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Abstract: A characterization of the exponential distribution based on equidistributioditons for maxima of random samples with
consecutive sizes — 1 andn for an arbitrary and fixeah > 3 is proved. This solves an open problem stated recently in Arnold and
Villasenor {3].
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1 Introduction

Characterizations of the exponential distribution arenalaut. Comprehensive surveys can be found in Ahsanullah and
Hamedani 1], Arnold and Huang 2], and Johnson, Kotz, and Balakrishnds). [Recently, Arnold and Villasenor3]
obtained a series of characterizations based on randomeaiingize two. They also identified a list of conjectures for
possible extensions of their results to larger sampleshi;wwork we confirm that one of these conjectures is true for
a sample of any fixed size> 2. Note that in Yanev and Chakrabor®] the case of random sample of size three was
considered.

Let X1, X2,... Xy, N> 2 be a random sample from an exponentially distributed pateht is known that

1
max{Xs. X, ... Xn 1} + o 4 max{ Xy, Xo, ... %} 1)

where 2 denotes equality in distribution. We writé ~ exp(A) if the probability density function (pdf) oK equals
fyx (X) = Ae~*XI (x> 0). Our goal is to prove thafl}, under analyticity assumptions on the cumulative distiin function
(cdf) F of X, is a sufficient condition foK to be exponential.

Theorem Let X be a non-negative continuous random variable withfodf f is analytic in a neighborhood of zero
and () holds true, theiX ~ exp(A ) with someA > 0.

Wesotowski and AhsanullafY] and more recently Cadia-Martinez et al.4] proved characterizations of probability
distributions in the context of random translations. TharelterizationX) above can be deduced from their results (see
Corollary 1 in Wesotowski and Ahsanullafi][and Corollary 3 in Casféo-Martinez et al. 4]). However, our proof is
different from theirs in not referring to uniqueness resédr integral equations. The direct approach we follow nmag a
be used in obtaining some more general results, a posgiltiich we will explore in the future.

2 Preliminaries

Define for all non-negative integensi, and any real number

o () = i(—l)i (7)o
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It is known, (e.g., Ruiz§]) that for all integersr > 0 and all reak

T

if 0<i<n-1

&)
DefineGn(x) := FM(x) f (x) for m> 1 and denote by (x) for i > 1 theith derivative of a functiom(x); g9 (x) := g(x).
Lemma 1 Let X be a continuous random variable with ¢élkatisfyingF (0) = 0. Iffor0<r <m-1
f(0)]"*
(o) = !
0-|1g] o, @
then for 0< i < 2m

D [F O] it
Proof. Case 0 <i < m—1. In this case?) impliesHnyj(m+1) =
haveG“( 0) =

0. On the other hand, in the left-hand side 4y, ve
0 because each term in the expansmGﬁi\)f 0) has a factoF (0) = 0.
m. From (2) it follows that @) is equivalent to

(4)

Casei =

G (0) = m £™1(0).

®)
We shall prove %) by induction. Ifm= 1, then ) follows from the definition ofG(x) and the assumptioR (0) = O.
Assuming that%) is true form = k, we will prove it form = k+ 1. SinceGy;1(x) = F(X)Gk(x) andF (0) = 0, we have
k+1
(k+1) k+1
a0 -3 (
k+1 J;

. )F(j)(O)Gl((k+l_j)(O)
j

= F(O)GY™(0) + (k+ HFV(0)GY
= (k+1)f(0)k! f*T1(0)
= (k+1)1f2(0),
where we have used th@ff) (0)=0for 0<r < k-1 and the induction assumpti@ﬁq(
Casem < i < 2m. Suppose we have proved) for m= 1,2

0) = k! fk+1(0).
k. We want to prove it fom = k+ 1. Observe that

cl),(0) = i ' F e (o).
k+1 %(1) k

SinceGS)(O) =0for 0<r <k-—1, making use of3) and the induction assumption, we obtain

GL4(0)

_ é() G<k‘”(0)+ji%1(;> t0-0(0)cl 7 (0)

:i() [f (g)}' Zf/@{f’m)

i—j—k -
+ .
f(O)} (0 Hi—j(k+1)

L8] e (e

(6)
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where in the last equality we used tha} {mpliesHy;_j(k+1) =0 for j =i+ 1,...,k. Further, we have
! i) K K\ & (i -
JHeioj(k+1) = (—1)r<) (_)(kjtl—r)'l
;1(] o r; r ]Z]_ J
K r k I]
=9 (-1 <> k+2—r —(k+1-r)
2V
_ i i K k i i k+1
=(k+2)"—|(k+1)+ (k+1) 1 + o (-1 ko1 242" + (-1
= (k+1)' - kel (kK+1)' +..+ (- “r1), 1)kt
1 k
k+1 K+1
= ZJ ( > k+2—j) =Hij1i(k+2).
The lemma’s claim follows by induction, taking into acco(@
The identity below may be of independent interest.
Lemma 2 For any integersn > 0 andk > 0
m m
Za(k+2)m Hej(k+1) = Zb( )HkJ k+1). )
Proof. The left-hand side of7) eduals
5 k2 3y (M= 3 e (uerars (K1 ) ®
+2)7 - ) (K+1=1)" =% (= +
j; iZD ! i;) Zﬁ

(—1)i<k>l+11 (k2™ — (ke 1—i)™ Y]

|
~ M=

(_1)i<"+1) Lok 2™ (kg 1o)™Y

2 ki1
(k+2)mikel k4l 1k k1
k+1;<1>< : >+k+1;<1>< r )<k+2“>m“
m+1 | k41 k+1
- 7("1?1 ;(_w(kfl)—l b ZO(—W<kfl)(k+2—r)m+l_(k+2)m+l

k+1 K+1
_\mil
k+1 Zﬁ < ) (k+2-r)

For the right-hand side of7f we obtain

5, (M) gy (=g (D)3, (L)oo
— _i(—l)i<k> k+i—| i}(?:i)(k—&—l )i+t
(m+1> (K+1—i)"

()3

kii ( ) <m+1>k+1—i)r—1]

kii I(k 1) (kt2-0)™ lerl ki(_l)(hirl)_(_l)kﬂ
SEpAe

r<k 1) k+2—r)™

© 2013 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

240 NS 2 S. Chakraborty, G. P. Yanev: Characterization of Exponential Digioibthrough...

which equals§). The proof of the lemma is complete.

Next lemma (see also Arnold and Villds® [3]) will play a crucial role in the proof of the theorem. In paie
communications, P. Fitzsimmons pointed out to us that tearaption of analyticity of the density functiohis missing
in [3].

Lemma3If F(0) =0, the pdff is analytic in a neighborhood of 0, and

/ k—1
f®(0) = “((8” f(0), k=1,2,..., 9)

thenX ~ exp{A } for someA > 0.
Proof. For the Maclaurin series df(x), we have fox > 0

rO1t, X (0)
f(O)} f (O)H_ f(O)exp{ 7(0) x}. (20)

Sincef (x) is a pdf, we have’(0)/f(0) < 0. DenotingA = —f/(0)/f(0) > 0 and setting the integral 010) from 0 toco
to be 1, we obtaiik = f(0). Therefore,f(x) = Ae "I (x> 0), i.e., X ~ exp{A}.

) f(k)(O) )
" xk:f(0)+z

k=1

3 Proof of thetheorem

Equation () can be written as

/fxn/n Y) fmaxix.... %, 1} (X=y)dy=n(n—1)f /Gn 2y

This is equivalent to

X X
|| () (n=)F™ 2x—y)(x=y)dy = n(n=1)(9 | Gn-2(y)d.
which simplifies to
X X
| fm)Gn2tx-y)dy= 109 [ "G z(y)dy. (1)
Differentiating the left-hand side ol {) with respect tox, we obtain

%/Oxf(nY)Gn—z(X—y)dy: f(nx)Gn_2(0)+/OXf(ny) L (x—y)dy.

Differentiating the last equatiom2- 3 times, we obtain

g2n-2  px N3 (n-2)
g2 [, TG ax-ydy="5 1@ 00000L,0) ¢ [“Hm)eT, - ydy  (12)
i=

On the other hand, applying to the right-hand sideldj the Leibnitz product rule of differentiation, we have

d>n2 23 202\ L an-3-i) jor 1) (2n-2) X
g |00 [ enztay| = 5 () 12008l a00 17 200 [[enatiay

Therefore, the equatiori ), taking into accountl(2) and (L3), becomes
2n—-3

_ _ 4 X
; n2n737|f(2n737|)(X)ngz(o)+/ f(ny)Gr(inz—z)(X_y) dy (14)
S 0
2n-3 . . X
“ 2 (02) 1068500+ 1220 [ G-y
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Settingx = 0 and taking into account thaﬁflz(O) = 0for 0<i < n-—3, we obtain thati4) is equivalent to

2n—4 on—a
2n-3—i ¢ (2n—3i) (q (=(D) _ 202\ o i) o el
i:g—zn f (0)6n-2(0) i:g_z ( i+1 f (0)G,2,(0).

Fori =n— 2, we havef ™-2(0)G",? (0) = f("-1(0) "~1(0)(n— 2)!. Thus, the equation above can be written as

{n”l - (Zn - zﬂ £0-90) 7 0)(n—2) — an Kzn _ 2) - nznsi} t@-3-0) )1 (0). (15)

n-1 e \i+1
In view of Lemma 3, to complete the proof it suffices to show

£((0) = [';/((g))ylf’m), r=12... (16)

Assume 16) forall 1 <r <n—2. We shall prove itfor =n—1, i.e.,

¥(0)
7(0)

n-2
f<”1>(0):{ } f(0), r=12... (17)

It follows from Lemma 1 witm=n—-2thatforn—-1<i<2n—4

f'(0)
f(0)

) i—n+2
f2-3-)0)c",(0) = { } . "L (0)Hy_2i(n—1). (18)

Substituting 18) in the right-hand side ofl5) we obtain

[nnl_ (Zn”_‘fﬂ {0 (0)(n-2)1 = [ffég))} oS Kzi”+_12> - n2”3‘] Ho-2i(n—1).

i=n—1

To establish18) we need to prove

) Bl

or equivalently

a4 N4 /on—2
> T HLgi(n-1) = ( i1 >Hn2,i(n— 1). (19)
i=p2 i=n-2

Since @) impliesHy_2;(n—1) = 0 for 0< i < n—3 and fori = 2n—3 we have® 3" = (3" %) = 1, we obtain that{9)
is equivalent to

2n—-3 on 3 2n—-3 n—2
N H i(n—1) = i Hnh2i(n—1),
ig% n ZJ( ) iZ; ( i+1 ) n 2( )

which follows from Lemma 3 withm = 2n — 3. This completes the induction argument and thus prd@s Referring to
(16) and Lemma 2 we complete the proof of the theorem.
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