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Abstract: A numerical method based on Dual Reciprocity Boundary Element MetBb&BEM) has presented to interpolate two-
dimensional data with arbitrary pattern. This method is performed withmedific boundary conditions. It claimed that interpolation
function is true on the Poisson equation with unknown source function.sdbece function is estimated by radial basis functions
expansion. Finally, numerical sampling has conducted on some speifitons as primary functions and interpolation values of
numerical sampling have compared to primary function values in ord®rdioate accuracy and precision of the method.

Keywords: Interpolation, Scattered Data, Radial Basis Functions, Dual Reciprooiindiary Element Method.

1 Introduction the accuracy of the proposed method. Although an
interpolation technique from scattered data with specific
0IPoundary conditions was presented by referegethe
{;urrent method is performed without specific boundary
onditions where is very applicable in practical problems.

Numerical methods today’s are used in many branches
science, engineering and technology as a high efficien
method to simulate and solve practical problems. One of
these methods is the interpolation method. Various
methods have introduced for the interpolation of
one-dimensional, two-dimensional and three-dimensiona
data with regular or non-regular configuratior. [A
numerical method is presented to interpolate
two-dimensional data with arbitrary pattern. It assumed
that interpolation function is valid in the Poisson equatio
with unknown source function. Source function has
,ﬁ? ;fn\sﬁdbzyuﬁdﬁﬁlvvgagfp ;ﬁg%fncso é;g';?tg 4T?1§r]1 by ] (X),_ is F:onsidered that satisfy the following differential
using location of sampled points, a closed boundaryequat'on'
created. After that, Green’s theorem is used to change the
Poisson equation into integral equation and dogr]nain 02U (X) =Q(X) @)
integral at integral equation changes to boundary equation It must be notify that in equationl) as well as the
by expansion of source function. Finally, the unknown U (X), Q(X) function is also unknown. In this equation
coefficients of the expanded source function and unknowrQ (X) plays the source rol&l (X) function will be able to
coefficients of boundary integral equation are calculatedcalculate if Q(X) function and appropriate boundary
by conventional boundary element method. The results otondition on the boundary of sampling area are known
interpolation with primary function values compared [8]. In the following, the source function will
together and comparisons results are reported to evaluaspproximate by RBFs. Hence, the equatibhgonverts to

2 Numerical method

It assumed that sampling has done at N points with
Xk = (X, Yk) coordinates,k € {1,...,N}, from U (X)
quantity as a primary function. The sampled data is
shown withUy = U (X). Interpolation function ofJ (X)
that is an approximation from the primary function,
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the appropriate integral equation and solve this integral The second term of the left hand side of equatig)rig
equation by boundary element method. At first, with calculated as follows:

regard to the location of sampling pointsX}, by

connecting the outer points together, the boundary of area .

is formed. The closed boundary (connection of points to / U(X)d(X—=X)dQ=C(X)U (X) (7
each other) shows with and the surrounded area by the Q

boundary is shown witli2. The figure of” boundary and  The coefficient (X') for the inner and outer regions of the
Q domain is not particular and different type of figures - poundary is equal to:

can shape the domain but it must be notify that finally

interpolation function is only estimated in the domain of , 1X'eQandX' ¢r

the formed boundary. Two types of the formed boundaries C (X ) = {o X'¢ Qand X' ¢ I ®)
and domains by a similar set of sampling points are .
shown in Fig. 1. The differential equation (1) converts If X locates on thé™ boundary,C(X’) can be obtained
into the integral equation after formation b6fboundary ~ from the following equation:

and Q domain. The second form of Green’s theorem is

!
used for this conversion as follows: cC(X)= fyf %dl’, Xer 9)
r n

Since in the equatio®) X’ € I, so the integral in the point
/ Y(X) D2 (X) — @(X) D%y (X)dQ = X = X' will be singular, therefore, it's Cauchy Principal

Q do(X WX Value (C_PV) needs to be calculated. Introducing Eir{

j{(ﬂ(x) (I;Eq )—(p(x) LI;E] )dl' ) Eg. (6) gives:
-

The two functions ofy (X) and @ (X) are arbitrary c(x’)u (x’) = _/ G(X,X’) Q(X)dQ +
scalar functions an@ /dn shows normal derivative of Q
dG (X, X")

considered quantities that is defined as follows: f{ G (X7X’) ou (X) _UX) ar (10)
r on on
d(.)/on=R0() 3 Each integrals of equatiori@) can be shown as follows:

wherertis normal vector perpendicular to tihieboundary N p
and is considered outward @ domain. Green equation lo (X') = /Q G(X,X) Q(X)dQ (11)

corresponding to equatiod)(is expressed as follows:
ouU (X)

- (X) = jzf G(X.X dr 12

02G (X, X') = & (X — X') (4) ir (X) = . 8 X) =5 (12)
where G (X, X’) is Green function and (X — X') is the N G (X,X')

Dirac delta function. In this method, there is no restriatio lr (X ) a f{r u®X) oan dr (13)

to choose Green function. Therefore, with regard to theBy considering the integral equatiorid, if Q(X) is

problem that is a two or three dimensional problem, theknown in theQ domain, alsdJ (X) anddU (X) /dn are

tSvivrgPr!i(ianitenscii)rr?;nprofglg(r:r?g nGr:(/a“rll fugitior? (?Isegfnends.idelrr:edknown on thel” boundary, value ot (X') will be able to
asG(X,X') = —In|X — X'| /2. Equation P) is rewritten calculate at any arbitrary point in thQ domain. As a

. 7 > result, Q(X) at the domain ofQ, also U (X) and
;glrlctjcvtasfunctlonaﬂ(X) =G(X,X') andg(X) =U (X) as dU (X) /on on thel” boundary must be estimate. In the

following, a numerical method to calculate these
functions based on DRBEM will provide.

/Q G (X, X') 02U (X) — U (X) 02G (X, X') dQ =

. 9U (X) IG(X,X')
er(X»X) U0 = )

By substitution equationsl) and @) in equation 9) it
drives:

/Q G (X, X) Q(X)+U (X)3 (X - X' dQ =

g , 0G(X,X") Fig. 1. The formation of two different boundaries with a
ﬁG(X,X ) oYX —dr (6)  uniform set of sample points.
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Fig. 2. Different point’'s arrangement (A: 41, B: 49, C: 60, D: 91,

E: 106 points.)
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3 Domain integral

The expressed integral in the equatichl)( must be
performed on total considered domain. There will be two
problems in numerical calculation of this integral if
assume tha@Q(X) is known. First,Q domain typically
has irregular shape. Secondly, if the observing p3inis
selected in th&2 domain, the integral will be singular. In
order to solve these two problems, the integral will be
converted to boundary integral by expansion @tX)
function based on radial basis functions. This expansion
is expressed as follow8,[10]:

N
QX) =3 Q™ (X, %) (14)
k=1

where Ql((m) (X,Xy) is a m order polynomial ofR; as
follows:

Qﬁ””(x,xk):o(km)(Rk):zode Re=|X—X/ (15)
|=

In this equationX, shows the location of the sampling
points and summation of the equatid¥) is carried out
on all these points. Coefficients af in equation {4) are
unknown. In addition, it can be seen that the functions of
Qf(m) (R) play role of source in the following differential
equation:

020" (R) = Q™ (Ro) (16)
m sy R R Ry
Uy (Ra) = 22 + 3 +...+ (m+2)2 (17)

Using equationsi4) and (16), integral L1) change to the
following form:

lo (X)) = %ak/ge(x,x’) m20(™ (RydQ  (18)
k=1

The domain integral in the equatiorl8) can be
changed to boundary integral by using again the second
form of Green'’s theorem:

/Q G (X.X') 120 (R dQ = —C (X') U™ (R)) +

59U (RO 3G (X, X')
756 (X.x') on an

whereR, = |X’ — X|. By putting equation9) in equation
(18) it can be derived that:

U™ (R) dr(19)

(20)
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where: approximation, 2 nodes are considered on each element.
The coordinates of the nodes are shown V\)'qw and
R(X')=-C (X’)U<m) (Ry) + x!?. The values ofdU (Xi(l)) /on and dU (Xi(z)) /on
ou™ (R) 0G(X,X) represented witkqﬁl) and q-(z), respectively. In the linear
ﬁG(XaX/) kain _Ué (Rk>07d’_ (21)  elements approiimationéu (X)/on is expressed as
follows [8]:
It can be seen thd& (X’) for each arbitrary point oK’ in 20 (X)
the domain ofQ can be calculated, and the regional uXxX)| (1) 2
integral (L1) is converted into a series of boundary on | =Wa(a) g™ +We () (28)

integrals. _— .
where weighting functions ofM (a) and Ws (o) are

linear functions that their functional shape are specified

4 Boundary integrals with respect to the location of thX\I(l) and Xi(z) nodes.
For example, by choosing nodes at locations of 1/4 and
At first, the I boundary is gridding in order to calculate 3/4 lengths of each element, these functions are expressed

the boundary integrals in equationd2 and (3). @sfollows:

Boundary element with index i is consider as connecting 1—2a

line between any two points of the set of sampling points Wi (o) = 5 (29)
that are located on thé boundary. As a result, the

boundary integrals1@) and (L3) are converted into the 1+2a

summation of integrals over each boundary element: W (a) = 2 (30)

B U (X) By putting the equations2g), (26), (27) and @8) in
lir (X') = / G(X,X") 3 dr (22)  equation 22) it derives that:

G( X X'
lar (X / u )2 )dl' @3 hr (X /
where Ng expresses the number of boundary elements{wl(a)qi +Wo (a) o }—da (31)
Function ofU (X) on thel; boundary element can be 2
approximated as the following: This equation can be arranged as follows:
l1-a 1+a
U (X)|; = 2 — Ui+ —— > ——Ui (24)

Ng
b (X) = 3 AT ()47 +A% (X)a®  32)

Parameter ofa varies in the range of—1,1] and
parametric equation of; boundary element can be

expressed by as the following: where:
l1-a 1+a
X(a)|r ~ i1+ ———X 25 1 ;
( )‘I’, 2 Xi—1+ 2 i ( ) Ai(l,Z) (X/) _ / G(X (C{) 7X/)W1,2(a) %da (33)
J-1
l1+a

y(a)|; = Ty 1+—y| (26)
According to the relat|on§6), and @6), it can be derived 5 Solving theintegral equation
that: By putting the equations2(), (23) and (32) in equation

L (10) it derives that:
dr =/ (dx) + (dy)* = E'dor (27)
. N

where L; is the length of thel; boundary element. By / n_ n o /
using the equation24), (25), (26) and @7), Ir (X’) can (X )U <X ) = lr (X) k:10!k|:k (X ) +

be calculated. To calculate each of the integrals of .

equation 22), some points (except starting and ending W (x gV +A@ (x) @ 34
points) is selected as nodes on the elemenf; ofith ZA' (X)a”+A(X)q (34)
regard to number of selected nodes on the element, )

function of dU (X) /dn can be estimated. In this study, where the coefficients o, qI ) and qi( ) are unknown.
linear elements approximation is used. In this By selecting of observation point’ on each sampling
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points of X, and node points Oxigl) and Xi§2)’ equation  Table 1 Interpolation by primary function of sifx) sin(y) for
(34) is changed to an algebraic system of equationsdifferent values ofn

Consequently, an algebraic system of equations with M | AVG ERR RMSE | R-RMSE
N+ 2N is obtained: T | 0202 1.54%—3 | 2610e—3 | 1.290
2 | 0.202| 1.407%e—3 | 2916e—3 | 1.441
3 | 0.202| 1.200e—3 | 2.330e—3 | 1.152
N 4 ]0202| 1.38le-3 | 270223 | 1.336
= > okRc(Xe) 5 | 0.202| 1.481e—3 | 2.667%e—3 | 1.318
k=1 6 | 0.202| 1.506e—3 | 2.708e—3 | 1.338
N o T " 7 | 0.202| 1.434e—3 | 298%-3 | 1.478
+Z|Ai X)) o™ +A" (Xe) g 8 | 0.202| 197%—3 | 4401e—3 | 2.175
= 9 | 0202 | 2631e—3 | 6.228e—3 | 3.078
=C(X)U (Xe) +l2r (%) (35)
N Table 2: Interpolation by primary function o +y? for different
- > ok <X|(/1>) values ofm.
& M | AVG | ERR | RMSE | R-RMSE
Ng 1] 0633[0032| 0.042 | 6634
+ ZA}” ()(iﬁl))q§1>+Ai(2> (xiE”)in) 2 | 0633 0.034| 0.044 | 6.990
= 3 | 0.633| 0.048| 0063 | 9.886
1 1 1 4 | 0.633| 0.061| 0082 | 12.885
:C(Xig )>U(XiE ))+'2F <Xi<’ )) (36) 5 | 0.633| 0.028| 0.04 | 6.339
6 | 0.633| 0.019| 0.035 | 5.594
N 7 | 0.633| 0.023| 0043 | 6.724
- akH<<xi(,2)) 8 | 0633 0.017| 0.037 | 5781
& 9 | 0.633| 0.207| 0.251 | 39.669
Ng
vy AY (x2) o+ A2 (%)
i=
2 2 2
:c(>g£ )) U (NE )) +lar (>§<f >) (37) R—RMSE = (RMSE/A/G) x 100

wherek’ € {1,...,N} andi’ € {1,...,Ng}. By solving this where X; is location of estimated points arfdr is the
system, the coefficients of, qi(l) and qi<2> can be number of theses points. These quantities express the

obtained. By using these coefficients in equatiad), mean absolute of primary function at the estimated points,

value ofU (X’) can be calculated at any arbitrary point mean absolut_e error of interpolation function to the
within a specific area primary function, root mean square error, and its

percentage, respectively. At the first problem, from the
function of U (X) = sin(x)sin(y) sampling has done in
) ) N = 7 x 7 points with square pattern in the interval
6 Numerical result analysis x € [-1,1 andy € [-1,1] (Figure 2-b). 24 points
(Ns = 24) from the total points are located on the
In order to evaluate the precision and accuracy of theboundary and 25 pointsN(— Ng = 25) of them are
presented method in this paper, numerical sampling fromocated inside the boundaries. Results of interpolation fo
some specific functions has done and by using thedifferent values ofn (polynomial order of the expansion
sampling data, interpolation has done. Then, in more tharQ(x) in equation14) are given at Table 1. According to
1000 points, the interpolation values compared with theTable 1, it can be observed that the values of mentioned
primary function values. For this comparison, the quantities experience a lot of variation relative to the
following parameters were calculated: parameter m. In addition, the differences of the
interpolation function is very small compared to the

1 (N primary function and the best interpolation is performed
AIG= N (ZJU (XJ)|> atm= 3. At all estimation points, interpolation is done by
= inverse optimal distance method according to the
1 [N following equation:
ERR:E U (X)) —U (X))] " N
=1 - -
U (X) = <Zukdkﬁ> / (Z df)
o K=1 K=1
RMSE = i Z (J(xj)fu (xj))z The following results obtained from comparison of
Nr =1 the interpolation values with primary function values at
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Table 3: Interpolation by primary function of2 —y? for different Table6: Interpolation by different primary functions for different

values ofm. sampling point arrangements using three estimators. IDM:
M | AVG ERR RMSE | R-RMSE Inverse Distance Metho@B = 3, NNM: Nearest Neighbor
1 | 0.316| 7.739e-3| 9.758e-3| 3.087 Method, MAM: Moving Average Method,
2 | 0316| 0.013 0.017 5.254 Function] N [ AVG | ERR | RMSE | R-RMSE |
3 | 0.316 0.035 0.047 14.892 IDM
4 | 0.316 | 4.954e-3| 9.48e-3 3 A 49 | 0.276| 0.170| 0.220 79.7
5 | 0.316 | 4.043e-3| 6.563e-3| 2.077 B 60 | 0.263| 0.096 | 0.137 52.1
6 | 0.316 — — — C 49 | 0.009| 0.003 | 0.004 44.4
7 | 0.316 | 3.929%e-3| 6.481e-3| 2.051 NNM
8 | 0.316 0.013 0.016 5.197 A 49 | 0.449| 0.142| 0.178 39.6
9 | 0.316| 0.075 0.097 30.773 B 60 | 0.234 | 0.046 | 0.066 28.2
C 49 | 0.009| 0.004 | 0.005 55.6
MAM
Table 4: Interpolation by primary function of sif2x) cos(3y)for A 49 | 0.351| 0.492| 0.297 84.6
different values om. B 60 | 0.287| 0.252 | 0.286 99.6
M | AVG | ERR | RMSE | R-RMSE C 49 | 0.008 | 0.007 | 0.007 87.5
1 | 0.429| 0.049 | 0.077 17.941
2 | 0.429 | 0.045| 0.068 15.908
3 | 0.429| 0.031| 0.048 11.204
4 | 0.429| 0.033| 0.049 11.521 . .
5 | 0429 0023| 0036 | 8349 method is that the regular or scattered location of the
6 | 0429 0.029| 0.045 | 10518 sampling points is not important in the interpolation
7 | 0429 0.019| 0.033 7.588 process. Furthermore, in this method after solving
8 | 0.429| 0.074| 0.151 | 35.247 equations system3p), (36) and @7) it is reachable to
9 | 0.429| 0.019| 0.027 6.2 calculate value of interpolation function at any arbitrary

points in the area of interest according to equatidd).(
Continuity of the interpolation function is another
Table 5 Interpolation by different primary functions, advantage of this method. In addition, it is obvious

with optimal values of m for different sampling point —according to equatior3f}), interpolation function and its
arrangements. A: sii2x)cos(3y), B: exp(—4(x*+y?)), C: partial derivatives are continuous in whole of the domain.

SirP (2xy) exp(— 402 +2)), To further investigate the results of this method,
EunctonT N T™M T AV/G T _ERR RMSE | R-RMSE interpolation has done with the primary functions and

A 49 | 9 | 0429| 0.019 0.027 6.2 different points sampling patterns. Two regular
A 91 | 8 | 0.385]| 6.052e-3| 0.012 3.07 arrangements with 49 and 91 points and three non-regular
A 106 | 6 | 0.395| 8.318e-3| 0.016 3.989 patterns with 41, 60 and 106 points are considered (Fig.
g 2(1) i 8-3‘6’3 g-gggzg 5-5%23'3 41-77??4 2). The primary functions and applied arrangement type
B 106 | 1 | 0241 | 6.3876-4| 1.0896.3| 0452 in the sampling are described in Table (5). In all cases, the
c 41 | 1| 0407 0027 | 0039 9.466 interpolation is carried out for different values mffrom
c 49 | 5 | 0.468| 0.022 0.032 6.88 1 to 9 and the optimal value of this parameter for each
c 91 | 5 | 0.388| 5.387e-3| 8.704e-3| 2.241 interpolation is reported in Table (5). It observed thatwit

variation of primary function and pattern of sampling

points, optimal value of the parameter has changed. By

comparing of second and third lines of this table, it can be
B = 3 ERR = 0024, RMSE = 003, seen that however in the 106 points arrangement, there is
R— RMSE = 14.855. By comparing these results with the large number of points but at the 91 points arrangement
results of Table 1 it can be seen that in this problem,there is better result due to regularity of location of
interpolation by this method is more accurate than inversegoints. In addition, with regard to Fig. 2 and comparison
distance method. In the following, sampling is performed of fourth and fifth lines, it is clear that result of
on three functions oty (X) = x2 +y?, U (X) = X% —y? interpolation from 41 points arrangement is better than 60
and Uz (X) = sin(2x)cos(3y) as primary functions at points arrangement due to asymmetric distribution of
specified locations shown in Fig. (2-a). Then, points in 60 points arrangement. Regular arrangement of
interpolation is carried out based on this method forsampling points at two last lines is selected and it shows
different values oim and the primary function values are there is a better interpolation due to increase number of
compared with the calculated values (Tables 2, 3 and 4)points. Besides, Table (6) shows the results of three other
The best values of interpolation for functiods, U, and interpolation methods, i.e., Inverse Distance Method,
Us are carried alm= 6, m= 7 andm= 9, respectively. In  Nearest Neighbor Method, and Moving Average Method,
many two-dimensional interpolation problems, location for some of the mentioned primary functions in Table (5).
of sampling points is sparse. One of the advantages of thi€omparison of these Tables (Table 5 and Table 6)
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demonstrates that the current interpolation method, i.e,
Dual Reciprocity Boundary Element Method, has better
results based on R-RMSE parameter.

7 Conclusions

A numerical method based on Dual Reciprocity Boundary
Element Method (DRBEM) has presented to interpolate
scattered data with arbitrary pattern. Numerical sampling
has conducted on some specific functions as primary
functions and interpolation values of numerical sampling
have compared to primary function values to evaluate
accuracy and precision of the method. In some cases, the
results of other interpolation methods are compared with
this method. However, one of the advantages of this
method is that there is no difference in calculation method
of data with regular or non-regular arrangement. It is
important to mention that as much as sampling done
better, the accuracy of interpolation will increase.
Another advantage of this method is that interpolation is
done without need to any specific boundary condition.
Moreover, due to the fact that this method is based on the
boundary integral equations, everyone can attain his/her
purpose in a very short time using personal computers.

References

[1]J. Li, A. D. Heap, Geoscience Australi23, 137 (2008).

[2] S. R. Karur, P. A. Ramachandran, Mathematical and
Computer Modelling20, 59 (1994).

[3]I. P. Agnantiaris, D. Polyzos, D. E. Beskos, Computational
Mechanics17, 270 (1996).

[4]M. A. Golberg, C. S. Chen, H. Bowman, H. Power,
Computational Mechanic&2, 61 (1998).

[5] G. Fairweather, A. Karageorghis, Advances in Computational
Mathematics9, 69 (1998).

[6] M. A. Golberg, C. S. Chen, H. Bowman, Engineering
Analysis with Boundary Element&3, 285 (1999).

[7] C. Gaspar, Engineering Analysis with Boundary Elements,
24, 559 (2000).

[8] F. Paris, J. Canas, Oxford University Press, (1997).

[9] M. J. D. Powell, A Review in IMA Conference on Algorithms
for the Approximation of Functions and Data, RMCS,
Shrivenham, 143 (1985)

[10] C. A. Micchelli, Constructive Approximatior®, 11 (1986).

© 2013 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Numerical method
	Domain integral
	Boundary integrals
	Solving the integral equation
	Numerical result analysis
	Conclusions

