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Abstract: In this paper, we prove some fixed point results for the class of mappings satisfying a contractive condition depending on
continuous, bijective and sequentially convergent mapping. The main object of this paper is, to obtain fixed point theorems in the setting
of 2-metric space using the concept of compatibility. An example is also given in support of our result.
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1 Introduction and Preliminaries

In recent years, examining the necessary and sufficient
conditions for the existence of fixed points is drawing the
attention of many researchers. There exist a huge
observations on the topic and this is a very functioning
field of research at present. The Banach Fixed Point
theorem provides an approach for solving various
problems in mathematical science and engineering. Many
authors have extended, generalized and improved
Banach’s fixed point theorem in different ways.

In [1,2] Jungck and Rhoades characterize the
concepts of δ -compatible and weakly compatible
mappings as supplement of the concept of compatible
mapping for single valued mappings on metric spaces.
Several authors used these concepts to prove some
common fixed point theorems (see[3,4,5,6]).

The concept of 2-metric space was initially given by
Gahler [7] whose abstract properties were suggested by
the area of function in Euclidean space. On the way of
development, a number of authors like Iseki [8], Rhoades
[9], Saha and Dey [10], Kieu Phuong Chiet al [11], have
studied various aspects of fixed point theory in 2-metric
spaces . In [11] Kieu Phuong Chiet al proved following
theorem,

Theorem 1.[11] Let (X,ρ) be complete 2-metric space
and T be a bijective, continuous and sequentially
convergent mapping. Also, suppose thatφ1 andφ2 be two

self-maps on X such that for every x,y,a∈ X,

ρ (T (φ1(x)) ,T (φ2(y)) ,T (a))

6 a1ρ (T (x) ,T (φ1(x)) ,T (a))+a2ρ (T (y) ,T (φ2(y)) ,T (a))

+ a3ρ (T (x) ,T (φ2 (y)) ,T (a))+a4ρ (T (y) ,T (φ1(x)) ,T (a))

+ a5ρ (T (x) ,T (y) ,T (a))

where a1,a2,a3,a4 and a5 are non-negative numbers such

that
5
∑

i=1
ai < 1 and(a1−a2)(a3−a4)≥ 0.

Thenφ1 andφ2 have a unique common fixed point.

Definition 1.[7] Let X be a non-empty set. A real valued
function d on X×X×X is said to be a 2-metric on X if

1. for given distinct elements x,y of X, there exists an
element z of X such that d(x,y,z) 6= 0;

2. d(x,y,z) = 0, when at least two of x,y,z are equal;
3. d(x,y,z) = d(x,z,y) = d(y,z,x) for all x,y,z in X;
4. d(x,y,z) ≤ d(x,y,w) + d(x,w,z) + d(w,y,z) for all

x,y,z,w in X.

When d is 2-metric on X, then ordered pair(X,d) is called
a 2-metric space.

Definition 2.[8] A sequence{xn} in 2-metric space X is
said to be a Cauchy sequence if for each a∈ X,

lim d (xn,xm,a) = 0 as n,m→ ∞.

Definition 3.[8] A sequence{xn} in 2-metric space X is
convergent to an element x∈ X if for each a∈ X,

lim
n→∞

d (xn,x,a) = 0.
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Definition 4.[8] A complete 2-metric space X is one in
which every Cauchy sequence converges to an element of
X.

Definition 5.[13] A pair {S,T} of self map on 2-metric
space(X,d) is said to be compatible if

lim
n→∞

d (STxn,TSxn,a) = 0 ∀ a∈ X,

whenever{xn} is a sequence in X such that

lim
n→∞

Txn = lim
n→∞

Sxn = x.

Definition 6.[12] Let T be a mapping of 2-metric space
X into itself. If for all a∈ X and n→ ∞,

d (Tnx,u,a)→ 0;

⇒ d (TTnx,Tu,a)→ 0

then T is called orbitally continuous.

Definition 7.[11] A 2-metric space is called sequentially
compact if every sequence of X has a convergent
subsequence.

Definition 8.[11] Let (X,d) be a 2-metric space. A
mapping T: X → X is called sequentially convergent if
we have, for every sequence{yn}, if {Tyn} is convergence
then {yn} is a convergent sequence. T is called
subsequentially convergent if we have, for every sequence
{yn}, if {T(yn)} is convergence then{yn} has a
convergent subsequence.

2 Main Result

We are now going to prove the following main results in
the setting of 2-metric space.

Theorem 2. Let (X,d) be a complete 2-metric space and
T be a continuous, bijective and sequentially convergent
mapping. Let f1 and f2 be a pair of self maps from X to X
satisfying the following conditions,

d2(T ( f1 (x)) ,T ( f2 (y)) ,T (z))

≤ αd (T (x) ,T ( f1 (y)) ,T (z))d (T (y) ,T ( f2 (y)) ,T (z))

+ βd (T (x) ,T ( f2 (y)) ,T (z))d (T ( f1 (x)) ,T (y) ,T (z))

+ γd (T (x) ,T (y) ,T (z))d (T ( f1 (x)) ,T ( f2 (y)) ,T (z))
(1)

d2 (T ( f1 (x)) ,T ( f2(y)) ,T (z))

6 αd [(T (x) ,T ( f1(x)) ,T (z))]d(T (y) ,T ( f2(y)) ,T (z))

+ βd(T (x) ,T ( f2(y)) ,T (z))d(T ( f1 (x)) ,T (y) ,T (z))

+ γd(T (x) ,T (y) ,T (z))d(T ( f1(x)) ,T ( f2 (y)) ,T (z))
(2)

and f1 and f2 are compatible pair for all x,y,z∈ X and
for some non-negative constantsα,β ,γ such that
0≤ α,β ,γ < 1,α + γ < 1.

Then f1 and f2 have a unique common fixed point in
X.

Proof. For an arbitrary pointx0 ∈ X, define a sequence
{xn} contained inX as follows:

f1 (x2n) = x2n+1, f2 (x2n+1) = x2n+2, n= 0,1,2,3, . . .

and T (xn) = yn.

Now,

d2 (y1,y2,a)

= d2(T (x1) ,T (x2) ,T (z))

= d2(T ( f1(x0)) ,T ( f2(x1)) ,T (z))

6 αd(T (x0) ,T ( f1(x0)) ,T (z))d(T (x1) ,T ( f2(x1)) ,T (z))

+βd(T (x0) ,T ( f2(x1)) ,T (z))d(T ( f1(x0)) ,T (x1) ,T (z))

+ γd(T (x0) ,T (x1) ,T (z))d(T ( f1(x0)) ,T ( f2(x1)) ,T (z))

= (α + γ)d(y0,y1,a)d(y1,y2,a)

= cd(y0,y1,a) ,where c= α + γ . (3)

In the same way,

d2 (y2,y3,a)≤ cd(y1,y2,a) (4)

Using (3) and (4), we have

d (y2,y3,a)6 cd(y1,y2,a)6 c2d (y0,y1,a) .

Thus, in general for any positive integern,

d (yn,yn+1,a)6 cnd (y0,y1,a) .

Now for fixedn,m> 0, m> n,

d (yn,ym,a)6 d (yn,yn+1,a)+d (yn+1,yn+2,a)+ · · ·
+d (ym−1,ym,a)

6
(

cn+ cn+1+ cn+2+ · · ·+ cm−1)d (y0,y1,a)

6
cn (1− cm−n)

1− c
d (y0,y1,a) .

Letting m,n → ∞, we have limd (yn,ym,a) → 0. Which
implies {yn} is a Cauchy sequence and it converges to
somey∈ X. Therefore
lim
n→∞

yn = lim
n→∞

T (xn) = y. Since T is sequentially

convergent, we infer that{xn} converges tox∈ X. Due to
continuity of T, we can deduce thatT(x) = y. As f1 and
f2 are continuous and compatible pair,{ f1(xn)} and
{ f2(xn)} converges to same limit sayz, then

d ( f1 f2xn, f2 f1xn,a)→ 0 asn→ ∞.

Therefore,

lim
n→∞

f1 f2xn = lim
n→∞

f2 f1xn

f1
(

lim
n→∞

f2 (xn)
)

= f2
(

lim
n→∞

f1 (xn)
)

f1z = f2z.
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We shall show thatz is a unique common fixed point off1
and f2. To do this let,f1z= f2z= u for someu∈ X.

We claim thatu= z. Therefore from (2), we have

d2 (T ( f1(z)) ,T ( f2(u)) ,T (z))

6 αd(T (z) ,T ( f1(z)) ,T (z))d(T (u) ,T ( f2(u)) ,T (z))+

βd(T (z) ,T ( f2 (u)) ,T (z))d(T ( f1(z)) ,T (u) ,T (z))+

γd(T (z) ,T (u) ,T (z))d(T ( f1(z)) ,T ( f2(u)) ,T (z))

= 0.

Thus z is the common fixed point off1 and f2. For
uniqueness takeu1 be any other fixed point then take
u = u1 in the above inequality, we can conclude that
z= u1.

Hencez is the unique fixed point off1 and f2.

Theorem 3. Let X be a bounded complete 2-metric space
and T be a continuous, bijective and sequentially
convergent mapping and S: X 7→ X be a continuous self
map, defined from X into X such that

d2 (T (Sx) ,T (Sy) ,T (z)) (5)

6 φ
[

max
{

ad2(Tx,Ty,Tz) ,bd(Tx,T (Sy) ,T (z))

d (T (Sx) ,T (y) ,T (z))}]

for all x,y,z∈ X and a,b are positive constants with0≤
b< a< 1 andφ : [0,∞)→ [0,∞) is non decreasing upper
semi-continuous andφ(t) < t for all t > 0. Then S has a
unique fixed point.

Proof. Define{xn} in X as follows,

x2n+1 = Sx2n, x2n+2 = Rx2n+1, n= 0,1,2, . . .

and T (xn) = yn.

Now,

d(y1,y2,b)

= d(T (x1) ,T (x2) ,T (z))

= d(T (S(x0)) ,T (S(x1)) ,T (z))

6

[

φ
{

max
(

ad2 (T (x0) ,T (x1) ,T (z)) ,

6

[

φ
{

max
(

ad2 (y0,y1,b) ,bd(y0,y2,b)d(y1,y1,b)
)}]

1
2

6

[

φ
{

max
(

ad2 (y0,y1,b)
)}]

1
2

< a
1
2 d(y0,y1,b) .

Thusd (y1,y2,b)< cd(y0,y1,b) if 0 ≤ c=
√

a< 1.
In the same way,

d (y2,y3,b)< cd(y1,y2,b)< c2d (y0,y1,b) .

Thus in general, we have

d (yn,yn+1,b)< cnd (y0,y1,b) .

Now for m,n∈ N, m> n

d (yn,ym,b)

< d (yn,yn+1,ym)+d (yn+1,yn+2,ym)+ · · ·
+ d (ym−2,ym−1,ym)+d (yn,yn+1,b)

+ d (yn+1,yn+2,b)+ · · ·+d (ym−1,ym,b)

<
(

cn+ cn+1+ cn+2+ · · ·+ cm−2)d (y0,y1,ym)

+
(

cn+ cn+1+ · · ·+ cm−1)d (y0,y1,b)

< 2
(

cn+ cn+1+ · · ·+ cm−1)M,

whereM is a constant and suchM exists, asX is bounded.
Lettingn,m→ ∞ in the inequality,

lim
n→∞

d (yn,ym,b) = 0.

i.e. {yn} is a Cauchy sequence which is convergent inX
sayy∈ X.

lim
n→∞

yn = lim
n→∞

T (xn) = y

Since T is sequentially convergent, we infer that{xn}
converges tox ∈ X. By the hypothesis thatT is
continuous, we can deduce thatT (x) = y.

Now, we shall show thatx is the unique fixed point of
S. Since,

x= lim
n→∞

x2n+1 = lim
n→∞

Sx2n = S
(

lim
n→∞

x2n

)

= Sx,

this shows thatx ∈ X is a fixed point ofS. To prove the
uniqueness, assume thatx1 6= x∈ X be another fixed point.
By using (5), we get

d (Tx,T (x1) ,T (z))

= d (T (Sx) ,T (Sx1) ,T (z))

6
[

φ
{

max
(

ad2 (Tx,Tx1,Tz) ,bd(Tx,T (Sx1) ,T (z)) ,

d (T (S(x)) ,T (x1) ,T (z)))}] 1
2

=
[

φ
{

max
(

ad2 (Tx,T x1,Tz) ,bd(Tx,Tx1,Tz) ,

d (Tx,Tx1,Tz))}]
1
2

6
[

φ
{

ad2(Tx,Tx1,Tz)
}]

1
2 < d (Tx,Tx1,Tz) .

this is a contradiction. HenceTx= Tx1 or x = x1. This
proves thatx is a unique fixed point ofS.

Theorem 4. Let S and R be two self maps of a 2-metric
space(X,d) into itself. Let T be a continuous, bijective
and sequentially convergent mapping such that

d2 (T (Sx) ,T (Ry) ,T (z))

6 cφ
[

ad2 (Tx,Ty,Tz)+(1−a)max
{

d2 (Tx,T (Sx) ,Tz) ,

d2 (Ty,T (Ry) ,T (z))
}]

(6)

∀ x,y,z ∈ X, 0 ≤ c < 1, a ∈ (0,1] where
φ : [0,∞) → [0,∞) is a non-decreasing upper semi
continuous andφ(t) < t,∀ t > 0. If X is x0 orbitally
continuous then S and R have a unique common fixed
point in X.
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Proof. Define{xn} in X as follows,

x2n+1 = Sx2n, x2n+2 = Rx2n+1, n= 0,1,2, . . .

and T (xn) = yn.

Now,

d(T (Sx0) ,T (Rx1) ,T (z))

6

(

cφ
[

ad2 (Tx0,Tx1,Tz)+(1−a)

max
{

d2 (Tx0,T (Sx0) ,Tz) ,d2 (T (x1) ,T (Rx1) ,Tz)
}])

1
2

6

(

cφ
[

ad2 (y0,y1,b)+(1−a)

max
{

d2(y0,y1,b) ,d
2(y1,y2,b)

}]
1
2

6
√

c
(

φ
[

ad2 (y0,y1,b)
])

1
2

[Forz∈ X, ∃ b∈ X such thatT(z) = b]

< ed(y0,y1,b) , if
√

ac= e.

It follows that,

d (y1,y2,b)< ed(y0,y1,b)

Thus in general,

d (yn,yn+1,b)< ed(yn−1,yn,b) , e< 1.

Continuing exactly as in proof of Theorem2, we can show
that there exists a pointx∈ X such that

x= Sx= Rx.

Also, uniqueness of the fixed point follows immediately
from inequality (6). This completes the proof.

Theorem 5. Let S and R be two orbitally continuous self
maps of a bounded 2-metric space X and T be a
continuous, bijective and sequentially convergent
mapping satisfying.

αd (T (Sx) ,T (Ry) ,T (z))+β min{d (Tx,T (Sx) ,Tz) ,

d (Ty,T (Ry) ,Tz)}− γ min{d (Tx,T (Ry) ,Tz) ,

d (Ty,T (Sx) ,Tz)}
6 qmax{d (Tx,Ty,Tz) ,d (Tx,T (Sx) ,Tz) ,

d (Ty,T (Ry) ,Tz)} (7)

∀ x,y,z∈ X, α,γ ≥ 0, β ,q> 0 with q< α +β , q> α.
Then S and R have a unique common fixed point in X.

Proof. Define a sequence{xn} by

x2n−1 = Sx2n−2, x2n = Rx2n−1 for n= 1,2,3, . . . ,
(8)

and T (xn) = yn.

Now

αd (T (Sx2n−2) ,T (Rx2n−1) ,Tz)

+β min{d (Tx2n−2,T (Sx2n−2) ,Tz) ,

d (Tx2n−1,T (Rx2n−1) ,Tz)}
− γ min{d (Tx2n−2,T (Rx2n−1) ,Tz) ,

d (Tx2n−1,T (Sx2n−2) ,Tz)}
≤ qmax{d (Tx2n−2,T (x2n−1) ,Tz) ,

d (Tx2n−1,T (Sx2n−2) ,Tz)}
d (Tx2n−1,T (Rx2n−1) ,Tz)}

6 qmax{d (y2n−2,y2n−1,b) ,d (y2n−2,y2n−1,b) ,

d (y2n−1,y2n,b)} .

Thus

αd2n−1+β min{d2n−2,d2n−1}6 qmax{d2n−2,d2n−1} .
(9)

where
d2n = d (y2n,y2n+1,b) .

If d2n−1 ≤ d2n−2 then (7) implies,

(α +β)d2n−1 6 qd2n−2

=⇒ d2n−1 6
q

α +β
d2n−2 6 cd2n−2,

wherec= q
α+β < 1. Thus we can show that

d2n−1 6 cd2n−2 6 c2d2n−3 · · ·< c2n−1d0 → 0 asn→ ∞

In he same way, ifd2n−2 ≤ d2n−1, we have,

αd2n−1+βd2n−2 6 qd2n−1

βd2n−2 6 (q−α)d2n−1

d2n−2 6
q−α

β
d2n−1

6 δd2n−1 whereδ =
q−α

β
< 1.

Thus, we have

d2n−2 6 δd2n−1 6 δ 2d2n · · ·< δ 2n−2d0 → 0 asn→ ∞.

Hence the sequence{yn} is a Cauchy sequence inX and it
converges to somey∈ X, that is

lim
n→∞

yn = lim
n→∞

T (xn) = y.

Since T is sequentially convergent, we infer that{xn}
converges tox ∈ X. By the hypothesis thatT is
continuous, we can deduce that,

T(x) = y.

c© 2014 NSP
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Next, we shall show thatx is the unique fixed point ofS
andR.

x= lim
n→∞

x2n−1 = lim
n→∞

x2n−2 = S
(

lim
n→∞

x2n−2

)

= Sx.

It remains to show that show thatSx= Rx. For this, from
inequality (7)

αd (T (Sx) ,T (Rx) ,Tz)+β min{d (Tx,T (Sx) ,Tz) ,

d (Tx,T (Rx) ,Tz)}− γ min{d (Tx,T (Rx) ,Tz) ,

d (Tx,T (Rx) ,Tz)}
6 qmax{d (Tx,Tx,Tz) ,d (Tx,T (Sx) ,Tz) ,

d (Tx,T (Rx) ,Tz)} .
Which implies thatSx= Rx. Hencex is the common fixed
point ofSandR, the uniqueness follows immediately from
(7). This completes the proof.

SettingS= T in the above theorem, we have the following
corollary.

Corollary 1. Let S be an orbitally continuous self map
of a bounded 2-metric space X and T be a continuous,
bijective and sequentially convergent mapping satisfying,

αd (T (Sx) ,T (Sy) ,Tz)+β min{d (Tx,T (Sx) ,Tz) ,

d (Ty,T (Sy) ,Tz)}− γ min{d (Tx,T (Sy) ,Tz) ,

d (Ty,T (Sx) ,Tz)}
6 qmax{d (Tx,Ty,Tz) ,d (Tx,T (Sx) ,Tz) ,

d (Ty,T (Sy) ,Tz)}
∀ x,y,z ∈ X, α,γ > 0, β ,q > 0 with q < α + β and
q+ γ > α. Then S has a unique fixed point in X.

3 Applications

Here we give some applications related to our results. For
this, we use a Lebesgue integrable function as a summable
for each compactR+.
Let us defineψ : [0,∞)→ [0,∞) asψ (t)=

∫ t
0 ϕ (t) ∀t >0

be a non-decreasing and continuous function. Moreover
for eachε > 0, ϕ (ε)> 0. Also it implies thatϕ (t) = 0 iff
t = 0.

Theorem 6. Let (X,d) be a complete 2-metric space and
T be a continuous, bijective and sequentially convergent
mapping. Let f1 and f2 be a pair of self maps from X into
X satisfying the following condition,

∫ d2(T( f1(x)),T( f2(y)),Tz)

0
ϕ (t)dt ≤

α
∫ d(Tx,T( f1(x)),Tz).d(Ty,T( f2(y)),Tz)

0
ϕ (t)dt+

β
∫ d(Tx,T( f2(y)),Tz).d(T( f1(x)),Ty,Tz)

0
ϕ (t)dt+

γ
∫ d(Tx,Ty,T z).d(T( f1(x)),T( f2(y)),Tz)

0
ϕ (t)dt

whereϕ ∈ ψ and f1 and f2 are compatible pair for all
x,y,z∈X and for some non-negative constantsα,β ,γ with
0≤ α,β ,γ < 1,β + γ < 1.
Then f1 and f2 have a unique common fixed point in X.

Proof. Takingϕ (t) = 1 and using Theorem2, we get the
desired result.

Theorem 7. Let X be a bounded complete 2-metric space
and T be a continuous, bijective and sequentially
convergent mapping and S: X → X be a continuous self
map defined from X into X such that

∫ d(T(Sx),T(Sy),Tz)

0
ϕ (t)dt ≤ φ

(

∫ λ (x,y,z)

0
ϕ (t)dt

)

(10)

where

λ (x,y,z) =
[

max
{

ad2 (Tx,Ty,Tz) ,bd(Tx,T (Sy) ,Tz) .d(T (Sx) ,Ty,Tz)
}]1/2

for all x,y,z∈ X and a,b are positive constants with0 ≤
b< a< 1 andφ : [0,∞)→ [0,∞) is non-decreasing upper
semi continuous andφ (t) < t for all t > 0. Then S has a
unique fixed point.

Proof. Sinceφ (t)< t, therefore from (10), we have

∫ d(T(Sx),T(Sy),Tz)

0
ϕ (t)dt ≤

φ
(

∫ λ (x,y,z)

0
ϕ (t)dt

)

<

∫ λ (x,y,z)

0
ϕ (t)dt (11)

On takingϕ (t) = 1, the result follows from Theorem3.

Theorem 8. Let S and R be two orbitally continuous self
maps of a bounded 2-metric space X and T be a
continuous, bijective and sequentially convergent
mapping satisfying:

α
∫ d(T(Sx),T(Ry),Tz)

0
ϕ (t)dt+β

∫ λ1(x,y,z)

0
ϕ (t)dt

−γ
∫ λ2(x,y,z)

0
ϕ (t)dt ≤ q

∫ λ3(x,y,z)

0
ϕ (t)dt (12)

where

λ1 (x,y,z)

=min{d (Tx,T (Sx) ,Tz) ,d (Ty,T (Ry) ,Tz)}
λ2 (x,y,z)

=min{d (Tx,T (Ry) ,Tz) ,d (Ty,T (Sx) ,Tz)}
λ3 (x,y,z)

= {d (Tx,Ty,Tz) ,d (Tx,T(Sx),Tz) ,

d (Tx,T(Sx),Tz)}

∀x,y,z∈ X,α,γ ≥ 0,β ,q> 0 with q< α +β ,q> α.
Then S and R have a unique common fixed point in X.
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Proof. Define a sequence{xn} by

x2n−1 = Sx2n−2, x2n = Tx2n−1 for n= 1,2,3....

andT (xn}= yn.
Now

α
∫ d(T(Sx2n−2),T(Rx2n−1),Tz)

0
ϕ (t)dt

+β
∫ λ1(x2n−2,x2n−1,z)

0
ϕ (t)dt

−γ
∫ λ2(x2n−2,x2n−1,z)

0
ϕ (t)dt

≤ q
∫ λ3(x2n−2,x2n−1,z)

0
ϕ (t)dt,

where

λ1(x,y,z)

= {d (Tx2n−2,T(Sx2n−2,Tz) ,

d (Tx2n−1,T(Rx2n−1),Tz)}
λ2(x,y,z)

= {d (Tx2n−2,T(Rx2n−1,Tz) ,

d (Tx2n−1,T(Sx2n−2),Tz)}
λ3(x,y,z)

= {d (Tx2n−2,Tx2n−1,Tz) ,

d (Tx2n−2,T(Sx2n−1),Tz)}
d (Tx2n−1,T(Rx2n−1),Tz)}

Equation (12) is

α
∫ d2n−1

0
ϕ (t)dt+β

∫ min{d2n−1,d2n−1}

0
ϕ (t)dt ≤

q
∫ max{d2n−1,d2n−1}

0
ϕ (t)dt,

(13)

whered2n = d (y2n,y2n+1,b) .
If d2n−1 ≤ d2n−2, then we have

(α +β )
∫ d2n−1

0
ϕ (t)dt ≤ q

∫ d2n−2

0
ϕ (t)dt

∫ d2n−1

0
ϕ (t)dt ≤ q

α +β

∫ d2n−2

0
ϕ (t)dt

≤
∫ d2n−2

0
ϕ (t)dt

wherec= q
α+β < 1 . Analogously we can show that

∫ d2n−1
0 ϕ (t)dt ≤ c

∫ d2n−2
0 ϕ (t)dt ≤ ....≤ c2n−1∫ d0

0 ϕ (t)dt.

Thus
∫ d2n−1

0 ϕ (t)dt → 0 asn → ∞. Again by definition
of ϕ (t), we obtain

d2n−1 → 0 asn→ ∞.

Similarly if d2n−2 ≤ d2n−1, we have

α
∫ d2n−1

0 ϕ (t)dt+β
∫ d2n−2

0 ϕ (t)dt ≤ q
∫ d2n−1

0 ϕ (t)dt

∫ d2n−2
0 ϕ (t)dt ≤

(

q−α
β

)

∫ d2n−1
0 ϕ (t)dt ≤ δ

∫ d2n−1
0 ϕ (t)dt

whereδ = q−α
β < 1.

Thus we have

∫ d2n−2
0 ϕ (t)dt ≤ δ

∫ d2n−1
0 ϕ (t)dt ≤ ..... ≤

δ 2n−2∫ d0
0 ϕ (t)dt.

Hence we conclude that,
∫ d2n−2

0 ϕ (t)dt → 0 asn →
∞.

By definition ofϕ (t) we haved2n−2 → 0 asn→ ∞.

Thus the sequence{yn} is a Cauchy sequence in X
and it converges to somey ∈ X, that is,
limn→∞ yn = limn→∞ T (xn) = y.

Since T is sequentially convergent, we infer thatxn
converges tox ∈ X. By the hypothesis that T is
continuous, we can deduce thatT (x) = y.

We shall show thatx is the unique fixed point of S and
R. Now x = limn→∞ x2n−1 = limn→∞ x2n−2 =
S(limn→∞ x2n−2) = Sx.

Now, we show thatSx= Rx.
From equation (12),

α
∫ d(T(Sx),T(Rx),Tz)

0 ϕ (t)dt + β
∫ λ1(x,x1,z)

0 ϕ (t)dt −
γ
∫ λ2(x,x1,z)

0 ϕ (t)dt ≤ q
∫ λ3(x,x1,z)
0 ϕ (t)dt

⇒ (α −q)
∫ d(T(Sx),T(Rx),Tz)

0 ϕ (t)dt ≤ 0

or
∫ d(T(Sx),T(Rx),Tz)

0 ϕ (t)dt = 0, asq> α.

By definition ofϕ (t), we haved (T (Sx) ,T (Rx) ,Tz) = 0.
This impliesT (Sx) = T (Rx) or Sx= Rx.

Hencex is the common fixed point ofSandR, and the
uniqueness follows from equation (12). This completes the
proof.

Example 1. Let X = {a,b,c,d} and we define
d : X×X×X → R+ as follows:-
d (a,b,c) = d (b,c,d) = 0;d (a,b,d) = d (a,c,d) = 3 and
d (x,y,z) = 0 if x,y,z ∈ X such that two of them are
equal.
Clearly (X,d) is a complete 2-metric space. Define
f1, f2 : X → X as follows:-

f1 (x) =



















a, x=a
c, x=b
d, x=c
b, x=d

f2 (x) =



















a, x=a
d, x=b
b, x=c
c, x=d

Clearly f1 and f2 are compatible mappings.
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Also we define a bijective, continuous and sequentially
convergent mappingT : X → X as

T (x) =



















b, x=a
c, x=b
d, x=c
a, x=d

Takex= a, y= b andz= c in the (2), we have

d2 (T ( f1 (a)) ,T ( f2 (b)) ,Tc)≤
αd (Ta,T ( f1 (a)) ,Tc)d (Tb,T ( f2 (b)) ,Tc)+

βd (Ta,T ( f2 (b)) ,Tc)d (T ( f1 (a)) ,Tb,Tc)+

γd (Ta,Tb,Tc)d (T ( f1 (a)) ,T ( f2 (b)) ,Tc)

⇒ d2 (b,a,c)≤ αd (b,b,b)d (c,a,d)+

βd (b,a,d)d (b,c,d)+ γd (b,c,d)d (b,d,d)

Hence the condition of Theorem2 is satisfied. The
mappingf1 and f2 have a unique fixed point a.

Example 2.Let X = [0,1] be a metric space with the usual
metric d (x,y) = |x− y|. Define f1 (x) = x3 and f2 (x) =
2− x ∀x∈ X, then f1 and f2 are compatible mapping.
Now we define 2-metric space on X by,
d (x,y,z) = min{|x− y| , |y− z| , |z− x| : ∀x,y,z∈ X}.
Also we defineT = 1+ logxbe a bijective, continuous and
sequentially convergent mapping.
Takingx= 1,y= 1

4 andz= 1
2 in the condition (2), we get

d2
(

T ( f1 (1)) ,T

(

f2

(

1
4

))

,T

(

1
2

))

≤

αd

(

T (1) ,T

(

f1

(

1
4

))

,T

(

1
2

))

d

(

T

(

1
4

)

,T

(

f2

(

1
4

))

,T

(

1
2

))

+

βd

(

T (1) ,T

(

f2

(

1
4

))

,T

(

1
2

))

d

(

T ( f1 (1)) ,T

(

1
4

)

,T

(

1
2

))

+γd

(

T (1) ,T

(

1
4

)

,T

(

1
2

))

d

(

T ( f1 (1)) ,T

(

f2

(

1
4

))

,T

(

1
2

))

or d
(

1+ log1,1+ log7
4,1+ log1

2

)

≤
(β + γ)d

(

1+ log1,1+ log1
4,1+ log1

2

)

0.5596≤ 0.693 asβ + γ < 1, which is true. Alsof1 and
f2 have fixed point 1.
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