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Bosonic Channel Capacity of a Nonlinear Dispersive Optical Fiber
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Bosonic channel capacity of some important nonlinear optical channels is studied. In
particular, the bosonic channel capacity of a nonlinear dispersive (silica) optical fiber
interacting with an intense laser beam has been studied in detail and it has been shown
that the channel capacity can be enhanced/tuned by tuning coupling constant, temper-
ature, frequency of the radiations, etc. Further it is shown that channel capacity is not
proportional to nonclassicality.
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1 Introduction

Channel capacity of physical systems has been an object of extensive study since the
pioneering work of Shannon [16]. The interest in this field has been increased in recent
past with the advent of quantum communication. Actually it is now realized that all the
communication channels are essentially quantum mechanical. This realization and the fact
that the communication technologies are approaching the quantum level, have worked as
motivation for the community to investigate the physical limits of quantum communica-
tion channels in general [2,3,5,8,11, 12,14, 15,20, and references therein]. All the initial
studies in this field were limited to the memoryless channels [2,20]. Only recently people
have studied capacities of channels having memories [6] and noise [10]. Among the recent
studies on quantum channels the major attention has been drawn by bosonic quantum chan-
nels and consequently a measure of classical capacity of quantum channels called “bosonic
channel capacity” [5, 8, 14, 15] is introduced. Bosonic channel capacity of several physical
systems have been studied so far [2,3, 5,8, 11, 12, 14, 15, 20]. But apart from [5] all the
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studies known to us have used a strong assumption that the channel is linear. The capacity
of nonlinear bosonic systems have been first studied by Giovannetti et al. [5] in the limit
when the dispersion effects are negligible. They had chosen the bosonic channels in such
a way that the Hamiltonian representing the channel can be reduced to that of a harmonic
oscillator under suitable canonical transformation. Although nonlinear optical channels are
very common in practical use, the effect of nonlinearity on bosonic channel capacity is not
studied properly till now. This fact has motivated us to go beyond the consideration of Gio-
vannetti et al. and to study the bosonic channel capacity of most commonly used nonlinear
channel consisting of a single mode electromagnetic field and a nonlinear dispersive opti-
cal fiber. Apart from the effect of nonlinearity the effect of nonclassicality on the bosonic
channel capacity is also studied in recent past. For example, Lloyd [11, 12] has shown
that the entangled quantum channels can communicate at a potentially higher rate than an
unentangled quantum channel given the same power. This has motivated us to check the
relation between the depth of nonclassicality and the capacity of the channel.

From a mathematical point of view the bosonic channel capacity is just a specific case
of entropy maximization problems [5]. To be precise, the maximization of von-Neumann
entropy with some constrains condition. The problem of finding out bosonic channel ca-
pacity can essentially be reduced to finding out the partition function [5]. Finding out exact
analytic expression of partition function is possible only in a number of simple physical
systems. But there exist some methods [4, 7, 17-19] for finding out approximate expres-
sion for partition function. It is an outstanding curiosity to note that the introduction of
bosonic channel capacity has linked quantum information theory to an apparently unre-
lated field of mathematical physics, namely, partition function problems, which has a rich
literature [4,7, 17-19]. We have used one existing trick by Witschel to study the variation
of bosonic channel capacity of some important nonlinear optical channels.

In the present work we aim to go beyond the consideration of Giovannetti et al. and
wish to consider more physical systems in which the nonlinear system is modelled as an
anharmonic oscillators. It is correctly pointed out in [5] that the effect of dispersion in non-
linear optical channel can not be studied precise as the Hamiltonian is not exactly solvable.
To circumvent this, we have used rotating wave approximation and adiabatic assumption.
Under this assumptions the Hamiltonian that represents the propagation of a single mode
electromagnetic field through a nonlinear optical fiber becomes exactly solvable. We have
used this fact to study the bosonic channel capacity of a nonlinear dispersive (silica) optical
fiber interacting with an intense laser beam. Further, it is shown that the bosonic channel ca-
pacity does not follow any linear relation with nonclassicality (amount of squeezing). This
is in sharp contrast with the earlier results. In the next section we have briefly introduced the
idea of bosonic channel capacity and have shown that the problem of finding the bosonic
channel capacity can essentially be reduced to the finding of partition function. In section

3 we have studied the bosonic channel capacity of a third order nonlinear medium with in-
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version symmetry (with and without the application of rotating wave approximation). The
physical system studied here essentially represents a nonlinear dispersive optical fiber. The
analytic and numerical results obtained in the present study are shown graphically and it is
established that the bosonic channel capacity can be tuned with the help of tunable laser or
heat bath. Finally, section 4 is dedicated to conclusions.

2 Information Capacity

The information capacity of a noiseless channel is defined as the maximum number
of bits that can be reliably sent per channel use [5]. In case of a classical channel it is
given by the maximum of Shanon’s entropy and analogously in case of a quantum channel
it is given by the maximum of the von Neumann entropy S(p) = —T'r[plog, p] over all
the possible input states p of the channel. In the present study we are interested in the
interaction of an intense laser beam with a nonlinear medium. Therefore physically, the
nonlinear medium constitutes the channel, and the photons of the laser beam carries the
information. So the quantum states (p) of our interest are essentially the states of the
photons which are bosons with zero rest mass. Now for a mass less bosonic field, the
associated Hilbert space is infinite dimensional and as a natural consequence of the infinite
dimensional Hilbert space, the maximum entropy is infinite. In a real situation a quantum
channel having infinite capacity does not make sense and for all realistic scenarios a cutoff
is introduced by constraining the energy required in the storage or in the transmission, e.g.,
requiring the entropy S(p) to be maximized only over those states having average energy
FE,ie.,

E =Tr[pH| (2.1)

where H is the system Hamiltonian [5]. The constrained maximization of S(p) can be
solved by standard variational methods (see references in [5]), which entail the solution of

A1 A2
0 — —Tr[Hp| — —T = 22
{500~ Syria - 251 f =0 22)
where \; and )\, are Lagrange multipliers that take into account the energy constraint (2.1)
and the normalization constraint Tr[p] = 1, and the In2 factor is introduced so that all
subsequent calculations can be performed using natural logarithms. Equation (2.2) can be
solved by the density matrix p = exp(—SH)/Z((3), where

Z(B) = Tr(exp(—fH)) (2.3)

is the partition function of the system and is determined from the constraint (2.1) by solving

the equation
0
E= ~ 95 In(Z(9)). 2.4)



154 N. K. Sharma and A. Pathak

The corresponding capacity is thus given by

exp(—ﬁH)} _ BE +1nZ(p)
Z(0) In2

c=S5 [ 2.5)
which means that we can evaluate the system capacity only from its partition function Z(3).
In [5] the same procedure is followed and bosonic channel capacity has been found for
some simple optical systems for which the Hamiltonian can be reduced to that of a simple
harmonic oscillator (under a suitable canonical transformation). But for more realistic
and physical systems one can’t obtain exact analytic expression for C since exact analytic
expression for partition function can not be obtained. We have chosen two such systems
and in the next section we studied those modelled systems.

3 Bosonic Channel Capacity for a Third Order Nonlinear Medium

It is clear from the above that if we know the partition function then we can find out
the bosonic channel capacity. In [5] they have derived bosonic channel capacity for some
simple cases where the bosonic Hamiltonian can be reduced to harmonic oscillator Hamil-
tonian by some simple canonical transformation. Other people have done some calculation
for noisy channel [10], or for channel with memory [6]. In the present work we have tried
to follow [5] and to find out partition functions for the physical systems in which an intense
laser beam interacts with a third order nonlinear medium of inversion symmetry, the system

can be modelled by the following Hamiltonian [13]
t 1 4
H = aa+§ hw+)\(a+a) , 3.1

where ) is the anharmonic constant which is a function of third order susceptibility x> and
thus a functional of the frequency w. This system is not exactly solvable. But there exist
methods for obtaining approximate partition function [4,7, 17-19]. Among the existing
technique we find suitable to use [17, 18]. In [17] Witschel has given an excellent scheme
for finding out the partition function if a bosonic Hamiltonian H (a, a') is given, in [19]
they have done it for the Hamiltonian (3.1) and obtained the partition function (see equation
(24)-(27) of [19]). Therefore, in principle we can now find out bosonic channel capacity
for the physical system represented by quartic oscillator. We have done the same with the
help of Mathematica 5.2 and the results are presented in the Fig 3.1 below.

There are simpler models which can help us to understand the effect of nonlinearity
on the bosonic channel capacity. To be precise, let us consider the propagation of a single
mode electromagnetic field of frequency w through a nonlinear optical fiber. The medium
fiber can be modelled as anharmonic oscillator of frequency wy. Let a (b) and a’ (b%) be

the annihilation and creation operators for the field (medium). Essentially, we are assuming
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Figure 3.1: Variation of bosonic channel capacity of the third order nonlinear medium described by
Hamiltonian (3.1) when anharmonic constant A=0.01 and wavelength of the incident photon beam is
6000A.

that the medium is contained in a very good quality single mode cavity. Now by using the

rotating wave approximation we can write the total Hamiltonian for the system as
H = hwob'b + hwa'a + hgb™?b? + hg(bla + a'b), (3.2)

where ¢ is the anahromicity parameter and g is the strength of coupling of medium with
the field mode [1]. A further simplified Hamiltonian can be obtained in adiabatic limit. In
the adiabatic limit, it is assumed that the two oscillator frequencies (i.e. w and wy) are far
from each other. In this limit the effective Hamiltonian of the system reduces to

H = a'ah@ + Aa?a?, (3.3)

where A\ = Ay = qg*/A* A = wy — w and the modified frequency @ = w — g%/A.
Here x is the dispersive part of the third order nonlinear medium. Thus the the effective
Hamiltonian (3.3) describes the propagation of single mode light through a high quality
nonlinear dispersive fiber [9]. This system is extensively studied in nonlinear optics [1,
9] and references therein, but the information capacity of this channel is not reported till
date. In order to obtain the bosonic channel capacity of this system we need to find out
the partition function of the system. To obtain the partition function we have followed
the Witschel’s algorithm prescribed in [17, 18]. Absence of the offdiagonal terms in the
effective Hamiltonian makes the system exactly solvable and the generalized solution can

be written as an arbitrary superposition of Fock states as

() = D Cnexp[—it{on — x(n® —n)}]In). (3.4)

n=0

Now we can use (2.3) and (3.4) to obtain the partition function corresponding to (3.3) as

Z(P) = Tr (exp(—FH))
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= Z exp [—8 (@hn + A(n® —n))]
n=0
= nZ:;Jexp [—6>\ (n2 + Lh}\_ An)}
> oh—A\>  [@h-\\>
Yo |- (n+55) - (7))
= exp (/6’)\k2) Z exp (—ﬂ)\(n + k)z) , (3.5)
n=0
where

ho—XA  1-y/@
k= — I X
2\ 2x /@

Here we would like to note that under rotating wave approximation and adiabatic assump-
tion we have obtained a Hamiltonian free of off-diagonal terms and thus the corresponding
partition function is exact. Once the partition function is obtained we can use (2.4) and
(2.5) to obtain the bosonic channel capacity corresponding to the Hamiltonian (3.3). This
task is done with the help of Mathematica 5.2 and the results are graphically presented in

Fig 3.2a and 3.2b.
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Figure 3.2: A channel is constituted by an incident laser beam of wavelength 6000A and a non-
dispersive optical fiber having Kerr type nonlinearity. Variation of bosonic channel capacity C is
shown with respect to (a) anharmonic constant A and temperature T (3 = 1/(kT)), (b) temperature

T (8 = 1/(kT)) and modified frequency .

From the figures it is clear that with the help of a tunable laser one can control the
channel capacity of a dispersive fiber. Even a heat bath can be used to tune the bosonic

channel capacity of a nonlinear dispersive optical fiber.
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4 Conclusions

In [13] we have reported the possibility of observing squeezing in a third order nonlin-
ear medium described by the Hamiltonian (3.1) and it was found that depth of nonclassi-
cality (see equation 34-39 in [13]) oscillates with the increase of anharmonic constant A but
in the present work we have seen that bosonic channel capacity decreases monotonically
with increase in A (Fig. 3.2a). Thus we observe that the bosonic channel capacity does
not follow any linear relation with nonclassicality (amount of squeezing). This is in sharp
contrast with the earlier results. It is also shown that in a nonlinear dispersive optical fiber,
bosonic channel capacity can be tuned by tuning the temperature, frequency of the incident
beam etc. Further, the present work introduces a bridge between two apparently unrelated
subfield of physical science, namely, evaluation of partition function and quantum informa-
tion. We expect that this link will be further exploited to provide bosonic channel capacity
of several other physical systems of specific interests.
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