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Abstract: In this paper, we prove some fixed point results for the cldssappings satisfying a contractive condition depending on
continuous, bijective and sequentially convergent magppiine main object of this paper is, to obtain fixed point tleews in the setting
of 2-metric space using the concept of compatibility. Anrapée is also given in support of our result.
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1 Introduction and Preliminaries self-maps on X such that for everyya € X,

P(T (X)), T(e(y),T(a)

In recent years, examining the necessary and sufficient < &P (T(X).T(@(x).T (@) +ap (T(y).T(2(¥).T (@)
conditions for the existence of fixed points is drawingthe ~ + aP (T (X),T(¢(y)),T (@) +asp (T (y), T (@1 (x), T (a))
attention of many researchers. There exist a huge + asp(T(x),T(y),T(a))

observations on the topic and this is a very functioning .

field of research at present. The Banach Fixed Poimwherg 4,8,8s,a4 and & are non-negative numbers such
theorem provides an approach for solving variousthat y a < land(a;—ap)(ag—ay4) > 0.

@
®

I

problems in mathematical science and engineering. Man i=1 ) i )
authors have extended, generalized and improved hen¢ and @ have a unique common fixed point.
Banach’s fixed point theorem in different ways. Definition 1.[7] Let X be a non-empty set. A real valued

In [1,2] Jungck and Rhoades characterize thefunctiond on Xx X x X is said to be a 2-metric on X if
concepts  of 5-compatible and weakly compatible q  for given distinct elementsyof X, there exists an
mappings as supplement of the concept of compatible  glement z of X such thatxly,z) # 0;
mapping for single valued mappings on metric spaces. o d(x,y,z) = 0, when at least two of,y, z are equal;
Several authors used these concepts to prove SOmes. dixy 7) —d(x.zy) — d(y,zx) for all x,y,z in X;
common fixed point theoremséde[3,4,5, 6]). 4. d(xy,2) < d(xy,w) +d(x,w,2) +d(wy,z) for all

The concept of 2-metric space was initially given by  x,y,zw in X.

Gahler [7] whose abstract properties were suggested then d is 2-metric on X, then ordered pé¥, d) is called
the area of function in Euclidean space. On the way of,'5_atric space. ' ’
development, a number of authors like Ise]i Rhoades
[9], Saha and Deyl[(], Kieu Phuong Chet al[11], have  Definition 2.[8] A sequencgx} in 2-metric space X is
studied various aspects of fixed point theory in 2-metricsaid to be a Cauchy sequence if for each X,

spaces . In11] Kieu Phuong Chiet al proved following imd _0 o
theorem, imd (Xn,Xm,a8) =0 as nm-— co.

Definition 3.[8] A sequencexy} in 2-metric space X is

Theorem 1[11] Let (X,p) be complete 2-metric space Convergentto an elementxX if for each ac X,
and T be a bi_jective, continuous and sequentially lim d (xn,x,a) = O.
convergent mapping. Also, suppose tipaaind ¢, be two n—o
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Definition 4.[8] A complete 2-metric space X is one in and f and %, are compatible pair for all xy,z € X and
which every Cauchy sequence converges to an element &dr some non-negative constants,3,y such that
X. 0<a,B,y<la+y<l

o . . Then f and £ have a unique common fixed point in
Definition 5.[13] A pair {S, T} of self map on 2-metric x.
space(X,d) is said to be compatible if ) ) ]

Proof. For an arbitrary poinkg € X, define a sequence
lim d(STx,TS%,a) =0 V acX, {Xn} contained inX as follows:

n—oo

f1(Xon) = Xont1, f2 (Xen+1) = Xeni2, N=0,1,23,...
and T (X)) =VYn.
lim Tx, = I|m Sh=X Now,

n—oo

whenevefx,} is a sequence in X such that

2
Definition 6.[12] Let T be a mapping of 2-metric space d(v1,Y2,2)
X into itself. If for all ac X and n— oo, =d%(T (x2),T (x2),T (2)

4T 0.8) > 0; = (T (11(0).T (f200)),T (@

< ad(T (x0),T(f1(%0)). T (2)d(T (x2), T (f2(x1)),T (2))
= d(TT"%,Tu,a) =0

( ) +Bd(T (%0), T (f2(x1)). T (2)d(T (f1(%0)), T (x1). T (2))
then T is called orbitally continuous. +yd(T (x0), T (x1), T (2))d(T (f1(x0)), T (f2(x1)), T (2))
Definition 7.[11] A 2-metric space is called sequentially :(ZH—Y) (yo,ylr; 3)d (yl,_yg,a) 3
compact if every sequence of X has a convergent — Ccd(¥o.y1,@).where c=a+y. )
subsequence. In the same way,
Definition 8.[11] Let (X,d) be a 2-metric space. A dz(yz,yg,a)gcd(yl,yz,a) 4)

mapping T: X — X is called sequentially convergent if )

we have, for every sequenf}, if {Tyn} is convergence  Using @) and @), we have

then {yn} is a convergent sequence. T is called < <2
subsequentially convergent if we have, for every sequence d(v2,¥3,8) < cd(¥1,¥2,8) < €°d (yo,1,8).
{¥n}, if {T(yn)} is convergence then{y,} has a Thus,in general for any positive integgr

convergent subsequence.
d (ynaYn+1a a) g Cnd (YO,YL a) .

] Now for fixedn,m > 0, m> n,
2 Main Result
d (Yn,Ym, &) < d(¥n,Yn+1,8) +d (Yni1, Yns2,@) + -+
We are now going to prove the following main results in +d(Ym-1,Ym, &)

the setting of 2-metric space. < (M + ™24 ¢ 1) d (yo,y1,0)

: c'(1-c™"
Theorem 2. Let (X,d) be a complete 2-metric space and < Td (Yo,Y1,8)-
T be a continuous, bijective and sequentially convergent _ .
mapping. Let f and % be a pair of self maps from X to X Letting m,n — o, we have lind (yn,ym,a) — 0. Which

satisfying the following conditions, implies {yn} is a Cauchy sequence and it converges to
somey € X. Therefore
d®(T (f1(¥). T (f2(y)), T (2) limyn = limT(x) = y. Since T is sequentially
<ad(T(x),T(fr(y),T(2)d(T(y),T(f2(y)),T(2)) convergent, we infer thdx, } converges t € X. Due to
+ Bd (TX),T(f2(y),T(2)d(T (f1(x),T(y),T(2) ?ontinuity of_T, we canddeduce thslt(x) :{3;. (AS)? ang
are continuous and compatible paifi(x,)} an
V(T (), T (), T(@)d(T (1 (), T (F2()).T (ZH) {21‘2(xn)} converges to same limit saythen ’
d(fyfoXn, f2fixn,@) -0 asn— co.
d*(T (f1(%), T (f2(¥)), T (2)) Therefore,
<ad[(T(X),T(f1(x),T(2)]d(T(y), T (f2(y)). T (2)) lim f1faxn = lim 2%,
+ Bd(T(X),T(f2(y)), T(2)d(T (f1(x). T(y).T(2) , ,
T 0. TO) T @A (h00). T () T@) (M 20m) = f2 (Jim f1 ()
2 f12 = f22.
(@© 2014 NSP
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We shall show that is a unique common fixed point ¢f
andf,. To do this let,f;z= f,z= u for someu € X.
We claim thatu = z Therefore from2), we have

Thus z is the common fixed point off; and f,. For

Now form,ne N, m>n

d (Yn,Ym, b)
< d(Yn,Yn+1,Ym) +d (Ynt1,Yni2,Ym) +
+ d(Ym-2,Ym-1,Ym) +d (Yn,Yn+1,b)
+ d(Ynt1,Yn+2,0) + -+ d (Ym-1,Ym,b)
< (S + M2 4 ¢™2) d (Yo, Y1, Ym)
+ (" ™) d (vo, Y1, b)
<2(c" M4 ™M,

uniqueness takey be any other fixed point then take WhereM is a constant and sud¥i exists, aX is bounded.
u = uy in the above inequality, we can conclude that Lettingn,m— « in the inequality,

Z=Uj.
Hencezis the unique fixed point of; and f;.

Theorem 3. Let X be a bounded complete 2-metric space
and T be a continuous, bijective and sequentially

convergent mapping and:X — X be a continuous self
map, defined from X into X such that

d*(T(SX,T(SY,T(2)
< @ [max{ad?(Tx Ty, T2),bd(Tx T (SY,T (2))
d(T(SX,T(y),T(2)}]

for all x,y,z€ X and ab are positive constants with <
b<a<1landeg:[0,0)— [0,) is non decreasing upper
semi-continuous angh(t) <t for allt > 0. Then S has a
unique fixed point.

(5)

Proof. Define{x,} in X as follows,

Xon1 = S¥n, n=0,1,2,...

and T (xn) =VYn.

Xont2 = R¥n1,

Now,

(y17y2> )
d(T (x2),T (x2), T (2)
d(T(S(x0)), T (S(x1)),T (2))

[ { ad? (T (x), T (X

<[of

< [o{max(ac oy }]
<atd(yo,y1.b).

1),T(2)),

(¥o.¥1.5) b (Yo, y2,b)d (y1,¥1.5)) }

max(
1
2
max(

Thusd (y1,Y2,b) < cd(yo,y1,b) ifO<c=,a<1l.

In the same way,

d(y2,y3,b) < cd(y1,Y2,b) < c?d (yo,y1,b).

Thus in general, we have

d (yn7Yn+1a b) < Cnd (YOaYL b) .

r!mod (YnaYma b) =0.

i.e. {yn} is a Cauchy sequence which is convergenXin

sayy € X.
A yn = I, T be) =

Since T is sequentially convergent, we infer thét,}
converges tox € X. By the hypothesis thafl is
continuous, we can deduce tiatx) = y.
Now, we shall show that is the unique fixed point of
S. Since,
X = 1im Xons1 = lim Sxn = s(nm x2n) — Sx
N—co n—oo n—oo

this shows thak € X is a fixed point ofS. To prove the
uniqueness, assume thxat£ x € X be another fixed point.
By using 6), we get

d(TxT(x1), T (2)
=d(T(SX,T(S%),T(2)
< [@{max(ad?(Tx Tx, T2),bd(Tx T (Sx). T (2)),
d(T(S().T (x),T @)}
= [p{max(ad® (Tx Tx,T2),bd(TxTx,T2),
d(TxTx,T2)}]?

< [o{ad®(TxTx,T2)}] 2 g (TxTx,T2).

this is a contradiction. HenCE&x = Tx; or X = X;. This
proves thak is a unique fixed point o$.

Theorem 4. Let S and R be two self maps of a 2-metric
space(X,d) into itself. Let T be a continuous, bijective
and sequentially convergent mapping such that

d?(T(SX,T(RY),T(2)
gC(p[adZ(Tx,Ty,Tz)+(1—a)max{d2(T>gT(S>§,Tz),
(T T(RY). T(2)}] (®)
v xy,z e X, 0<c< 1l ace (0,1 where

@ : [0,00) — [0,) is a non-decreasing upper semi
continuous andp(t) <t,vV t > 0. If X is x orbitally

continuous then S and R have a unique common fixed

pointin X.
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Proof. Define{xy} in X as follows,

X2n+1 = S)an X2n+2 = RX2n+17 n= 07 17 27 s

and T (X)) =VYn.
Now,

d(T(S%),T(Rxa),T(2)
< <C(p [ad2 (Tx.Tx, T2 +(1—a)

(NI

max{d2 (Tx0,T (S%),T2),d?(T (x1),T (Rx) 7TZ)}D

< (cqo [ad2 (Yo,y1,b) +(1—a)

Nl

maX{dZ (Yo,y1.b), 4% (y1, 2. b)}]

1

< V(g [ac? (yo.y1,b)] )*
[Forze X, 3b € X such thaff (2) = b]

< ed(yo,y1,b),if Vac= e

It follows that,
d(y1,y2,b) < ed(yo,y1,b)
Thus in general,
d(Yn,Yn+1,b) < ed(¥n-1,¥n,b), e<1.

Continuing exactly as in proof of TheoreZnwe can show
that there exists a pointe X such that

X = SX=RXx

Now

ad (T (S%n_2),T (R¥%n-1),T2)

+B min{d (Txon—2,T (S¥n-2),T2),
d(Txn-1,T (Ren-1),T2)}
—ymin{d(TXn_2,T (R%n-1).T2),
d(Txn-1,T (S¥%n-2),T2)}

< gmax{d(Txn_2,T (xon-1),T 2,
d(Txn-1,T (S¥%n-2),T2)}
d(Txn-1,T (Ren-1),T2)}

< gmax{d (yon—2,Y2n-1,b),d (Y2n-2,¥2n-1,b),
d(y2n-1,Y2n.b)}.

Thus

adan—1+ Bmin{don_2,don_1} < gmax{dan_2,don-1}.

9)

where
don = d (Y2n, Yon+1,D) -

If don_1 < don_»then (7) implies,
(a+B)dan-1 < qden—2

q
don—1 < ——=don—2 < Clhn_2,

a+p

wherec = ﬁ < 1. Thus we can show that

=

Oon_1 < clop2 < Czd2n_3 e < Czn_ldo —0asn— o

Also, uniqueness of the fixed point follows immediately In he same way, iflon 2 < dpn_1, We have,

from inequality 6). This completes the proof.

Theorem 5. Let S and R be two orbitally continuous self
maps of a bounded 2-metric space X and T be a
bijective and sequentially convergent

continuous,
mapping satisfying.

ad(T (SX,T(Ry),T(2)+LBmin{d(TxT (SX,T2),
d(Ty, T(Ry),T2}—ymin{d(TxT (Ry),T2,
d(Ty,T(SX,T2)}
<gmax{d(Tx Ty, T2),d(TxT(SX,T2),
d(Ty,T(Ry),T2)} )

Vooxy,zeX, a,y>0, B,q>0withgq<a+pf, q>a.
Then S and R have a uniqgue common fixed point in X.

Proof. Define a sequence} by

forn=123 ...
(8)

Xon—1 = S¥%n-2, Xon = RXn_1

and T (Xn) = Yn.

adan_1+ Bdan_2 < qdhn_1
Bdan—2 < (Q—a)don_1

q—a
Oon_2 < ——don1

B

<&y  wheres=3-9 1.

B
Thus, we have
o2 < o1 < 8%don - - - < 82" 2dy — 0 ash — o.

Hence the sequends, } is a Cauchy sequenceXand it
converges to somee X, that is

o= i T 00) =,

SinceT is sequentially convergent, we infer théx,}
converges tox € X. By the hypothesis thafl is
continuous, we can deduce that,

T(X) =Y.

(@© 2014 NSP
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Next, we shall show that is the unique fixed point o
andR.

X= r!mXanl = AmXanz = S(I!mxznfz) = Sx
It remains to show that show th&x= Rx For this, from
inequality (7)
ad(T(SX,T(RX),T2)+Bmin{d(Tx T (SX,T2,
d(TxT(RX,T2)}—ymin{d(TxT(RxX,T2,
d(TxT(RX,T2)}
<gmax{d(TxTxT2),d(TxT(SX,T2),
d(TxT(RX,T2)}.
Which implies thatSx= Rx Hencex is the common fixed

point of SandR, the uniqueness follows immediately from
(7). This completes the proof.

X

Nax

=

SettingS=T in the above theorem, we have the following
corollary.

Corollary 1. Let S be an orbitally continuous self map
of a bounded 2-metric space X and T be a continuous
bijective and sequentially convergent mapping satisfying

ad (T (SX,T(SY), T2+ Bmin{d(Tx T (SX,T2),

d(Ty, T(Sy,T2}—ymin{d(TxT(Sy,T2,
d(Ty, T(SX,T2)}

<gmax{d(Tx Ty, T2),d(TxT(SX,T2),
d(Ty, T(Sy,T2}

vV oxyzeX, a,y>0, B,q>0with gq< a+ and
g+ y>a.Then S has a unique fixed pointin X.

3 Applications

Here we give some applications related to our results. Fo
this, we use a Lebesgue integrable function as a summab
for each compad®™.

Letus defingy : [0,00) — [0,0) asy (t) = [ () Vt>0

be a non-decreasing and continuous function. Moreove
for eache > 0, ¢ (¢) > 0. Also it implies thatp (t) = 0 iff
t=0.

Theorem 6. Let (X,d) be a complete 2-metric space and

T be a continuous, bijective and sequentially convergent A

mapping. Let f and % be a pair of self maps from X into
X satisfying the following condition,

d?(T(f1(x)),T(f2(y)).T2)
/ 6 (t)dt <
0

d(TXT(f1(x)),T2.d(Ty.T(f2(y)),T2)
a / o (t)dt+
0

A(TXT (£2(9)) T2.A(T (1(%).TYT2
/0 6 () dit

d(TxTyT2).d(T(f10),T(f2(y)),T2)
v 6 (t)ct

where¢ € ¢ and f; and £ are compatible pair for all
X,¥,z€ X and for some non-negative constamt$, y with
0<a,By<lp+y<Ll
Then f and % have a uniqgue common fixed point in X.

Proof. Taking¢ (t) = 1 and using Theorer®, we get the
desired result.

Theorem 7. Let X be a bounded complete 2-metric space
and T be a continuous, bijective and sequentially
convergent mapping and:X — X be a continuous self
map defined from X into X such that

/O< (S¥.T(sy.T2) M)dté(p(/o“x’y’z)mt)dt) (10)

where
A(xY,2) =

1/2
[max{adz (TxTy,T2),bd(Tx T (Sy),T2).d(T (SX Jsz)}]

for all x,y,z € X and a,b are positive constants with<
b<a<landg:[0,0)— [0,o) is non-decreasing upper
Semi continuous ang(t) <t forallt > 0. Then S has a
unique fixed point.

Proof. Sinceg(t) <t, therefore from10), we have

d(T(SX,T(SY.T2)
| oz
0

A (XY.2) A(XY.2)
o[ ewa)< [owar an

On takingg (t) = 1, the result follows from Theoref

Theorem 8. Let S and R be two orbitally continuous self
maps of a bounded 2-metric space X and T be a
continuous, bijective and sequentially convergent
IFnapping satisfying:

e

d<T<S><>7T(Ry>7TZ)
a / t)dt

Aa( xyz
_y/
where

(x.¥,2)
—min{d(Tx T (SX,T2).d
)\Z(Xayaz)
=min{d(Tx T (Ry),T2),d(Ty,T
)\3(X,y,Z)
={d(TxTyT2),d(TxT(SX,T2),
d(TxT(Sx,T2)}

t+B/)\1xyz
r A3(X.Y,2)
)dtgq/o o(t)dt  (12)

(T, T(RY),T2)}

(S¥,T2)}

vx,y,ze X,a,y>0,8,g>0withg<a+,9>a.
Then S and R have a unique common fixed pointin X.

(@© 2014 NSP
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Proof. Define a sequence} by

Xon_1= S%n_2, Xon=TXn_1 for n= 1,2,3....
andT (Xn} = Yn.
Now
d(T(S¥%n-2),T(Rxn-1),T2)
a / é (t)dt
0

A1(Xon—2:%2n-1,2)

B p(nat
A2(Xen—2,%2n-1,2)

v ¢ (t)dt

A3(Xen—2,%2n-1,2)
<q o (1),
0

where

A1(%,Y,2)
:{ (Txon—2,T(S¥%n-2,T2),
d(Txn-1,T(Rxn-1),T2)}
A2(X.Y;2)
:{ (Txon—2, T(R¥%n-1,T2),
d(Txn-1,T(S%n-2),T2)}

)\3 (X7y7 )
= {d(Txn—2,TXn-1,T2,

d(TXn—2,T(S¥%n-1),T2)}
d(Txn-1,T(R%n-1),T2}

Equation (2) is

dan-1 min{dan_1,d2n 1}
o ["owatp | b (t)dt <

max{dzn—1,02n-1}
af ¢ Wat.

wheredz, = d (Y2n,Y2nt1,b) .
If don_1 < don_o, then we have

dzn-1 don-2
@+B) [ omdt<a [ omoat

don_1 q don—2
/ ¢“>dt5a+g/o o (t)dt
don_2
< /O 6 (t)dt

(13)

wherec = ﬁ < 1. Analogously we can show that

ot e mde<cp™ g i< .

<ciffog (t)dt

Similarly if dop_» < dpn_1, we have
o[t (V) dt+ B2 () dt < g g 1 (t)dt
Jer 2o mat< (%) 519 (Mdt< 5 fi g (t)dt

whered = qB“ <1
Thus we have

oo mdt <
52 [5° ¢ (1)t

Hence we conclude thafi>2¢ (t)dt — 0 asn —

St tydt < ... <

0,
By definition of ¢ (t) we havedy,_ —+ 0 asn— co.

Thus the sequencgy,} is a Cauchy sequence in X
and it converges to somey € X, that s,

Since T is sequentially convergent, we infer tixat
converges tox € X. By the hypothesis that T is
continuous, we can deduce tiatx) =

We shall show thax is the unique fixed point of S and
R. Now X = liMpsoXon-1 = liMpowXon_o =

Now, we show thaBx= Rx
From equation:(Z)

Gf S)@TRXTZ¢()dt + Bf)\lxxlz ()dt _
VIo™ " ¢ (t)dt < afg? ™7 ¢ (1) dt

= (a—a) fo'
Ol’f T(SX,T(RX), TZ)¢(t)dt=0,

T(SX,T(RX), TZ)¢(t)dt<0
asq>a.

By definition of ¢ (t), we haved (T (SX,T (Rx),T2 =0.
This impliesT (SXY = T (RX) or Sx= Rx

Hencex is the common fixed point ddandR, and the
uniqueness follows from equatioh?). This completes the
proof.

Examplel. Let X = {ab,c,d} and we define
d: X x X xX— R, as follows:-

d(a,b,c) =d(b,c,d) = 0;d(a,b,d) =d(a,c,d) =3 and
d(x,y,2) =0 if x,y,ze€ X such that two of them are
equal.

Clearly (X,d) is a complete 2-metric space. Define
f1, f2 : X — X as follows:-

a, Xx=a a, x=a
Thusfgz"*1 ¢ (t)dt — 0 asn— . Again by definition f1(x) = ¢, x=b fo(x) = d, x=b
of ¢ (t), we obtain d, x=c b, x=c
b, x=d c, x=d
don-1 —0  asn— . Clearly f; and f, are compatible mappings.
(@© 2014 NSP
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Also we define a bijective, continuous and sequentially[2] G. Jungck, B.E. Rhoades, Fixed points for set valued

convergent mapping : X — X as

b, x=a
c, Xx=b
TO)= d X=C
a, x=d

Takex=a,y=bandz=cinthe ), we have

d*(T (fL(a)). T (f2(b), To) <
ad(Ta T (f1(a)),Te)d(Tb T (f2(b)),Tc)+
Bd(Ta T (f2(b)), Te)d(T (f1(a)),ThTc)+

yd(Ta,Th,Tc)d(T (f1(a)),T (f2(h)),Tc)
= d?(b,a,c) < ad(b,b,b)d(c,a,d)+
Bd(b,a,d)d (b,c,d) + yd (b,c,d)d (b,d,d)

Hence the condition of Theorerd is satisfied. The
mappingf; andf, have a unique fixed point a.

Example 2.Let X = [0, 1] be a metric space with the usual
metric d (x,y) = [x—y|. Define f; (x) = x® and f,(x) =
2—xVx e X, thenf; andf, are compatible mapping.
Now we define 2-metric space on X by,

d (vavz) = min{|X—y| ) |y_ Z| ) |Z_ X| . \V/X,y,ZE X}

Also we definel = 1+ logxbe a bijective, continuous and
sequentially convergent mapping.

Takingx = 1,y = £ andz= 1 in the condition 2), we get

#(rean(s(3)) 7(3))
(T (s(3)) 7(;
o((a)7(=(3)) 7(3)
sa(re (( )T
)
)7(

o(rinan(
»7(e(3) 7(

(T (

a(T(n
or d(1+1logl,1+logZ, 1+ log3) <
(B+y)d(1+1logl,1+logs, 1+log})

N—

—
/\/\

Dl .Ml—\\—/
NI, NI NP N

— N N~ N~ T
~— I + ~— A

0.5596< 0.693 asf3 + y < 1, which is true. Alsof; and
fo have fixed point 1.
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