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Abstract: Let  and  be two undirected nontrivial graphs. The Kronecker product of  and  denoted by 

 with vertex set , two vertices  and  are adjacent if and only if 

 and . This paper presents a formula for computing the diameter of  

by means of the diameters and primitive exponents of factor graphs. 
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1  Introduction 

For notation and graph-theoretical terminology not defined here we follow [18]. Specifically, let 

 be a nontrivial graph with no parallel edges, but loops allowed, where  is the vertex-

set and  is the edge-set. 

For two graphs  and , Kronecker product  is a graph with vertex set  and two 

vertices  and  are adjacent when  and . 

As an operation of graphs, Kronecker product  was introduced first by Weichesel [15] in 1962. It 

has been shown that the Kronecker product is a good method to construct lager networks that can generate 

many good properties of the factor graphs (see [9]), and has received much research attention recently. 
Some properties and graphic parameters have been investigated [1,2,5,8,11]. The connectivity and 

diameter are two important parameters to measure reliability and efficiency of a network. Very recently, 

the connectivity of Kronecker product graph has been deeply studied (see, [3,6,7,11,12,14,16,17]). 
However, the diameter of Kronecker product graph has been not investigated yet. 

In this paper, we determine the diameter of Kronecker product graph by means of primitive exponents 

and diameters of factor graphs. In particular, we obtain that 
 

  

 

where  and  are the primitive exponent and diameter of  for , respectively. 
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2  Some Lemmas 

Let  be a graph. Denote  to be the minimum integer such that there exists an -walk of 

lengh  for any  and  be the minimum integer  for which, for any two vertices  and  

in , there exists an -walk of length  for any integer .  Let 

. 

 

If  is well-defined, then  is said to be primitive, and  is called the primitive exponent, 

exponent for short, of . If  does not exist, then denote . 

 

Let  be a graph obtained from a complete graph  by appending a loop on each vertex. It is clear 

that for a graph  without parallel edges of order ,  if and only if . 

 

Let  be the adjacency matrix of . Equivalently, the exponent of  is the minimum integer  for 

which  and  for any positive integer . Let  be the adjacent matrix of  for . 

Since for any positive integer , , by definition, we have the following result 

immediately. 

Proposition 2.1 Let  be a primitive graph with exponent  for , and . Then 

. 

The following lemmas will be used in proofs of our main results. 

Lemma 2.1 (Liu et al. [10]) A graph G is primitive if and only if G is connected and contains odd cycles. 

Lemma 2.2 (Liu et al. [10]) Let  be a primitive graph, and let  and  be any pair of vertices in . If 

there are two -walks  and  with lengths  and , respectively, where  and  have different 

parity, then . 

Lemma 2.3 (Delorme and Solé [4]) If  is a primitive graph with diameter , then . 

Lemma 2.4 (Weichesel [15]) Let  and  be two connected graphs and . Then  is 

connected if and only if either  or  contains an odd cycle. 

Lemma 2.5 Let ,  and  be any two vertices in ,  be an -walk of length  in  

for . If  and  have same parity, then there is an -walk of length  in . 

Proof. Without loss of generality, suppose . Let . Then  is even. Let 

 and  be an -walk of length  in  obtained 

from  by repeating  times of some edge in . Then  is an 

-walk of length  in .                                                                                                                

Lemma 2.6 Let  be a primitive graph with exponent  and order . We have 

(i) if  is odd, then there exist two vertices  and , and two different vertices  and , such that the 

shortest odd -walk and the shortest even -walk are of length  and , respectively; 

(ii) if  is even, then there exist two different vertices  and , and two vertices  and , such that the 

shortest even -walk and the shortest odd -walk are of length  and , respectively. 

Proof. (i) Assume that  is odd. If , then . Let  and  be two different vertices in . Then 

the shortest odd -walk and the shortest even -walk are of length 1 and , respectively. Suppose 

now . 

Let  be the adjacency matrix of . By definition of ,  and . These imply that 

there exist four vertices , ,  and  such that there are no odd -walk and even -walk with 

length  and , respectively. Hence there are no odd -walk and even -walk with length 
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no more than  and , respectively. Therefore, the shortest odd -walk and the shortest even 

-walk are of length  and , respectively. 

We now show . If , then  is an even -walk of length  for any vertex  

adjacent to  in , a contradiction with . 

(ii) Assume  is even. If , then  or  since . If , then  is isomorphic to 

a complete graph  with  vertices having loops and . Let  be a vertex with no loop and  

be another vertex in . Then the shortest even -walk and odd -walk are of length  and , 

respectively. If , then there exist two different vertices  and  such that , and hence the 

shortest even -walk and odd -walk are of length  and , respectively. 

The case when  can be proved by applying the similar discussion as in (i).                                      

Lemma 2.7 Let  be a primitive graph with exponent  for , , and  and 

 be two different vertices in . If the shortest odd (resp. even) -walk in  and the shortest 

even (resp. odd) -walk in  are of length  and , respectively, then . 

Proof. Without loss of generality, assume that  is odd and  is even. Let 

  

be a minimum -path with length  in . Then 

  

be an -walk in  and an -walk in , respectively, and both of them are of length .    

If  is odd, then  since the shortest odd -walk in  is of length ; If  is even, then  

since the shortest even -walk in  is of length . Therefore .               

3  Main results 

Let  be a connected graph with odd cycles and  be the set of all odd cycles in . For  

and , let 

  

and let 

  

We define  if  is bipartite. 

Theorem 3.1  for any connected graph . 

Proof. If  contains no odd cycles, then , and so the conclusion holds. Suppose that  contains 

odd cycles. By Lemma 2.1,  is primitive. We only need to prove that for any two vertices  and  in , 

. 

By definition, there exists an odd cycle  such that  Let  

and . Then  and . Let  and 

 be two shortest paths from  and  to , respectively, where  

(maybe ). Two vertices  and  partition  into two paths  and  with lengths  and , 

respectively. Then  and  have different parity, say . Thus,  and  are 

two -walks with length of different parity and at most 

  

By Lemma 2.2, .                                                                                                                

Corollary 3.1 If  is a connected graph with loops and diameter , then . 

Let  and  ( ) be two graphs, which are obtained by joining a complete graph  and a 

cycle  to the end-vertex  of a path  with an edge, respectively. 

The following result can be deduced by Theorem 3.1. 
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Corollary 3.2 (Wang and Wang [13]) Let  be a primitive graph with order  and odd girth . Then 

 with equality if and only if  is isomorphic to . 

Proof. By Lemma 2.1,  is connected and contains an odd cycle  with . 

Since  and , by Theorem 3.1, we have that 

   

The equality implies that all equalities in (1) hold, in particular,  and . 

Thus, there is a vertex  such that  in . Suppose  is a 

shortest path from  to , where  is in . By the minimality of  and primitivity of , it is easy 

to see that  is isomorphic to . Also, if  is isomorphic to , then the shortest odd closed -

walk is of length . This implies there is no closed -walk of length 

. Hence, .                                                                                                    

Corollary 3.3 If , then . 

Proof. Let . Since  contains  and ,  is primitive by Lemma 2.1, and so 

 for any . Let  be a cycle of length  in . By Theorem 3.1, 

  

It is clear that the shortest odd closed ‐walk is of length . This implies there is no 

closed -walk of length . Hence, . The conclusion follows.           

Theorem 3.2 Let  be a connected graph with diameter  and exponent  for ,  

contains odd cycles, and . Then the diameter  of  satisfies the following properties. 

(1) . 

(2) If  contains odd cycles, then 

  

(3) . 

(4)  with equality if  is bipartite. 

Proof. Since both  and  are connected and  contains odd cycles, by Lemma 2.1 and Lemma 2.5,  

is well-defined and  is connected. Since  and , the order of  and  are no less than 2. 

  (1) For , let  and  be two vertices in  with  and let 

 be a shortest -path in . Then  and 

 are two walks in  and , respectively. Thus . 

  (2) Since  contains odd cycles,  is well-defined by Lemma 2.1. Without loss of generality, assume 

 and  is odd. By Lemma 2.6, there exist two different vertices  and  such that the shortest 

even -walk is of length  in ; also there exist two vertices  and  such that the shortest 

odd -walk is of length  or  in . By Lemma 2.7, , and 

so 

  

(3) Without loss of generality, suppose that  is well-defined and . Let  and  

be any two different vertices in . By definition of , there exist an -walk and an -walk of 

length  in  and , respectively. By Lemma 2.5, there exists an -walk of length , and hence 

. By the arbitrariness of  and , we have . 

(4) Without loss of generality, suppose that  is well-defined, and only need to prove 

. Let  and  be any two different vertices in  and 
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 (maybe ). If , then there exists an -walk of length  in  by 

definition of . By Lemma 2.5, there exists an -walk of length  in . If , then one of 

 and  is even. By definition of , there exist two -walks of lengths  and  

in , respectively. By Lemma 2.5, there exists an -walk of length no more than  in . Thus 

, and hence  by arbitrariness of  and . 

Now assume that  is bipartite. Let  and  be two vertices in different parts in . Then any 

-walk and closed -walk are of odd and even length in , respectively. If , then 

 for any two different vertices  and  in  since . 

Next, assume . 

By using the Lemma 2.6, we have the following conclusions. If  is odd, then there exist two different 

vertices  and  such that the shortest even -walk is of length  in , and hence 

. If  is even, then there exist two vertices  and  such that the 

shortest odd -walk is of length  in , and hence . By the 

conclusion (1), , and hence . 

The theorem follows.                                                                                                                                   

Corollary 3.4 Let  be a connected graph with diameter  and  for , 

. Then 

  

Proof. Without loss of generality, we can suppose that both  and  contain odd cycles. By 

Theorem 3.1,  and . The conclusion follows by the conclusion (4) in Theorem 3.2. 

 

Corollary 3.5 Let  be a connected graph with diameter  for  and . If  

contains odd cycles, then . 

Proof. By Lemma 2.3, . The Theorem follows by the conclusion (4) in Theorem 3.2.             

The following result, obtained by Leskovec et al. [9], can be deduced by Theorem 3.2 immediately. 

Corollary 3.6 (Leskovec et al. [9]) Let  be a connected graph with diameter  and there is a loop 

on every vertex of  for . Then . 

Proof. It is clear that  and  since each of  and  has a loop on every vertex. 

The conclusion follows by the conclusions (1) and (3) in Theorem 3.2.                                                        

Corollary 3.7 Let  be a primitive graph with order . Then . 

By Theorem 3.2, we immediately obtain our main results in this paper. 

Theorem 3.3 Let  be a connected graph with diameter  and exponent  for . If 

 contains odd cycles, then 

  

In Theorem 3.3, we consider the diameter of the Kronecker product of two graphs  and  with order 

no less than 2. Next, we consider the case that at least one of  and  with order 1. Let  be a 

connected graph with order  and no parallel edges. We have noted in Section 2,  if and only if 

. For a graph  with order 1, if  is connected, then  since  is empty. It is 

easy to see that  and then . 

In the following, we show the diameters for some special Kronecker product of two graphs only by 

using the diameters of factor graphs. 
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Theorem 3.4 Let  be a connected graph with order  for . Then  if and 

only if  and . 

Proof. The sufficiency is obviously. 

Now we show the necessity. By contradiction. Without loss of generality, assume . Then 

either there exists a vertex  such that it does not contain a loop or . Then 

 for any two different vertices  or  by the 

conclusion (1) in Theorem 3.2.                                                                                                                        

Theorem 3.5 Let  be a connected graph with order  and . Then 

  

Proof. The Theorem follows by Theorem 3.3 since  and .                                           

Theorem 3.6 Let  be a connected graph with diameter  and  be a complete  partite graph with 

. Then 

  

Proof. It is clear that ,  is primitive and . The Theorem follows by Theorem 3.3.      

Corollary 3.8 Let  be  or  with odd cycles and diameter , and  be any connected graph 

with diameter . 

(1) If  is bipartite, then . 

(2) If  is non-bipartite, then 

  

Proof. By Lemma 2.1,  is primitive since  contains odd cycles. By Lemma 2.5,  is connected. 

By Corollary 3.1 and 3.2, . If  is bipartite, then  is not primitive by Lemma 2.1. Thus 

, and hence,  by Theorem 3.3. If  is non-

bipartite, then . The conclusion follows by Theorem 3.3 immediately.                                      

Corollary 3.9 Let  be an odd cycle and  be a connected graph with order  and diameter . 

(1) If  is bipartite, then . Hence , and 

 if  is even. 

(2) If  and  is odd, then  
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