xq, is an |mportantquantlty specially for generating rand@meties using the inverse transformation

method. Letg =3 arctani qu T ) then thegth quintile can be obtained frord) as

>

Xq =B (y(a))?, (10)
where
—sin(ag+§) if0<qg<3,
if g=
}+cogag+ ) |f1<q<1

NI NI

y(q) =

Hence, the median of a random variallleX ~ MMHB(3, A), is given byXmedian= B2771,

Using 3), the Shanon measure of entropy, it may be easy to show thas ithe following form:

E[-In(f)] = 5 —In (%) S
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Fig. 2: (a) Graphs o€ (solid) andé; (dash), w.r.t. the parametér (b) A graph of the failure rate function wii = 10 andA = 0.51.

Let X1, X2,--- Xn be an independent random sample of size n, taken MHB(S, A), then the Fisher information
measure about is given by

d?In(f n(12Zeta3)—125) 0.51956 ol
J()\;n):—nE{ a/\(ZX)}: ( j(z) ) T (Zeta3)= i 3). (11)
=
3 Some properties of the failure rate function
In view of (5), it may be easy to show that
6 X 2A-1 (o) if0<)\<%,
i : _9A i (X ~J3 jr=1
t = fim (B, A) = XlLrQ+(B) {3 itr-4 (12)
0 ifA>3,
+2:xi73‘— Hx(X;8,A) = o YA >0, >0. (13)

The shape properties d)(follow from the following theorem.
Theorem 3.1.The MMHB(3, A) distribution has a failure rate function with three diffetesshapes i) bathtub shaped

1
A
for 0 < A < $ with a changing point at; = 8 [M} ; ii) upside-down bathtub shaped fgr< A <A,

1
rerwivil
A®=9-6+/2 = 0514718628, with two changing pointsxgtandx;, wherex ; = 8 {w] ; and iii) an

increasing function foA > A .
Proof. The proof is provided in the Appendix.

In order to give another check for this theorem, one may compigure2-(a), where a profile of the functiorfg ,,
which are as the as the definitionxgf,, but without both of the powe} and the coefficien8 each, are depicted. In this
figure, negative values @ corresponds to non-real values #gr Furthermore, Figur@?-(b) depicts graph of the failure
rate function with3 = 10 andA = 0.51,i.e, 1 <A <A,

4 Estimation

Let Xp, Xo,--+, Xy be independent random sample with observed value (X1, X2, , X,) from a MMHB(3, A)
distribution.
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4.1 When3 is known

—Moment estimate: The unbiased moment estimate of the paeaiTe!, /\BM' is given by

A = = Zl'” (14)

We find thatf\B‘,&, is very closed to the MVUE foi ~1, this is due to: i) It is an unbiased estimate for?, ii)

Var(Ayt) = 2522 ~2; and using 1), its efficiency w.r.t. the lower bound oframer-Roa Inequalitythe MVUE of
2A~1is 99.9165621 %.
—Maximum likelihood estimate: Let = In(%),i =1 2,---,n, it follows that, the normal equation af is given by

—AYi
In(A) :E+zi{ i + 1yee M} 0. (15)

The maximum likelihood (ML) estimate fok, }\ﬁML, exists and it is unique (see the Appendix). The solution of
(15) givesAgy which can be obtained numerically using, e.g., the bisaatiethod. It follows from 11) that, the
asymptotic(1—A ) 100% confidence interval, ACI, dfgy_ is given by

1
i+, 0.7208 ;4
BML NG 3

WhereZ% is the quantilg1— %) of the standard normal distribution.

(16)

4.2 Whem is known

In the following, we introduce three unbiased estimatorgtie parametef with their corresponding variances. The first

estimator related to the moment method. In view®f the unbiased moment estimate of the pararrféx@ M, and its
corresponding variance are given by

s (1+30)(1+22) 2 - B2 (1+10A +1322)
A= 6nA2 i; - Varh) = 12nA%(A +1)(2+37)

(17)

The other two unbiased estimators are obtained togethkithgir variances as follows:
Recall the indicator function which is define %(n)<ﬁ}: 1 or 0 according a%,) < 3 or Xy, > B, wherexy, is the

largest sample observation, it follows frol) that, the likelihood function of the paramejfgis given by

ghAn n { X 221 X A

S TG 0 e a®)

Following Gibbons 8], see Johnsoret al. [4] Page 289 for reference, we investigate three estimatarghi®
parametef3. The first one is biased while the other two estimators are not

Ln(B):

1.The maximum likelihood estimatgs; =X(n) With moments

EB]=nm(nA)B,  Var(B)=p2(nnA)—n2(nA)), (19)

where
-1)'(2/3)' (7) Ke 12,

n
M, A) = 1= k3 k+)\ (2n+i) ’ ’

By (18), since 0< ni(n, A) < 1 (compare Figur8), we may notice thaﬁ,\ mL underestimateg.
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Fig. 3: Plots of the functiong1(n, A) (left) andnj(n, A) (right) for n=10, 15, 20, 25, 30, 40, 50, and 100; and values of the pararhete
in the range (0.01,6.0).

Fig. 4: The relative efficiencies;(n, A) (a),e2(n, A) (b), andes(n, A) (c), forn=10, 15, 20, 25, 30, 40, 50, and 100; &nd (0.01,6.0).

2.The unbiased estimatﬁli; and its corresponding moments are given by

) 2 2 [nz(n A) ]
= . Var(By) = —-1]. 20
By = i A) (Br)=B nZ(n, A) (20)
3.0ther unbiased estimatfr, ; and its corresponding moments are given by
« X)X o _ a2 [M3(A)—1f(n,A)—nf(n,A)
By = —F—+> Var(B;) =B < . (21)
NN HOYY D mi(n. AP

wherex ;) is the smallest sample observation; ander 1,2, nx(n, A) is as given in 19),
0y [ & (=D s ()
lk(n,)\)_1+kal<j){ K+ A2]+D)

Ne(n, A) =1(n, A)+ni(n, A).

Figure 3 depicts graphes of the function(n, A) (left) andnj(n, A) (right), for n= 10,15, 20, 25, 30, 40, 50, 100
and values of the paramet&rin the range (0.01, 6). Thesis figure may indicate thatn, A) andi1(n, A) are bounded
functions forn¢, 1 andA > 0; and

and

0<ni(nA)11(nA) <1

For A € (0.01, 6); andn= 10, 15, 20, 25, 30, 40, 50 and 100, Figdré), (b) and (c) depict the relative efficiency
ei1(n,A), ex(n, A) andes(n, A), respectively, where

Var(B,) _ Var(By)
Var(B,)’ & A)= Var(By)

Var(B,) B

B
Var(B

erl(nA)= B

and e3(n,A)=
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B

Fig. 5: Same as in Figuréd but forA € (0.01,0.7).

Figure5is as the same as in Figuddut forA € (0.01,0.7).
In view of Figurest and5, we conclude that the value of the param@tetetermines which estimator is more efficient

than the other two estimators. However, these figures magatedthat, the estimator which has the lower variancg,is:
for A €(0.01,0.12), B; for A € (0.12,0.61) and3, for A < (0.61, 6).

4.3 When bott andA are unknown

In this case, however, in order to find estimates for »#ndA, initial value for each parameter is needed. We try two
different approaches.

Graphical approach:

MMHB(B, A) probability plotting (MMHBPP) can be achieved simply by fbilog In(x) on z= —In[y(F(x))], where
Fn(+) is the empirical distribution function; and-) is as given in {0). This results in a least square lide+ 6z = In(X).

The corresponding estimates fBrandA are then respectively given tfsc =eh andﬁ\G = 52, which can be used as
initial values for much better estimators.

Iterative methods:

DenoteV; the sample variance of the transformed sanpi€x, ), In(x1),---In(x,)). Since the variance of a random
variable In(X), X ~ MMHB(S3, A), which is given in 9), does not depend on the paramgehen an initial value for an
estimator of the paramet@rcan be calculated as

V13
Ao = s =7
6v/nNV1

Once we obtam\( o), three iterative methods can be used to obtain estimatotstb of the unknown parametesand
A Let)\ )\ )\ =A()- Then, fors=0,1,2,---, N, N is the maximum number of iteration, say 1000, it follows from
(19, (17) (20) and Ql) that, these proposed methods are as follow:

(22)

—Method I: i
. (1+ 2)\ 1+3)\ n .
B(S) 6n)\2 Z )‘(S+l 5n Zln . (23)
—Method II: )
A X(n) 5 6 &, Bo
& i, Aw) (D7 Bn i; X;
(@© 2014 NSP
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—Method IlI:

N -1
, X(1) +Xm , 6 & Py
B = R —, A =< —YIn(—= . (25)
(s) [ll(na)\(s))‘f"]l(n,)\(s))] (s+1) 5”; ( X )

Each of these iteration methods will be refined until its aacy is reached according to the stoping I1IA|@+1) —Algl <

1.2x106s=123,---, where,)\(',) stands foﬁ\(,), 3\(,> or)\(*,>.

5 Data analysis

For illustration and comparison reasons, we use a real eathat is used in many recent studies which consists of 18
lifetime failure observations of an electronic device.Stlata set was first analyzed by Wab}y Kie et. al.[6] and then

by Rezaeet. al.[7]. This data are as follows [Wan§]| Page 309]: 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196,244,
293, 321, 330, 350, 420.

For this data set, estimates of the parameters of the prdposdel according to MMHBPP, Methods I, Il and 11l are
obtained as described in SectiérB and depicted in Tabl& together with some corresponding measures of goodness of
fit, namely, the Kolmogorov-Smirnov (K-S) statistics withetr corresponding-values, Log Likelihood and the Akaike
Information Criterion (AIC). The graphical approach, MMBB, results img=0.4525 which may be used as an initial
value for the paramete instead ofA ). For this data ) is equal to 0.4663. We use each/pf) andAg as an initial
value each, but the corresponding estimators remain the.ddate that, according to the results of Theorem 3.1., since
the estimated values of the parameteusing any of Method |, 11, Il or MMHBPP are inside the intah¢0, %], this data
set may then has a bathtub shaped failure rate function.

We compare our results with the four recent studies:
Xie et. al.[6] presented a modified Weibull extension (MWE) model with shevival function

S(x) = exp a/\(l—eo‘/‘”ﬁ)}, x>0, (a, B, A > 0).

Bebbingtonet. al. [8] presented a flexible Weibull extension (FWE) model , havaging property, base on a
generalization of Weibull model, with the survival funatio

S(x) = exp[—exp(ax— B/X)], x>0, (a,B >0).

Guptaet. al.[9] presented a complete Bayesian analysis of the Weibulhsida (BWE) model, using Markov chain
Monte Carlo simulation. The survival function for this mbde

S0 =exp[ -2 a ¥A(e”’ ~1)] . x>0.(a. .2 >0).

Rezaeiet. al. [7] presented the Exponential Truncated Poisson Maximum [BTiRodel. The ETPM model is
obtained by mixing exponential and truncated Poisson maximistribution, with the survival function

_ —BX\ _ oA
sx) —1- M (ifej) x>0,(8,A>0).
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Table 1: Parameter estimators and some measures of goodness ofttfi¢ fdata set.

Model a B A K-S p-value | Log Likelihood AIC

Other MWE 287.51 0.93 0.0035| 0.1088| 0.9765 -109.311 222.6225
FWE 0.003| 24.72 - 0.3159| 0.0428 -112.328 228.6559
BWE 0.76 0.32 0.007 | 0.1060| 0.9821 -110.666 227.3315
ETPM - 0.0074 | 1.1251| 0.1035| 0.9860 -110.322 224.6449

Propoed|| MMHB (M I) - 607.0871| 0.47 0.0768 | 0.9999 -109.298 222.5961
MMHB (M 1) - 615.5529| 0.4664 | 0.0804 | 0.9998 -109.353 222.7057
MMHB (M 111) - 590.2820| 0.4776( 0.0812| 0.9998 -109.194 222.3875
MMHB (PP) - 636.9531| 0.4525| 0.0867 | 0.9993 -109.498 222.9962

The resulting estimators and their corresponding gooduiefiismeasures related to each of these four models are as
in Table 3, on Page 1756 of Rezagial.[7]. These results are also included in TatleAlthough, Tablel shows that,
there is no significant differences between AICs or K-S¢,this may indicate that the fit of our proposed model to this
data set is comparable with the corresponding fits obtaisetjuhe other four models. Furthermore, the properties of
our proposed model may help in estimating the changing pginof the estimated failure rate function. For this data set,
based on Method I, on applying Theorem 3.1., given in Sed&jome may havei; = 65.241. Therefore, the coordinates
of the corresponding estimated value of the changing psi(@5.241, 0.0048). This changing point occurs at the 0.2824
quintile. On the other hand, it follows froni§) that, the 95% ACI ofA for this data set is (0.353, 0.7047). Figuréa)
depicts graphs of the fitted failure rate function corresfsao this data set using Method I. Fig@réb) is as the same as
in Figure6 (a), but in the domain (0.04, 0.01). This is to gain some fatsut the changing poing.

6 Simulation experiments

To evaluate the performance of the estimators of the pammef the proposed distribution, we designed Monte Carlo
experiments. In each experiment, for different values eftbpulation parameters and sample sizes, 1000 pseudonnand
samples have been generated according to Equdia$:X; =3 [V(Uj)]l/)\, i=12,---,n,whereUs, Uy, --- . Uyaren
identical independent random observations from the stardaiform distribution, using theMSL[10] routine DRNUN.

Forty five combinations of the parameters were considere®0, 30, 1008 =1, 2, 3,A =0.2,0.4,0.6,1 and 2.
For each parameters combination, a generated sample in@dht8ased on this sample, the estimators of the parameter
B andA are computed according to Methods I, Il and 11l as describeBdctiord. As an estimated risk of the parameter

~ 2
&, & =B or A, the squared deviatior(sé—é) , can then be obtained and stored. For 1000 repetitions,tasatsd

risks of the different estimators the root mean squared®(RMSES) are computed as the squared root of the average
of their corresponding squared deviations. Tablisplays the estimated risks. For Method | and I, non of tB@®@0
generated samples, of course, plus the real data sampleéaddiled. While Method 111 faildN; times. This is because
the estimated value @ is less tharx, for some few cases of the generated samples. We notice ltrmumberN;,
increases specially when> 1. This is expected, since, compare FigBrg;(n,A) >1forallA > 1 andn > 1, thenB*
under estimate the parameferTherefore, in Tabl8, only the estimated risks related to Methods | and Il areldisgd.

7 Concluding remarks

We have introduced a new two-parameters life time distigouVe show that its failure rate function can have a bathtub
shaped. The failure rate can also be upside-down bathtydedia increasing.

This proposed distribution is easy to be involved in staidsoftware libraries since its reliability function iaged on
the well known power function. We provide different estioratfor the two unknown parameters. Comparing the resulting
estimators in Table® and3 we may notice that, the parameteiis independent of the paramei@r The parametei
provides three different shapes for the failure rate functFor the bathtub (or upside-down bathtub) shape failates r
the changing point(s) of the failure rate function can belgasalculated. The paramet@r controls the died line of the
hole random phenomena under studying. We derived most afiihertant properties of the new distribution and closed-
form expressions for its moments are also obtained. In vielable 1, the proposed model fit of the real data set was
comparable to that obtained using the other four recent tmadgich appear in the literatures. Due to the flexibility of
the failure rate function of our proposed model, we hope dhatproposed model can be applied for different practical
random phenomenons.

(@© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

30 N SS 2 A. M. Abd-Elrahman: A New Two-Parameter Lifetime Distritmrt with...

Table 2: RMSE's of the resulting estimators when b@tandA are unknown.

B | A n B B B*
1 | 02| 20| 0.152806 0.129871 0.12994
30 | 0.106661 0.081168 0.08118
120 | 0.025057 0.018581 0.01858
0.4 | 20| 0.056232 0.036956 0.03776
30 | 0.039202 0.022625 0.02294
120 | 0.009165 0.004859 0.00487
0.6 | 20| 0.031186 0.017154 0.01966
30 | 0.021628 0.010467 0.01162
120 | 0.005092 0.002195 0.00230
2 | 02| 20| 0.611224 0.519482 0.51979
30 | 0.426645 0.324674 0.32475
120 | 0.100229 0.074324 0.07432
0.4 | 20| 0.224928 0.147824 0.15105
30 | 0.156807 0.090498 0.09179
120 | 0.036660 0.019437 0.01950
0.6 | 20| 0.124744 0.068615 0.07867
30 | 0.086513 0.041868 0.04651
120 | 0.020366 0.008779 0.00920
3 | 02| 20| 1.375253 1.168835 1.16953
30 | 0.959951 0.730516 0.73068
120 | 0.225514 0.167229 0.16722
0.4 | 20| 0.506088 0.332604 0.33987
30 | 0.352816 0.203621 0.20653
120 | 0.082486 0.043734 0.04388
0.6 | 20| 0.280674 0.154383 0.17701
30 | 0.194655 0.094204 0.10466
120 | 0.045824 0.019753 0.02070

B | A | n A A A"
1,2,| 0.2 | 20] 0.001937 0.001841 0.00184
30 | 0.001284 0.001143 0.00114
120 | 0.000249 0.000240 0.00024
or | 0.4| 20 0.008895 0.007214 0.00760
30 | 0.005911 0.004504 0.00461
120 | 0.001118 0.000957 0.00095
3 | 06| 20| 0021934 0.015672 0.01865
30 | 0.014571 0.009799  0.01070
120 | 0.002741 0.002151 0.00218

z

1 N W 1

N W
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Appendix

Proof of Theorem 2.1.
The first derivative of§) w.r.t. x is given by

e ey X(6B,A) o x\*
fx<x,rs,A>—gp<x,A>m, gplA) = (23 -1~ 3~ 1) () (A1)
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1
The functiongp(x; A ) has exactly one root & = 8 (2A 1) . Table4 may give some analysis about this function. Hence,

the following three cases arise:

NIfo<A< é thenxg is an unbounded increasing functionafSince, lim, _,o+ Xo=€f and I|m L1 Xo= o, then the

minimum value ofxp tends toef3 which is grater tharB. This implies thaixg is outside the mtervado B). e.g.the
value ofxp atA = 0.2 equal to 4.958 > 3. Therefore fx (x; 3, A) is a decreasing function for0A < 3.

i) For % <A< % the functiongp(x;A) and fy (x; B, A) are negative for all & x < B. This implies thatfx (x; 8, A) is
a decreasing function df in the interval [1/3,1/2].

iil) Suppose now thak > 2, then 0< gﬁ i < 1. Hence, < Xp < B, which implies thatxo is a real root foigp(x) in the
interval 0< x < B, wheregp(x) > 0 for 0 < x < Xp andgp(x) > 0 for X < x < B. Hence,fx(x; 8, A) has a unique

mode atx = Xg.
Proof of Theorem 3.1.

The first derivative of the logarithm o5 w.r.t. x is

(In[Hx(x;B,)\)])IZX(l_éj;())j;){(%),\]= gh<x;A>:<2A—1>+<A—1)<%)A+2<%>2A'

It may be clear that the functia(x; A) has exactly two roots ag andxj, which are given by

X,1=B

[(1 /\)q:\/)\z 181 +9

Hence, the following cases arise:

i) If 0 <A <3, since

A2-18A+9=(A2—2A+1) —16A +8=(1-1)2+8(1-2A)>(1-A)2

Hencex] is a real number, whilg is not. Note that,

I|m Xj = B

1
1\* .
lim xg=ipB lim <§) =0, i=+v-1, A 16

lim x{=e!p <
A—0t A—0t A—0t ! B B’

Iimlxg 0, <B.
Therefore, the functio,(x; A) is a decreing function of for 0 < x < x; and it is an increasing function offor
X] < X< B.This goes in line with12) and (L3), in whicht; =t = o, for 0< A < % This implies thatx (x; 8, A) has
a bathtub shaped failure rate forkOA < 1 with a minimum value ax = x;.

Table 3: RMSE's of the resulting estimato fs B andA.
B=1 B=2 B= B=120r3

Al n| B B B B B B A A
1| 20| 0.0143 0.0065 | 0.0572 0.0261] 0.1288 0.0587| 0.0686 0.0445
30 | 0.0098 0.0039 | 0.0394 0.0156| 0.0886 0.0352|| 0.0455 0.0279
120 | 0.0023 0.0008 | 0.0093 0.0032| 0.0211 0.0072|| 0.0084 0.0059
2 | 20| 0.0044 0.0016 | 0.0179 0.0067| 0.0404 0.0152|| 0.3081 0.1776
30 | 0.0030 0.0010 | 0.0123 0.0040| 0.0278 0.0090|| 0.2045 0.1113
120 | 0.0007 0.0002 | 0.0030 0.0008| 0.0067 0.0018|| 0.0384 0.0238
3| 20| 0.0021 0.0007 | 0.0086 0.0030| 0.0195 0.0068|| 0.7249 0.3992
30 | 0.0015 0.0004 | 0.0060 0.0018| 0.0135 0.0040| 0.4821 0.2503
120 | 0.0003 < 0.00005 | 0.0014 0.0003| 0.0033 0.0008|| 0.0911 0.0536
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Table 4: Some analysis about the functigp(x; A), given in A1).

A — 0<A<i 1<a<i J<i<o
The sign of(3A —1) —ve +ve +ve
The sign of(2A — 1) —ve —ve +ve
The sign ofgp(X;A) —ve —ve +ve
Type ofxg Real Non-real Real
The value ofxg Xo > - O<x<pB
The maximum value ofx (x; 3, A) atx=0 atx=0 atx=Xp

ii) For % <A <9-6v/2, then bothxg andxj are real numbers and9xg < x; < . But from (12) and (L3), for A > %
t1 = 0 andt, = o .This implies thatHx (x; 8, A) has an upside-down bathtub shaped failure rate.

i) When A = 9—6v2, thenxi; = x7= 0.01661p3. Therefore, usingl2) and (3), Hx(x; B, A) is an increasing function

of x.
iv) Suppose now thak > 9—6v/2, theng,(x; A)) is negative for alix € (0, B). Hence,Hx(x; 3, A) is an increasing

function ofx, A > 9—6v/2.
Proof of existence and uniqueness of the ML estimatét follows from (15) that
Aln(A n 2 y2evA
g3
51 (1—e )

This implies that the ML estimatéML, for A is unique. To insure tha&ML exists, following Balakrishnaat. al.[2], we
rewrite (15) ashi(A) = hy(A), where

n n e YiA
h(A)=3 and hz(/\):_zl{Zyi_ly'_W}.
i=

Since
dhy(A) Ny 2y

= >
oA is (1—e*’\>’i)2
limy o+ h2(A)=—c0and limy o h2(A) =2n 31 ,vi>0,hz(A) is then a pounded increasing functionafButhy(A) is
a positive strictly decreasing function with right limiito at 0. This insure thdi; (A ) = h2(A) holds exactly once at some
valueAd =A%,

3
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