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we consider a stochastic model for the spread of an epidemic in a closed population
consisting of two groups, in which infectives cannot change their group, but are able to
infect outside it. Using the matrix-geometric method we obtain a recursive relationship
for the Laplace transform of the joint distribution of the number of susceptibles and
infectives in the two groups. We also derive the distribution of the total observed size
of the epidemic as well as its duration in the case of a general infection mechanism.
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1 Introduction

We consider a stochastic model for an epidemic taking place in a heterogeneous popula-
tion consisting of two groups. The infection can be transmitted both within and between the
groups. From the standpoint of the infection mechanism our model is a special generaliza-
tion of a model considered by Gani and Yakowitz [11] in the case of a closed population.
Similar models have also been studied by Bailey [2, Chapter 11] and O’Neill [16], who
derived a class of results for the probability of ultimate extinction. Here we use a matrix-
geometric method (cf. Neuts [14]) similar to that of Booth [7] to obtain the distribution of
the total number of infections that occur in the entire population. The use of the matrix-
geometric method in the study of epidemics was pioneered by Gani and Purdue [10].

The first author acknowledge the financial support of the Swedish Institute.
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The paper is structured as follows. We describe the model in section 2. In Section 3 we
account for the matrix-geometric method and in Section 4 we show a recursive relationship
for the Laplace transform of the joint distribution of some quantities of interest. The distri-
bution of total size is discussed in Section 5 while Section 6 is devoted to the distribution of
the duration of the epidemic as well as the expected number of new cases in the two groups.
Finally in Section 7 we present a simple numerical example. Some of the derivations call
for tedious algebraic manipulations that are presented in the Appendix.

2 The Model

In what follows we consider a model for the spread of an epidemic in a closed popu-
lation consisting of two groups of individuals G1 and G2. The following notation is used
throughout the article. Xi(t) and Yi(t) stand for the numbers of susceptibles and infectives
at time t for the ith group with (X1(0), X2(0), Y1(0), Y2(0)) = (n1, n2, a1, a2). In each
group the rate of infection is related to the number of susceptibles and infectives in the two
groups. Infective in group Gi, i = 1, 2, are removed at rate µi ≥ 0 so that the epidemic
process is completely determined by {(X1(t), X2(t), Y1(t), Y2(t)); t ≥ 0}. This process is
supposed to be a continuous-time Markov chain on the state space

S =
{
(x, y, u, v); 0 ≤ x ≤ n1, 0 ≤ y ≤ n2, 0 ≤ u ≤ Nx

1 , 0 ≤ v ≤ Ny
2

}
,

where Nx
1 = n1 + a1 − x and Ny

2 = n2 + a2 − y, with the following transitions and
associated probabilities for a time increment (t, t+ h)

Transition Probability
(X1, X2, Y1, Y2) → (X1 − 1, X2, Y1 + 1, Y2) fX1X2Y1Y2,X1−1X2Y1+1Y2h+ o(h)
(X1, X2, Y1, Y2) → (X1, X2 − 1, Y1, Y2 + 1) fX1X2Y1Y2,X1X2−1Y1Y2+1h+ o(h)
(X1, X2, Y1, Y2) → (X1, X2, Y1 − 1, Y2) µ1Y1h+ o(h)
(X1, X2, Y1, Y2) → (X1, X2, Y1, Y2 − 1) µ2Y2h+ o(h)

No change 1 + fX1X2Y1Y2h+ o(h)

where

fX1X2Y1Y2 = −(fX1X2Y1Y2,X1−1X2Y1+1Y2 + fX1X2Y1Y2,X1X2−1Y1Y2+1 + µ1Y1 + µ2Y2)

with conventions that fijlr,i′ j′ l′r′ = 0 if (i, j, l, r) /∈ S or (i
′
, j

′
, l

′
, r

′
) /∈ S, and

fij00,i−1j10 = fij00,ij−101 = 0. When defining these rates we have tried to use a quite
general infection mechanism. Due to technical reasons we were not able to allow the same
level of generality for the removal rates. Let

Pijlr(t) = P (X1(t) = i,X2(t) = j, Y1(t) = l, Y2(t) = r) for t ≥ 0.
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Then the forward Kolmogorov equations take the form

∂Pijlr(t)
∂t

= fijlrPijlr(t) + µ1(l + 1)Pijl+1r(t) + µ2(r + 1)Pijlr+1(t)

+ fi+1jl−1r,ijlrPi+1jl−1r(t) + fij+1lr−1,ijlrPij+1lr−1(t), (2.1)

with the conventions that Pijlr(t) ≡ 0 if (i, j, l, r) /∈ S and Pn1n2a1a2(0) = 1.

3 The Matrix-Geometric Method

For the type of model in which we are interested, the standard probability generating
function methods are ineffective, as was shown by Bailey [2, Chapter 11]. However, the
Kolmogorov equations can be solved recursively using the matrix-geometric method.

For i = 0, . . . , n1, j = 0, . . . , n2 and l = 0, . . . , N i
1, let Al

ij , B
l+1
ij , Dl−1

i+1j and H l
ij

be respectively the diagonal matrices with rth diagonal element equal to fijlr, µ1(l +
1), fi+1jl−1r,ijlr and fij+1lr−1,ijlr, r = 0, . . . , N j

2 , and let Cl
ij be the matrix of the same

dimension with the (r, r + 1)-th entries equal to µ2(r + 1), r = 0, . . . , N j
2 − 1, and all

others equal to 0. In addition we take

P l
ij(t) =

(
Pijl0(t), Pijl1(t), . . . PijlNj

2−1(t), PijlNj
2
(t)
)T
.

Equations (2.1) take now the form

∂P l
ij(t)
∂t

= Al
ijP

l
ij(t)+C

l
ijP

lij(t)+Dl−1
i+1jP

l−1
i+1j(t)+H

l
ijP

∗l
ij+1(t)+B

l+1
ij P l+1

ij (t), (3.1)

where P ∗lij (t) = (0, (P l
ij(t))

T )T . Furthermore we introduce the column vectors

Pij(t) =
(
(P 0

ij(t))
T , . . . , (P l

ij(t))
T , . . . , (PNi

1
ij (t))T

)T
,

the block matrices

Di+1j = diag(Dl
i+1j , 0 ≤ l ≤ N i+1

1 ), Hij = diag(H l
ij , 0 ≤ l ≤ N i

1)

and a matrix Fij whose (l, l)-th block equals

Al
ij + Cl

ij , l = 0, . . . , N i
1,

(l, l + 1)-th block is equal to

Bl+1
ij , l = 0, . . . , N i+1

1 ,

and all other blocks are equal zero.
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For each matrixA of order (N i+p
1 +1)(N j+q

2 +1), 0 ≤ p ≤ n1−i and 0 ≤ q ≤ n2−j,
we define an augmented matrix

A(p, q) =

(
Θpq

ij 0
0 A

)
,

where Θpq
ij is the zero matrix of order q(N i

1 + 1) + p(N j
2 + 1) − pq, and for each vector

U(t) of dimension (N i+p
1 + 1)(N j+q

2 + 1) we also define

U(t, p, q) =
(
(θpq

ij )T , UT (t)
)T
,

where θpq
ij is the q(N i

1 + 1) + p(N j
2 + 1)− pq zero column vector and

P ∗ij+1(t) =
(
(P ∗0ij+1(t))

T , . . . , (P ∗N
i
1

ij+1(t))
T
)T
.

With above notations equation (3.1) leads to

∂Pij(t)
∂t

= FijPij(t) +Di+1j(1, 0)Pi+1j(t, 1, 0) +HijP
∗
ij+1(t). (3.2)

To obtain an appropriate form for the above equations which can help us to solve (2.1)
we investigate the possible relationship between P ∗ij(t) and Pij(t, 0, 1). For this let Tij be
the matrix of rank (N i

1 + 1)(N j
2 + 1), where

(Tij)mn =


1 if m = r(N j

2 + 1) + k and n = N i
1 + rN j

2 + k,

with 0 ≤ r ≤ N1
j , 1 ≤ k ≤ N j

2

0 otherwise.

By rearrangement we have P ∗ij+1(t) = TijPij+1(t, 0, 1) and by substitution into (3.2) we
obtain

∂Pij(t)
∂t

= FijPij(t) +Di+1j(1, 0)Pi+1j(t, 1, 0) +HijTijPij+1(t, 0, 1) (3.3)

for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2.

The limiting distribution of the process can now be studied using Laplace transforms

P̂ij(v) =
∫ +∞

0

e−vtPij(t) dt.

Equation (3.3) becomes

P̂n1n2(v) = (vIn1n2 − Fn1n2)
−1E (3.4)

and

P̂ij(v) = (vIij − Fij)−1Di+1j(1, 0)P̂i+1j(v, 1, 0) + (vIij − Fij)−1HijTijP̂ij+1(v, 0, 1)
(3.5)

for 0 ≤ i ≤ n1, 0 ≤ j ≤ n2, and i+ j 6= n1 + n2, where E = Pn1n2(0) = (0, . . . , 0, 1)T

and Iij denotes the identity matrix of order (N i
1 + 1)(N j

2 + 1).
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4 The Solution

First we determine the Laplace transforms of the probabilities Pijlr(t). It can be shown
that Fij(v) = (vIij − Fij)−1 has the form

Fij(v) =



F 00
ij (v) F 01

ij (v) . . . F 0h
ij (v) . F

0Ni
1

ij (v)
0 F 11

ij (v) . . . . . .

0 0 . . . . . .

. . . F ll
ij(v) . F lh

ij (v) . F
lNi

1
ij (v)

. . . . . . . .

. . . . . . . .

. . . . . . . .

0 . . . . . 0 F
Ni

1Ni
1

ij (v)


,

where for 0 ≤ l ≤ h ≤ N i
1, F

lh
ij (v) is a block of rank N j

2 + 1. Moreover it can be verified
(cf. the Appendix) that

[F lh
ij (v)]rs =

Cij(v, l, h, r, s) if 0 ≤ r ≤ s ≤ N j
2

0 otherwise,
(4.1)

where

Cij(v, l, h, r, s) = µh−l
1 µs−r

2

h!s!
l!r!

∑
I∈Dh−l

rs

h−l∏
k=0

ik+1∏
q=ik

f(v, µ1, µ2, i, j, l + k, q) (4.2)

and f(v, µ1, µ2, i, j, l, r) = (v + µ1l + µ2r + fijlr,i−1jl+1r + fijlr,ij−1lr+1)−1, i0 = r,
ih−l+1 = s and

Dh−l
rs =

{(i1, i2, . . . , ih−l ≤ s) / r ≤ i1 ≤ i2 ≤ . . . ≤ ih−l ≤ s} if l < h

∅ if l = h
(4.3)

with the conventions that∏
p∈B

Ap = 1 and
∑
B

1 = 1 if B = ∅ and Ap > 0. (4.4)

The quantities Cij(v, l, h, r, s) can be calculated (cf. the Appendix) using the following
recursive relationship for 0 ≤ l ≤ h ≤ N i

1:

Cij(v, l, l, r, s) = µs−r
2

s!
r!

s∏
q=r

f(v, µ1, µ2, i, j, l, q) (4.5)

and

Cij(v, l, h, r, s) = µ1h
s∑

p=r

µs−p
2

s!
p!

s∏
q=p

f(v, µ1, µ2, i, j, h, q)Cij(v, l, h− 1, p, s). (4.6)
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For m,n = 0, . . . , (N i
1 + 1)(N j

2 + 1) − 1, let l, h and r, s be, respectively, the quotients
and remainders of the division of m and n by N j

2 + 1. We have (cf. the Appendix)

[Fij(v)Di+1j(1, 0)]mn =

Cij(v, l, h, r, s) fi+1jh−1s,ijhs if r ≤ s and l ≤ h, h ≥ 1

0 otherwise.
(4.7)

Similarly, if l, h and r, s− 1 are, respectively, the quotients and remainders of the division
of m by N j

2 + 1 and n−N i
1 − 1 by N j

2 , then

[Fij(v)HijTij ]mn =

Cij(v, l, h, r, s) fij+1hs−1,ijhs if r ≤ s, s ≥ 1 and l ≤ h

0 otherwise.
(4.8)

Since P̂ijlr(v) and P̂i+1jl−1s(v) correspond, respectively, to the (l(N j
2+1)+r)-th elements

of the vectors P̂ij(v) and P̂i+1j(v, 1, 0) while P̂ij+1lr−1(v) correspond to the (N i
1 + lN j

2 +
r)-th element of P̂i+1j(v, 0, 1), then using (3.4)-(4.1) and the previous result we find

P̂n1n2lr(v) = Cn1n2(v, l, a1, r, a2), (4.9)
P̂in2lr(v) =

∑
l≤h≤Ni

1,h≥1
r≤s≤a2

Cin2(v, l, h, r, s) fi+1n2h−1s,in2hsP̂i+1n2h−1s(v)

P̂n1jlr(v) =
∑

l≤h≤a1

r≤s≤Nj
2 ,s≥1

Cn1j(v, l, h, r, s) fn1j+1hs−1,n1jhsP̂n1j+1h−1s(v)
(4.10)

for i = 0, . . . , n1 − 1 and j = 0, . . . , n2 − 1, and

P̂in2−jlr(v) =
∑

l≤h≤Ni
1,h≥1

r≤s≤a2+j

Cin2−j(v, l, h, r, s) fi+1n2−jh−1s,in2−jhsP̂i+1n2−jh−1s(v)

+
∑

l≤h≤Ni
1

r≤s≤a2+j,s≥1

Cin2−j(v, l, h, r, s) fin2−j+1hs−1,in2−jhsP̂in2−j+1hs−1(v)

(4.12)

for i = 0, . . . , n1−1 and j = 1, . . . , n2. From (4.9)− (4.11) we conclude that the Laplace
transforms can be solved recursively.

5 The Total Size

The asymptotic behaviour of the process {(X1(t), X2(t), Y1(t), Y2(t)); t ≥ 0}
can be described using (4.8)–(4.11), (4.1) and the identity limt→∞ Pijlr(t) =
limv→0(vP̂ijlr(v)). The epidemic ends as soon as the numbers of infectives in both groups
become zero. Let πij denote the probability that exactly i and j of initially susceptible
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individuals ultimately escape the epidemic in G1 and G2, respectively. In order to deter-
mine this probability, it is necessary to calculate the limit, limv→0(vCij(v, 0, h, 0, s)) =
Cij(h, s). We show (cf. the appendix) that such a limit exists and is

Cij(0, s) = µs
2s!

s∏
q=1

f(µ1, µ2, i, j, 0, q) (5.1)

for h = 0 and

Cij(h, s) = µh
1µ

s
2h!s!

∑
0≤p≤s


p∏

q=1

f(µ1, µ2, i, j, 0, q)
∑

Ip∈Bh−1
ps

h−1∏
k=0

ipk+1∏
q=ipk

f(µ1, µ2, i, j, k, q)


(5.2)

for h > 0, where

Bh−1
ps =

{
{(ip1 , . . . , ip(h−1)) / p ≤ ip1 ≤ · · · ≤ ip(h−1) ≤ s} if h > 1
∅ if h = 1,

f(µ1, µ2, i, j, l, r) = (µ1l+µ2r+ fijlr,i−1jl+1r + fijlr,ij−1lr+1)−1, ip0 = p and iph
= s.

Finally (4.9) implies that

πn1n2 = lim
v→0

vP̂n1n200(v) = Cn1,n2(a1, a2).

Similarly from (4.10) and (4.11), respectively, it can be shown that for i = 0, . . . , n1 − 1
and j = 0, . . . , n2 − 1

πn1j =
a1∑

h=1

Nj
2∑

s=1

Cn1j(h, s)fn1j+1hs−1,n1jhsP̂n1j+1hs−1(0)

+
Nj

2∑
s=2

Cn1j(0, s)fn1j+10s−1,n1j0sP̂n1j+10s−1(0),

πin2 =
a2∑

s=1

Ni
1∑

h=1

Cin2(h, s)fi+1n2h−1s,in2hsP̂i+1n2h−1s(0)

+
Ni

1∑
h=2

Cin2(h, 0)fi+1n2h−10,in2h0P̂i+1n2h−10(0)

and

πij =
Ni

1∑
h=1

Nj
2∑

s=1

Cij(h, s)[fij+1hs−1,ijhsP̂ij+1hs−1(0) + fi+1jh−1s,ijhsP̂i+1jh−1s(0)]

+
Nj

2∑
s=2

Cij(0, s)fij+10s−1,ij0sP̂ij+10s−1(0) +
Ni

1∑
h=2

Cij(h, 0)fi+1jh−10,ijh0P̂ij+1h0(0).

These probabilities can be determined using (5.1) and (5.2) and by means of the recursive
equations (4.9)–(4.11).
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6 Duration of the Epidemic and Number of Cases

Let
Tn1n2a1a2 = inf{t ≥ 0 : Y2(t) = Y1(t) = 0}

be the duration of the epidemic defined as the duration of the time between the start of the
epidemic and the moment at which the number of infectives becomes zero. If we suppose
thatE(Tn1n2a1a2) < +∞, from (15)–(17) we can calculate the mean duration easily using
the following fact:

E(Tn1n2a1a2) =
∫ ∞

0

Pr(Tn1n2a1a2 > t)dt.

Then
E(Tn1n2a1a2) = −d (vψ(v))

dv
|v=0,

where
ψ(v) =

∫ ∞

0

e−tvPr(Tn1n2a1a2 ≤ t)dt =
∑

0≤i≤n1
0≤j≤n2

P̂ij00(v).

Furthermore we can use the numerical inversion algorithm proved by Abate and Whitt [1]
for Laplace transforms of the probabilities Pijlr(t) for t > 0 to derive the cumulative
distribution of Tn1n2a1a2 as well as the expectation of new cases in each of the groups
n1 −X1(t) and n2 −X2(t) using respectively the following expressions:

Pr(Tn1n2a1a2 ≤ t) =
∑

0≤i≤n1
0≤j≤n2

Pij00(t),

E(X1(t)) =
∑

0≤i≤n1
0≤j≤n2

∑
0≤l≤n1+a1−i
0≤r≤n2+a2−j

iPijlr(t)

and
E(X2(t)) =

∑
0≤i≤n1
0≤j≤n2

∑
0≤l≤n1+a1−i
0≤r≤n2+a2−j

jPijlr(t).

7 An Example and Remarks

The vast majority of papers on stochastic epidemical models with two groups consider a
general model (see Daley and Gani [8] and Gani and Yakowitz [11]) in which the infections
in the first and second group occur respectively at ratesX1(β11Y1+β12Y2) andX2(β21Y1+
β22Y2), where for r, s = 1, 2, βrs is the pairwise rate for a susceptible from group r to be
infected by an infective in group s. This model is of limited direct use in modelling fatal
diseases such AIDS for which the infection mechanism is more complex and removal of
an infective result in its death. Hence in a single population epidemic, if there are X
susceptibles and Y infectives at a given time, then the probability that an individual chosen
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uniformly at random from the population is susceptible is given byX=(X + Y), leading to
overall infection rate of�XY= (X + Y) ( see, e.g., [3]). For the heterogeneous population
with two groups, the probability that a susceptible individual is chosen randomly from the
groupr = 1 ; 2 is given byX r (X r + Yr ) � 1. Thus it would be reasonable if the standard
infection rate is replaced byX 1(X 1 + Y1) � 1(� 11Y1 + � 12Y2) andX 2(X 2 + Y2) � 1(� 21Y1 +
� 22Y2); where the parameter� ij is de�ned as in Hyman and others [12] and Sani and
others [18], with slight generalization, as the product of the contact rate and the probability
� rs that the successive number of contacts between a susceptible in groupr and infective
in groups lead to infection with� r 1 + � r 2 = 1 . Using the methods presented in this paper
it is straightforward to obtain numerical results.

Figure 7.1: Joint (left picture) and marginal (right picture) distribution of the �nal sizes for� 11 = 0 :4,

� 12 = 0 :3, � 21 = 4 and� 22 = 2

Figures 7.1-7.3 illustrate some results using the initial conditions� 1 = � 2 = 1 ; n1 =
n2 = 100 anda1 = 0 anda2 = 1 : The Figures in the left have different(� 11; � 12; � 21; � 22)
values, illustrating the simultaneous distribution of the total sizes in the two populations
while the Figures in the right concern the same cases as the Figures in the left and illustrate
the marginal distribution of the total sizes in group 1 (��� ) and group 2 (� � � ).

For Figure 7.1 we note that� 11 + � 21 � � 22 + � 12 � 1. This implies that the �rst group
acts as an important source of infection for the population as a whole, but that susceptibles
in this group have few contacts with infectives in both groups(� 12 � 1; � 11 � 1) so that
infections transmitted to group 1, whether from 1 or 2, tend to die out quickly. This is, how-
ever, compensated since the parameters of the second group are above the threshold. On
the other hand for Figure 7.2 we have� 22 � 1, � 12 � 1, � 22 + � 12 � 1 and� 11 + � 21 � 1
so the parameters of the �rst group are below the threshold while the parameters of the
second group are above it and therefore the major part of the probability is concentrated
betweenX 2(1 ) = 0 andX 2(1 ) = 100, illustrating the fact that the �rst group is rela-
tively inactive, whereas the epidemic is major in the second group with high activity. In
the case of Figure 7.3 all parameters have low values so the epidemic as a whole dies out







170 H. El Maroufy and Z. Taib

where Ij denotes the identity matrix of rank N j
2 + 1.

By using the matrices defined in Section 2 we take

Bij = diag(Bl
ij , 0 ≤ l ≤ N i

1)

and
Zij = diag(Zl

ij , 0 ≤ l ≤ N i
1),

where
Zl

ij = C
l

ij +Dl
ij − Cl

ij +H
l

ij = (Ij −4j)C
l

ij +Dl
ij +H

l

ij

and the last equation is true because Cl
ij = 4jC

l

ij .

Since Al
ij = −Bl

ij −H
l

ij −C
l

ij −Dl
ij , then vIij −Fij = vIij +Zij +Bij −4ijBij

and it follows that

(A.1) Fij(v) = [vIij + Zij +Bij −4ijBij ]−1

= [(vIij + Zij +Bij)(Iij − (vIij + Zij +Bij)−1)4ij Bij ]−1

= [Iij − (vIij + Zij +Bij)−1 4ij Bij ]−1(vIij + Zij +Bij)−1.

The off-diagonal form of 4ij and the upper triangular form of Mij(v) = (tIij + Zij +
Bij)−1 imply that (Mij(v)4ij Bij)l ≡ 0 for all integers l > N i

1. Hence

[Iij −Mij(v)4ij Bij ]−1 =
Ni

1∑
l=0

[Mij(v)4ij Bij ]l = Rij(v).

LetRlh
ij andM lh

ij (v) be, respectively, the (l, h)th blocks of the matricesRij(v) andMij(v)
of ranks N j

2 + 1. Since for k = 0, . . . , N i
1 the (l, h)th block of [Mij(v)4ij Bij ]k is equal

to

M ll
ij(v)B

l+1
ij M l+1l+1

ij (v)Bl+2
ij . . .M l+k−1l+k−1

ij (v)Bl+k
ij if h = l + k and 0 otherwise,

then for 0 ≤ l ≤ h ≤ N i
1

(A.2) Rlh
ij (v) =

h−1∏
k=l

Mkk
ij (v)Bk+1

ij =
h−1∏
k=l

(Mij(v)4ij Bij)kk+1.

The diagonal form by blocks of Zij implies that M lh
ij (v) = 0 if l 6= h. Thus for each

l, h = 0, . . . , N i
1

(A.3) F lh
ij (v) =

Ni
1∑

k=0

Rlk
ij (v)M

kh
ij (v) =

{
Rlh

ij (v)Mhh
ij (v) if l ≤ h

0 otherwise.

Now for l = 0, . . . , N i
1 we have

M ll
ij(v) = [(vIij + Zij +Bij)−1]ll = (vI ll

ij + Zl
ij +Bl

ij)
−1
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= [vIj + C
l

ij +Dl
ij +Bl

ij +H
l

ij −4jC
l

ij ]
−1

= [Ij − Y l
ij(v)]

−1(vIj + C
l

ij +Dl
ij +Bl

ij +H
l

ij)
−1,

where Y l
ij(v) = (vIj + C

l

ij +Dl
ij +Bl

ij +H
l

ij)
−1 4j C

l

ij . However,

vIj+C
l

ij+D
l
ij +Bl

ij+H
l

ij = diag(v+µ2r+µ1l+fijlr,i−1jl+1r+fijlr,ij−1lr+1, 0 ≤ r ≤ N j
2 ),

hence

(vIj + C
l

ij +Dl
ij +Bl

ij +H
l

ij)
−1

= diag([v + µ2r + µ1l + fijlr,i−1jl+1r + fijlr,ij−1lr+1]−1, 0 ≤ r ≤ N j
2 )

The off-diagonal form of 4jC
l

ij implies that [Y l
ij(v)]

r ≡ 0 for all integers r > N j
2 . Hence

using the same technique as above we obtain for r ≤ s

[Ij − Y l
ij(v)]

−1
rs = µs−r

2

s!
r!

s−1∏
q=r

(v + µ2q + µ1l + fijlq,i−1jl+1q + fijlq,ij−1lq+1)−1

with all other elements being equal to zero. It follows that
(A.4)

[M ll
ij ]rs =

{
µs−r

2
s!
r!

∏s
k=r(v+µ2q+µ1l+fijlq,i−1jl+1q+fijlq,ij−1lq+1)−1 if r ≤ s

0 otherwise.

Hence from (A.2) we deduce that

[Rlh
ij (v)]rs =

[ h−1∏
k=l

Mkk
ij (v)Bk+1

ij

]
rs

=
Ni

1∑
i1=0

Ni
1∑

i2=0

· · ·
Ni

1∑
ih−l−1=0

[M ll
ij(v)B

l+1
ij ]ri1 · · · [Mh−1h

ij (v)Bh−1
ij ]ih−l−1s

=
s∑

i1=r

s∑
i2=i1

· · ·
s∑

ih−l−1=ih−l−2

[M ll
ij(v)]ri1 [B

l+1
ij ]i1i1 · · · [Mh−1h

ij (v)]ih−l−1s[Bh−1
ij ]ss

=
s∑

i1=r

s∑
i2=i1

· · ·
s∑

ih−l−1=ih−l−2

µh−l
1 µs−r

2

h!s!
l!r!

h−l∏
k=0

ik+1∏
p=ik

f(v, µ1, µ2, i, j, l + k, p),

where i0 = r and ih−l = s.
Finally by substituting (A.4) and the above equation in (A.3) we obtain, if r ≤ s,

[F lh
ij (v)]rs =

s∑
k=0

[Rlh
ij (v)]rk[Mhh

ij ]ks

=
s∑

k=r

[Rlh
ij (v)]rkµ

s−k
2

s!
k!
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×
s∏

p=k

(v + µ2p+ µ1h+ fijhp,i−1jh+11p + fijhp,ij−1hp+1)−1

(A.5) =
∑

r≤i1≤i2≤···≤ih−l≤s

µh−l
1 µs−r

2

h!s!
l!r!

×
h−l∏
k=0

ik+1∏
p=ik

f(v, µ1, µ2, i, j, l + k, p),

where i0 = r and ih−l+1 = s �

Proof of (4.6)
From (A.2) and (A.3) we have

[F lh
ij ]rs =

[ h−1∏
k=l

(Mij(v)4ij Bij)kk+1Mhh
ij (v)

]
rs

=
[ h−2∏

k=l

(Mij(v)4ij Bij)kk+1(Mij(v)4ij Bij)h−1hMhh
ij (v)

]
rs

=
[ h−1∏

k=l

(Mij(v)4ij Bij)kk+1Mh−1h−1
ij (v)Bhh

ij M
hh
ij (v)

]
rs

=
s∑

p=r

[ h−1∏
k=l

(Mij(v)4ij Bij)kk+1Mh−1h−1
ij (v)Bhh

ij

]
rp

[
Bhh

ij M
hh
ij (v)

]
ps

=
s∑

p=r

[
Mij(v)hh

]
ps

[
Bhh

ij

]
pp

[
F lh−1

ij (v)
]
rp
.

(A.4) and (4.1) complete the proof. �

Proof of (4.7)
For m,n = 0, . . . , (N i

1 + 1)(N j
2 + 1)− 1 let l, h and r, s be, respectively, the quotient

and remainder of the Euclidean division of m,n by N j
2 + 1. We have

[Di+1j(1, 0)]mn = [Di+1j(1, 0)]l(Ni
1+1)+r,h(Nj

2+j)+s

= [Di+1j(1, 0)]lhrs

=


[Dl−1

i+1j ]rs if l = h and l ≥ 1
[Θ10

ij ]rs if l = h = 0
0 otherwise

because

Di+1j(1, 0) =

(
Θ10

ij 0
0 Di+1j

)
so that

[Di+1j(1, 0)]mn =

{
fi+1jl−1r,ijlr if l = h and r = s

0 otherwise .
(∗)



Final Outcome of an Epidemic in Two Interacting Populations 173

We also have

[Fij(v)]mn = [Fij(v)]l(Nj
2+1)+r,h(Nj

2+1)+s =

{
[F lh

ij (v)]rs if l ≤ h

0 otherwise.
(∗∗)

Using (*) and (**) we obtain

[Fij(v)Di+1j(1, 0)]mn = [Fij(v)Di+1j(1, 0)]l(Nj
2+1)+r,h(Nj

2+1)+s

= [Fij(v)Di+1j(1, 0)]lhrs

= [F lh
ij (v)[Di+1j(1, 0)]hh]rs

=


[F lh

ij (v)Dh−1
i+1j ]rs if h ≥ 1 and l = h

[F l0
ij (v)Θ10

ij ]rs if h = l = 0
0 otherwise

=

{
[F lh

ij (v)]rs[Dh−1
i+1j ]ss if h ≥ 1 and l = h

0 otherwise

=


Cij(t, l, h, r, s)fi+1jh−1s,ijls if l ≤ h, and h ≥ 1

0 ≤ r ≤ s ≤ N j
2

0 otherwise.

�

Proof of (4.8)

As before we let l, h and r, s − 1 be, respectively, the quotients and remainders of the
Euclidean division of m by N j

2 + 1 and n by N j
2 + 1,

[Hij ]mn = [H lh
ij ]l(Nj

2+1)+r,h(Nj
2+1)+s = [H lh

ij ]rs =

{
[H l

ij ]rs if l = h

0 otherwise

=

{
fij+1lr−1,ijlr if m = n = l(N j

2 + 1) + r , 1 ≤ r

0 otherwise.

Now, if l, h and r, s − 1 are, respectively, the quotients and remainders of the Euclidean
division of m by N j

2 + 1 and n−N i
1 − 1 by N j

2 , we have

[HijTij ]mn =
(Ni

1+1)(Nj
2+1)−1∑

k=0

[Hij ]mk[Tij ]kn

= [Hij ]mm[Tij ]mn

=

{
fij+1lr−1,ijlr if m = l(N j

2 + 1) + r, n = N i
1 + lN j

2 + r and 1 ≤ r

0 otherwise.
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Finally we obtain

[Fij(v)HijTij ]mn =



[Fij(v)]l(Nj
2+1)+r,h(Nj

2+1)+s fij+1hs−1,ijhs

if m = l(N j
2 + 1) + r,

n = N i
1 + hN j

2 + s

and s ≥ 1
0 otherwise

=


[F lh

ij (v)]rsfij+1hs−1,ijhs if m = l(N j
2 + 1) + r,

n = N i
1 + hN j

2 + s

and s ≥ 1
0 otherwise

=


Cij(t, l, h, r, s)fij+1hs−1,ijhs if m = l(N j

2 + 1) + r

and n = N i
1 + hN j

2 + r

with r ≤ s, s ≥ 1
0 otherwise.

�

Proof of (4.1) and (5.1)
Let h > l and s ≥ r. From (A.2) and (A.3) we have

[F lh
ij (v)]rs =

[( h−1∏
k=l

(Mij(v)4ij Bij)kk+1

)
Mhh

ij (v)
]

rs

=
s∑

q=r

q∑
p=r

[(Mij(v)4ij Bij)ll+1]rp

[
h−1∏

k=l+1

(Mij(v)4ij Bij)kk+1

]
pq

[Mhh
ij (v)]qs

=
s∑

q=r

[(Mij(v)4ij Bij)ll+1]rr

[ h−1∏
k=l+1

(Mij(v)4ij Bij)kk+1

]
rq

[Mhh
ij (v)]qs

+
s∑

q=r+1

q∑
p=r+1

[(Mij(v)4ij Bij)ll+1]rp

[ h−1∏
k=l+1

(Mij(v)4ij Bij)kk+1

]
pq

[Mhh
ij (v)]qs

=
s∑

q=r

[(Mij(v)4ij Bij)ll+1]rr

[ h−1∏
k=l+1

(Mij(v)4ij Bij)kk+1)
]

rq

[Mhh
ij (v)]qs

+
s∑

p=r+1

[(Mij(v)4ij Bij)ll+1]rp

s∑
q=p

[ h−l∏
k=l+1

(Mij(v)4ij Bij)kk+1

]
pq

[Mhh
ij (v)]qs,

but, if r ≤ s, we have by using (A.4) that

[(Mij(v)4ijBij)ll+1]rp = µ1(l+1)µs−r
2

s!
r!

s∏
q=r

[t+µ1l+µ2q+fijlq,i−1jl+1q+fijlq,ij−1lq+1]−1.
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Hence, if (l, r) = (0, 0) and h > 0, we obtain

(A.6) [F 0h
ij (v)]0s

=
µ1

t

{
[F 1h

ij (v)]0s+
s∑

p=1

µp
2p!

p∏
k=1

(v + µ2k+fijlk,i−1jl+1k + fijlk,ij−1lk+1)−1[F 1h
ij ]ps

}

=
µ1

t

{ s∑
p=0

µp
2p!

p∏
k=1

(v + µ2k + fijlk,i−1jl+1k + fijlk,ij−1lk+1)−1[F 1h
ij (v)]ps

}
.

In addition we see from (A.5) that limt→0[F lh
ij (v)]rs exists if (l, r) 6= (0, 0). Therefore us-

ing the second and third members in (A.6) it can be shown that limt→0(tCij(t, 0, h, 0, s))
exists and is equal to (5.2). Finally (5.1) is easily obtained by passing to the limit in (4.2)
when h = r = 0.
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