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Abstract: Distributional relations of the formY
d
= X + T whereX , Y , andT are record values or order statistics and the random

translatorT is independent fromX are considered. Characterizations of the exponential distribution when the ordered random variables
are non-neighboring are proved. Corollaries for Pareto and power function distributions are also derived.
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1 Introduction and Main Results

A number of known characterization results are based on the distributional equationY
d
= X +T involving pair random

variables (r.v.’s)(X ,Y ) and a random translator (shift) variableT , independent ofX . The sumX + T is called random
translation ofX . We study a particular case when the pair(X ,Y ) is a pair of possibly non-neighboring order statistics or
record values. Characterizations based on the above distribution equation in the context of order statistics and record
values were obtained by Wesołowski and Ahsanullah in [11] and Beutner and Kamps in [6], among others. Moreover,
Ahsanullah et al. in [2] and Ahsanullah et al. in [3] studied two-sided translations. Recently Castaño-Mart́ınez et al. in
[7] generalized some existing results by exploring a new technique based on uniqueness results for non-linear Volterra
integral equations. Alternatively, the proofs in this article use some recurrent relations for order statistics and record
values and as a result the assumptions we make differ from those in Castãno-Mart́ınez et al. in [7]. In general, the
characterizations via random translations are subject to three groups of conditions: the distributional equation(s), the
form of the parent distribution, and the distribution of therandom translator T. Comparing our results with those in
Castãno-Mart́ınez et al. in [7], we impose on the ordered variables some restrictive conditions: two distributional
equations and monotonicity of the hazard rate of the parent distribution. However, we do not assume the translator
variable to have certain known distribution.

We begin with a characterization involving record values. Let {Xn}n≥1 be a sequence of independent and identically
distributed (iid) random variables (r.v.’s) with cumulative distribution function (cdf)F , probability densityf , and hazard
rateh(x) := f (x)/(1−F(x)). Define (upper) record times byt1 = 1 andtn = min{ j : X j > Xtn−1} for n ≥ 2. The r.v.’s
Rn := Rn(X) = Xtn , for n ≥ 1 are called (upper) record values of the sequence{Xn}n≥1 ([5]). We writeX ∼ Exp(λ ) when
X has an exponential distribution withF(x) = 1− e−λx for x ≥ 0 andλ > 0.
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Theorem 1.1.Let X be a positive random variable with absolutely continuous cdf F and limx→0+ F(x) = 0. Suppose the
hazard rateh(x)> 0 for all x andh(x) is either non-increasing or non-decreasing. For fixed integers 1≤ r < s, assume that
the (translator) r.v.’sR′

s−r andR′′
s−r satisfy

(i) R′
s−r is independent fromRr andR′′

s−r is independent fromRr+1;

(ii) R′
s−r

d
= R′′

s−r
d
= Rs−r.

Then both
Rs

d
= Rr +R′

s−r and Rs+1
d
= Rr+1+R′′

s−r (1)

hold true if and only ifX ∼ Exp(λ ) for some positiveλ .

To obtain some corollaries of Theorem 1.1, observe that ifg(y) is a measurable non-decreasing function andX = g(Y ),

then the record values with parentsX andY satisfyRk(X)
d
= g(Rk(Y )) for k = 1,2, . . .. Moreover, ifX = logY ∼ Exp(λ )

thenY has Pareto distribution,Y ∼Par(λ ) say, with cdfFY (y) = 1−y−λ , for y≥ 1 andλ > 0 ([8]). Settingg(y) = logy and

Rk(X)
d
= logRk(Y ) we convert (1) into logRs(Y )

d
= logRr(Y )+ logR′

s−r(Y ), which is equivalent toRs(Y )
d
= Rr(Y )R′

s−r(Y ).
This, in view of Theorem 1.1, implies the following characterization of Pareto distribution.

Corollary 1.1 (random dilation). Let Y be a positive random variable with absolutely continuous cdf FY , such that
limx→1+ FY (x) = 0. Suppose the hazard ratehlogY (y)> 0 for all y andhlogY (y) is either non-increasing or non-decreasing.
For fixed integers 1≤ r < s, assume that the (dilator) r.v.’sR′

s−r(Y ) andR′′
s−r(Y ) satisfy

(i) R′
s−r(Y ) is independent fromRr(Y ) andR′′

s−r(Y ) is independent fromRr+1(Y );

(ii) R′
s−r(Y )

d
= R′′

s−r(Y )
d
= Rs−r(Y ) .

Then both
Rs(Y )

d
= Rr(Y )R

′
s−r(Y ) and Rs+1(Y )

d
= Rr+1(Y )R

′′
s−r(Y ) (2)

hold true if and only ifY ∼ Par(λ ) for some positiveλ .

Recall that ifX = − logZ ∼ Exp(λ ) thenZ has the power function distribution,Z ∼ Pow(λ ) say, with cdfFZ(z) =
1− zλ , for 0< z < 1 andλ > 0 (see [8]). Clearly, if q(z) is a measurable non-increasing function andX = q(Z), then

the lower record valuesLk(X) andLk(Z) (see [5]) with parentsX andZ, respectively, satisfyLk(X)
d
= q(Lk(Z)). Setting

in (1), q(z) =− logz andLk(X)
d
=− logLk(Z) for k = 1,2, . . ., we obtain− logLs(Z)

d
=− logLr(Z)− logL′

s−r(Z), which

is equivalent toLs(Z)
d
= Lr(Z)L′

s−r(Z). Now, Theorem 1.1 yields the following characterization ofthe power function
distribution.

Corollary 1.2 (random contraction). Let Z be a positive random variable with absolutely continuous cdf FZ , such that
limx→1− FZ(x) = 1. Suppose the hazard rateh− logZ(z) > 0 for all z and h− logZ(z) is either non-increasing or
non-decreasing. For fixed integers 1≤ r < s, assume that the (contractor) r.v.’sL′

s−r(Z) andL′′
s−r(Z) satisfy

(i) L′
s−r(Z) is independent fromLr(Z) andL′′

s−r(Z) is independent fromLr+1(Z);

(ii) L′
s−r(Z)

d
= L′′

s−r(Z)
d
= Ls−r(Z).

Then both
Ls(Z)

d
= Lr(Z)L

′
s−r(Z) and Ls+1(Z)

d
= Lr+1(Z)L

′′
s−r(Z) (3)

hold true if and only ifZ ∼ Pow(λ ) for some positiveλ .

Our next theorem concerns the order statisticsX1:n ≤ X2:n ≤ . . .≤ Xn:n from a simple random sample with parentX .

Theorem 1.2.Let X be a positive random variable with absolutely continuous cdf F and limx→0+ F(x) = 0. Suppose
h(x)> 0 for all x andh(x) is either non-increasing or non-decreasing. For fixed integers r and s such that 1≤ r < s ≤ n−1,
assume that the (translator) r.v.’sX ′

r:n andX ′′
r:n satisfy
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(i) X ′
r:n is independent fromXs−r:n−r andX ′′

r:n is independent fromXs−r+1:n−r;

(ii) X ′
r:n

d
= X ′′

r:n
d
= Xr:n.

Then both

Xs:n
d
= Xs−r:n−r +X ′

r:n and Xs+1:n
d
= Xs−r+1:n−r +X ′′

r:n (4)

hold true if and only ifX ∼ Exp(λ ) for some positiveλ .

Remark. Khan and Shah in (2012) give the statement of Theorem 1.2. However, the proof they provide is not correct.

Similarly to Corollaries 1.1 and 1.2 above, using Theorem 1.2 one can obtain characterizations of Pareto and power
function distributions by means of random dilation and contraction equations for order statistics. For brevity, we omit the
formulation of these results here.

2 Proofs

Lemma Let X be a positive random variable with absolutely continuous cdf F , such that limx→0+ F(x) = 0. Suppose the
hazard rateh(x)> 0 for all x andh(x) is either non-increasing or non-decreasing. Ifg(x,y)> 0 for y > 0, 0< x < y and

∫ y

0

(

1
h(y)

−
1

h(y− x)

)

g(x,y)dx = 0, (5)

thenX ∼ Exp(λ ) for someλ > 0..

Proof. Sinceh(x) is non-increasing or non-decreasing, we haveh−1(y)−h−1(y− x)≤ 0 or h−1(y)−h−1(y− x)≥ 0 ,
respectively. Therefore, (5) impliesh−1(y)−h−1(y− x) = 0 for almost allx such that 0< x < y and ally > 0. Thus,h(x)
is a constant, which under the assumption limx→0+ F(x) = 0, implies (e.g., [8]) that X ∼ Exp(λ ) for someλ > 0.

2.1 Proof of Theorem 1.1

Necessity.Recall that ifX ∼ Exp(λ ), thenRk for k ≥ 1 has a gamma distribution (e.g. [10]). WhenceMRk(t) := EtRk =

(λ/(λ − t))k for anyk ≥ 1. If X ∼ Exp(λ ), under the theorem’s assumptions, we obtain

MRr(t)MR′
s−r

(t) =

(

λ
λ − t

)r ( λ
λ − t

)s−r

=

(

λ
λ − t

)s

= MRs(t),

which yields the first equation in (1). The second part of (1) verifies similarly.

Sufficiency.Denote byFk(x) and fk(x) for k ≥ 1 the cdf and pdf ofRk, respectively. Assuming (1) we obtain

Fs(y) =
∫ y

0
Fr(y− x) fs−r(x)dx and Fs+1(y) =

∫ y

0
Fr+1(y− x) fs−r(x)dx. (6)

Define the cumulative hazard rate functionH(x) :=− log(1−F(x)). Recall (e.g. [5]) that for k ≥ 1

fk+1(x) = f (x)
Hk(x)

k!
, −∞ < x < ∞. (7)

It is also known (e.g. [1]) that for k ≥ 1

Fk(x)−Fk+1(x) = (1−F(x))
Hk(x)

k!
. (8)
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Using (6)-(8), we obtain

Fs(y)−Fs+1(y) =
∫ y

0
(Fr(y− x)−Fr+1(y− x)) fs−r(x)dx (9)

=
∫ y

0
(1−F(y− x))

Hr(y− x)
r!

fs−r(x)dx

=

∫ y

0

f (y− x)
h(y− x)

Hr(y− x)
r!

fs−r(x)dx

=
∫ y

0

1
h(y− x)

fr+1(y− x) fs−r(x)dx

On the other hand, (7), (8), and the second equality in (1) yield

Fs(y)−Fs+1(y) = (1−F(y))
Hs(y)

s!
(10)

=
1

h(y)
fs+1(y)

=

∫ y

0

1
h(y)

fr+1(y− x) fs−r(x)dx.

Subtracting (9) from (10), we have
∫ y

0

(

1
h(y)

−
1

h(y− x)

)

fr+1(y− x) fs−r(x)dx = 0,

which, referring to the lemma, impliesX ∼ Exp(λ ) for someλ > 0.

2.2 Proof of Theorem 1.2

Necessity.If X ∼ Exp(λ ) then (e.g. [10]) thekth order statistic admits the representationXk:n
d
= ∑k

i=1Wi/(n− i+1) for
1≤ k ≤ n, whereWi are independent andWi ∼ Exp(λ ). Therefore, under the assumptions of the theorem,

Xs−r:n−r +X ′
r:n

d
=

W1

n− r
+

W2

n− r−1
+ . . .+

Ws−r

n− s+1
+

W ′
1

n
+

W ′
2

n−1
+ . . .+

W ′
r

n− r+1
d
= Xs:n,

which is the first equality in (4). Similarly one can verify the second part of (4).
Sufficiency.Let Fr,n(x) and fr,n(x) for 1≤ k ≤ n denote the cdf and pdf ofXk:n, respectively. Assuming (7) we have

Fs,n(y) =
∫ y

0
Fs−r,n−r(y− x) fr,n(x)dx and Fs+1,n(y) =

∫ y

0
Fs−r+1,n−r(y− x) fr,n(x)dx. (11)

It is known (e.g. [11]) that for 1≤ s ≤ n−1

Fs,n(x)−Fs+1,n(x) =
F(x)
s f (x)

fs,n(x). (12)

Moreover, (e.g. [4]) for 1 ≤ k ≤ n−1

fk,n(x) =
n!

(k−1)!(n− k)!
Fk−1(x)(1−F(x))n−k f (x) (13)

=
k

n− k
1−F(x)

F(x)
fk+1,n(x).

Therefore, taking into account (11)-(13), we obtain

Fs,n(y)−Fs+1,n(y) =
∫ y

0
(Fs−r,n−r(y− x)−Fs−r+1,n−r(y− x)) fr,n(x)dx (14)

=
∫ y

0

F(y− x)
(s− r) f (y− x)

fs−r,n−r(y− x) fr,n(x)dx

=
1

n− s

∫ y

0

1−F(y− x)
f (y− x)

fs−r+1,n−r(y− x) fr,n(x)dx.
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On the other hand, (13) yields

Fs,n(y)−Fs+1,n(y) =
F(y)
s f (y)

fs,n(y) (15)

=
1

n− s
1−F(y)

f (y)
fs+1,n(y)

=
1

n− s
1−F(y)

f (y)

∫ y

0
fs−r+1,n−r(y− x) fr,n(x)dx. (16)

Therefore, subtracting (14) from (15),

∫ y

0

(

1
h(y)

−
1

h(y− x)

)

fs−r+1,n−r(y− x) fr,n(x)dx = 0. (17)

It follows from (17) and the lemma thatX ∼ Exp(λ ) for someλ > 0, which completes the proof.

3 Concluding Remarks

The characterizations given in Section 1 can be used in developing goodness-of-fit tests for the corresponding probability
distributions. Let us recall here a construction (see e.g. [4]) for implementing such tests. Suppose we have a large number
of observations on a positive random variableX and want to test whetherX is exponentially distributed with some
unknownλ . Let us split the data into three independent samples:X1,X2, . . . ,Xn; Xn+1, . . . ,X2n−r; X2n−r+1, . . . ,X3n−r,
where 1≤ r < n−1. Now, according to Theorem 2 for example, the data come froman exponential distribution if and
only if for an integers such that 1≤ r < s ≤ n−1 the equations (4) hold true, where the involved three order statistics
come from the three sub-samples above.
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