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Abstract: Distributional relations of the fornY d X+ T whereX, Y, andT are record values or order statistics and the random
translatorT is independent fronX are considered. Characterizations of the exponential distribution weendered random variables
are non-neighboring are proved. Corollaries for Pareto and pawmetibn distributions are also derived.
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1 Introduction and Main Results

A number of known characterization results are based oni#tghditional equatiory 4 x + T involving pair random
variables (r.v.'s)(X,Y) and a random translator (shift) variable independent oK. The sumX + T is called random
translation ofX. We study a particular case when the gatY) is a pair of possibly non-neighboring order statistics or
record values. Characterizations based on the abovebdistm equation in the context of order statistics and reécor
values were obtained by Wesotowski and Ahsanullahlij fnd Beutner and Kamps i6], among others. Moreover,
Ahsanullah et al. ing] and Ahsanullah et al. in3] studied two-sided translations. Recently Céstdlarinez et al. in

[7] generalized some existing results by exploring a new tieglenbased on unigueness results for non-linear \Volterra
integral equations. Alternatively, the proofs in this @diuse some recurrent relations for order statistics aodrde
values and as a result the assumptions we make differ frosetiro Castdo-Marfnez et al. in 7). In general, the
characterizations via random translations are subjedir@etgroups of conditions: the distributional equatianse
form of the parent distribution, and the distribution of ttedom translator T. Comparing our results with those in
Cast@o-Marfnez et al. in 7], we impose on the ordered variables some restrictive tiondi two distributional
equations and monotonicity of the hazard rate of the pargsttilwition. However, we do not assume the translator
variable to have certain known distribution.

We begin with a characterization involving record valuest {X,}>1 be a sequence of independent and identically
distributed (iid) random variables (r.v.'s) with cumulagidistribution function (cdff, probability densityf, and hazard
rateh(x) := f(x)/(1—F(x)). Define (upper) record times lly = 1 andt, = min{j : X; > X, ,} forn> 2. The r.v.s
Ry =Ry (X) =X, for n > 1 are called (upper) record values of the sequeiGen>1 ([5]). We write X ~ Exp(A) when
X has an exponential distribution wih(x) = 1 — e ** for x> 0 andA > 0.
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Theorem 1.1.Let X be a positive random variable with absolutely continuodskcdnd lim_,o+ F(X) = 0. Suppose the
hazard ratd(x) > O for all x andh(x) is either non-increasing or non-decreasing. For fixed gred<r < s, assume that
the (translator) r.v.'&;_, andR._, satisfy

(i) R,_, is independent frorR, andR._, is independent fromR; , 1;
(i) R <R, < R
Then both
RER+R., and Re12R.1+R., )
hold true if and only ifX ~ Exp(A) for some positive\ .

To obtain some corollaries of Theorem 1.1, observe ttgitifis a measurable non-decreasing functiondrdg(Y),

then the record values with parettsandY satisfyRi(X) d g(Rk(Y)) fork=1,2,.... Moreover, ifX = logY ~ Exp(A)

thenY has Pareto distributiolY, ~ Par (A ) say, with cdfy (y) = 1—y*, fory>1 andA > 0 ([8]). Settingg(y) = logy and

Rk (X) 4 logR(Y) we convert 1) into logRs(Y) . logR: (Y)+logR,_,(Y), which is equivalent t&s(Y) d R (V)R (Y).

This, in view of Theorem 1.1, implies the following charactation of Pareto distribution.

Corollary 1.1 (random dilation). LetY be a positive random variable with absolutely continuouskd such that
limy_,1+ Fy(X) = 0. Suppose the hazard rédiggy (y) > 0 for ally andhiegy (y) is either non-increasing or non-decreasing.
For fixed integers X r < s, assume that the (dilator) r.vR _,(Y) andR._, (Y) satisfy

(i) R, (Y) is independent fronR, (Y) andR._,(Y) is independent fronR. .1 (Y);
(i) R (Y) £ R (Y) £ Ro-r(Y) .
Then both
RO ERMIR(Y)  and  Reua(Y) £ Reya(Y)RL(Y) @
hold true if and only ifY ~ Par(A) for some positive\ .

Recall that ifX = —logZ ~ Exp(A) thenZ has the power function distributiod, ~ Pow(A ) say, with cdfFz(z) =

1-7,for0<z<1andA > 0 (see g]). Clearly, if q(z) is a measurable non-increasing function ahe- q(Z), then
the lower record valueky(X) andLy(Z) (see p]) with parentsX andZ, respectively, satisfyzi(X) 4 d(Lk(2)). Setting
in (1), g(z2) = —logz andLk(X) 4 —logLy(Z) for k= 1,2, ..., we obtain—logLs(Z) 4. logL,(Z) —logLg_,(Z), which

is equivalent toLs(Z) 4 Lr(Z)L%_(Z). Now, Theorem 1.1 yields the following characterizationttod power function
distribution.

Corollary 1.2 (random contraction). Let Z be a positive random variable with absolutely continuousked such that
limy_,;- Fz(x) = 1. Suppose the hazard rate ogz(z) > O for all z and h_jgz(2) is either non-increasing or
non-decreasing. For fixed integers<I < s, assume that the (contractor) r.\Ls (Z) andL?_,(Z) satisfy

(i) Lt _,(2) is independent from, (Z) andL?_,(Z) is independent frony, 1 (Z);
(i) Lt (2) S LL1(2) S Ls 1 (2).
Then both
L) 2L 2L, (20  and  Lena(2) 2 La(2)LL,(2) 3)

hold true if and only ifZ ~ Pow(A ) for some positivel .

Our next theorem concerns the order statistigs < Xon < ... < X,y from a simple random sample with parefit

Theorem 1.2.Let X be a positive random variable with absolutely continuousFednd lim_,q+ F(x) = 0. Suppose
h(x) > 0 for all xandh(x) is either non-increasing or non-decreasing. For fixed gregand s such thatdr <s<n-1,
assume that the (translator) r.\%§,, and X/, satisfy
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(i) X/., is independent fronXs_.n_r andX/,, is independent fronXs . 1:n-r;

//d

(i) X0 < X < Xeon
Then both

Xsn 2 Xs rnr+X0 and  Xerin = X rianr + X/ 4)
hold true if and only ifX ~ Exp(A ) for some positivel .

Remark. Khan and Shah in (2012) give the statement of Theorem 1.2 eenythe proof they provide is not correct.

Similarly to Corollaries 1.1 and 1.2 above, using Theorethdhe can obtain characterizations of Pareto and power
function distributions by means of random dilation and caction equations for order statistics. For brevity, we tdim
formulation of these results here.

2 Proofs

Lemma Let X be a positive random variable with absolutely continuods/gdsuch that lim_,q+ F(x) = 0. Suppose the
hazard raté(x) > O for all x andh(x) is either non-increasing or non-decreasing(K,y) > 0 fory > 0, 0< x <y and

k(55 oonox=o 0

thenX ~ Exp(A) for someA > 0..

Proof. Sinceh(x) is non-increasing or non-decreasing, we hlav&y) —h~1(y—x) <0orh~Y(y) —h (y—x) >0,
respectively. Therefore5) impliesh~%(y) —h~1(y —x) = 0 for almost allx such that 0< x < y and ally > 0. Thus,h(x)
is a constant, which under the assumption lign- F (x) = 0, implies (e.g., 8]) that X ~ Exp(A) for someA > 0.

2.1 Proof of Theorem1.1

NecessityRecall that ifX ~ Exp(A), thenRy for k > 1 has a gamma distribution (e.d.(]). WhenceMg,(t) := EtR =
(A/(A —t))<for anyk > 1. If X ~ Exp(A), under the theorem’s assumptions, we obtain

om0 (72) () = () =Meio,

which yields the first equation irl). The second part oflj verifies similarly.
Sufficiency. Denote by (x) and fy(x) for k > 1 the cdf and pdf oRy, respectively. Assumingdlf we obtain

y y
Fs(y) = / Fr(y—xfsr(x)dx and  Fsia(y) = / Frea(y —x) fs_r (X) dx. (6)
0 0
Define the cumulative hazard rate functidiix) := —log(1— F(x)). Recall (e.g.]) that fork > 1
H k
a0 =100 wcxcam 7)
Itis also known (e.g.q]) that fork > 1
Hk
AX) ~ Fera () = (1-F () ©
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Using (6)-(8), we obtain

) —Foray) = [ (Rr(y=2)— Frea(y—) for( o ©
:/Oy(l—F(y—x))Wfs,,(x)dx
_ P Iy=x9H(y=%
= Jo hly—x fs_r(X)dx
= y;f —X) fs_r (x)dx
_./O h(ny) r+1(y S—r
On the other handyf, (8), and the second equality it)(yield
Fly) — Faray) = (1 F(y) Y (10
1
= nyrl(w
y 1

=/, @frﬂ(y—x)fs,,(x)dx.
Subtracting 9) from (10), we have
Y/ 1 1
/0 (h(y) - h(yx)) fria(y—x)fsr(X)dx =0,
which, referring to the lemma, implieé ~ Exp(A ) for someA > 0.

2.2 Proof of Theorem 1.2

Necessitylf X ~ Exp(A) then (e.g. [10]) théth order statistic admits the representatiqn, 4 Z!‘=1V\/./(n— i+ 1) for
1 <k < n, whereW are independent antf ~ Exp(A). Therefore, under the assumptions of the theorem,

W, Wor W W W/
L U L L S

d
Xe oo = -
s—rin—r +Xr:n n—r n-r—1 n-s+1 n n-1 n—r+1

SN

which is the first equality in4). Similarly one can verify the second part dj (
Sufficiency.Let F 1 (x) and f; n(x) for 1 < k < n denote the cdf and pdf od.,, respectively. Assuming (7) we have

y y
Fsn(y) = /0 Fsrnr(Y—X) frn(X)dx and Fsrin(y) = /O Fsrinr(y—X)frn(x)dx. (11)
Itis known (e.g. L1]) thatfor 1<s<n-1
Fsn(X) — Fst1n(X) = ;((XX)) fsn(X). (12)
Moreover, (e.g.4])for1 <k<n-1
fien(X) = Wén_k)!ﬂ—l(x)a— F(x)" (%) (13)
K 1—
- nle(Ij(gX)f"“’”(X)'
Therefore, taking into account {)-(13), we obtain
Fs.n(Y) - Fs+1,n(y) = ./Oy(Fs—r,n—r(y_ X) — Fs—r+l,n—r(y— X)) fr,n(x) dx (14)
_ [V _Fly=x B
_ /0 o Y0 () dx
1 Y1-F(y—x)
= n—s/o Y- fs—ri1n-r(Y—X) frn(x) dx.
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On the other hand 1) yields

Fenly) ~ Faral¥) = g o aal®) (15)

1 1-F (y)

= nos 1y fsi1n(y)

_ 1 1-Fy

= EW/O fs—r+1,n—r(y_x) fr.n(x) dx. (16)
Therefore, subtractindLd) from (15),

Y/ 1 1
/0 <h(y) T hy=x) X)) fsrrin—r(Y—X) fin(x)dx=0. (17)

It follows from (17) and the lemma that ~ Exp(A) for someA > 0, which completes the proof.

3 Concluding Remarks

The characterizations given in Section 1 can be used in digwve) goodness-of-fit tests for the corresponding prokigbil
distributions. Let us recall here a construction (see d]yf¢r implementing such tests. Suppose we have a large numbe
of observations on a positive random variableand want to test whetheX is exponentially distributed with some
unknownA. Let us split the data into three independent samp{gsXo, ..., X0, Xni1,---> Xon—r;  Xon—r+1,---,X3n—r,
where 1<r < n—1. Now, according to Theorem 2 for example, the data come &nraxponential distribution if and
only if for an integers such that 1< r < s< n— 1 the equations4) hold true, where the involved three order statistics
come from the three sub-samples above.
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