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Abstract: A multicomponent system ofk components having strengths following k– independently and identically distributed random
variables and each component experiencing a random stressY is considered. The system is regarded as alive only if at leastsout ofk (s<
k) strengths exceed the stress. The reliability of such a system is obtained when strength, stress variates are given by inverse Rayleigh
distribution with different scale parameters. The reliability is estimated using the Moment method and ML method of estimation
when samples drawn from strength and stress distributions. The reliability estimators are compared asymptotically. The small sample
comparison of the reliability estimates is made through Monte Carlo simulation.

Keywords: Reliability estimation, stress-strength, moment estimator, ML estimation, confidence intervals.

1 Introduction

Let X, Y are two independent random variables following inverse Rayleigh distribution with scale parameters respectively.
Then the probability density function (pdf) and cumulativedistribution function (cdf) of X and Y are respectively given
by
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Let the random samplesY,X1,X2, . . . ,Xk being independent,G(y) be the continuous distribution function of Y andF(x)
be the common continuous distribution function ofX1,X2, . . . ,Xk. The reliability in a multicomponent stress-strength
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model developed by [2] is given by

Rs,k = P[at leastsof theX1,X2, . . . ,Xk exceed Y]

=
k
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[1−G(y)]i [G(y)](k−i) dF(y)r

(5)

Where X1,X2, . . . ,Xk are independently identically distributed (iid) with common distribution functionF(x),this
system is subjected common random stress Y. Assuming thatF(.) and G(.) are inverse Rayleigh distributions with
unknown scale parametersσ1,σ2 and that independent random samplesX1,X2, . . . ,Xn andY1,Y2, . . . ,Ym are available
from F(.) and G(.), respectively. The reliability in multicomponent stress-strength for inverse Rayleigh distribution
using (5) we get
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After the simplification we get

Rs,k = λ 2
k
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sincek andi are integers (6)

The probability in (6) is called reliability in a multicomponent stress-strength model [2]. The survival probability of a
single component stress-strength versions have been considered by several authors assuming various lifetime
distributions for the stress-strength random variates (see e.g.[5], [4], [1], [11], [12], [19], [17], [8,9], [18], [10]). The
reliability in a multicomponent stress- strength were developed by [2], [13] and the references therein cover the study of
estimating in many standard distributions assigned to one or both of stress, strength variates. Recently [16] studied
estimation of reliability in multicomponent stress-strength for log-logistic distribution and [15] developed an estimation
of reliability in multicomponent stress-strength based ongeneralized exponential distribution.
Suppose a system, withk identical components, functions ifs (1 ≤ s≤ k) or more of the components simultaneously
operate. In its operating environment, the system is subjected to a stress Y which is a random variable with distribution
function G(.). The strengths of the components, that is the minimum stresses to cause failure, are independent and
identically distributed random variables with distribution function F(.). Then the system reliability, which is the
probability that the system does not fail, is the functionRs,k given in (5). The estimation of survival probability in a
multicomponent stress-strength system when the stress, strength variates are following inverse Rayleigh distribution is
not paid much attention. Therefore, an attempt is made here to study the estimation of reliability in multicomponent
stress-strength model with reference to inverse Rayleigh distribution. In Section 2, we derive the expression forRs,k
using different methods of estimation. The MLE are employedto obtain the asymptotic distribution and confidence
intervals forRs,k. The small sample comparisons made through Monte Carlo simulations are made in Section 3. Finally,
the conclusion and comments are provided in Section 4.

2 Different Methods of Estimation of Parameters

If σ1,σ2 are not known, it is necessary to estimateσ1,σ2 to estimateRs,k. In this paper we estimateσ1,σ2 by ML method
and Method of moment thus giving rise to two estimates. The estimates are substituted in to get an estimate of using
equation (6). The theory of methods of estimation is explained below. Itis well known that the method of maximum
likelihood estimation (MLE) has invariance property. When the method of estimation of parameter is changed from ML

c© 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.2, No. 3, 261-267 (2013) /www.naturalspublishing.com/Journals.asp 263

to any other traditional method, this invariance principledoes not hold good to estimate the parametric function. However,
such an adoption of invariance property for other optimal estimators of the parameters to estimate a parametric function is
attempted in different situations by different authors. [20],[6] and the references therein are a few such instances. In this
direction, we have proposed some estimators for the reliability of multicomponent stress-strength model by considering
the estimators of the parameters of stress, strength distributions by standard methods of estimation in inverse Rayleigh
distribution.

2.1 Method of Maximum Likelihood Estimation(MLE)

Let X1,X2, . . . ,Xn andY1,Y2, . . . ,Ym be two ordered random samples of size n, m respectively on strength, stress variates
each following inverse Rayleigh distribution with scale parametersσ1,σ2. The log-likelihood function of the observed
sample is

lnL(σ1,σ2) = (m+n) ln2+2nlnσ1+2mlnσ2−σ2
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The MLEs ofσ1 andσ2, sayσ̂1 andσ̂2 respectively can be obtained as
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The asymptotic variance of the MLE is given by
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The MLE of survival probability of multicomponent stress-strength model is given byR(1)
s,k with λ is replaced byλ (1) =

σ (1)
1

σ (1)
2

in (6).

2.2 Method of moment estimation (MOM)

We know that,if ¯x, ȳ are the sample mean of samples on strength,stress variates then moment estimators (MOM) ofσ1,σ2

areσ̂2
1 =

x̄√
π

andσ̂2
2 =

ȳ√
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respectively. The second estimator, we propose here isR(2)
s,k with λ is replaced byλ (2) =

σ (2)
1

σ (2)
2

in (6). Thus for a given pair of samples on stress, strength variates we get two estimates ofRs,k by the above two different
methods. The asymptotic variance (AV) of an estimate ofRs,k which a function of two independent statistics (say)t1, t2 is
given by [14].

AV(R̂s,k) = AV(t1)

(

∂Rs,k

∂σ1

)2

+AV(t2)

(

∂Rs,k

∂σ2

)2

(11)

Wheret1, t2 are to be taken in two different ways namely, exact MLE and moment estimators. Unfortunately, we can
not find the variance of inverse Rayleigh distribution, the asymptotic variance ofRs,k is obtained using MLE only. From
the asymptotic optimum properties of MLEs ([7] ) and of linear unbiased estimators ([3]), we know that MLEs are
asymptotically equally efficient having the Cramer-Rao lower bound as their asymptotic variance as given in (10). Thus
from Equation (11), the asymptotic variance of̂Rs,k can be obtained when(t1, t2) are replaced by MLE . To avoid the
difficulty of derivation ofRs,k, we obtain the derivatives ofRs,k for (s,k)=(1,3) and (2,4) respectively, they are given by
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The small sample comparisons are studied through simulation in Section 3.

3 Small Sample Comparison

In this sub section we present some results based on Monte Carlo simulations to compare the performance of theRs,k using
for different sample sizes. 3000 random sample of size 5(5)35 each from stress and strength populations are generated for
(σ1,σ2)=(1,1), (1,1.5), (1,2), (1,2.5), (1,3), (1.5,1),(2,1), (2.5,1) and (3,1) as proposed by [2]. The scale parametersσ1 and
σ2 of the variates are estimated by ML estimators and MOM estimators are used in estimatingλ . These two estimators
of λ are used to get the multicomponent reliability for(s,k) =(1, 3),(2, 4). The sampling bias, mean square error (MSE)
of the reliability estimates over the 3000 such samples are given in Table 1. Average confidence length and coverage
probability of the simulated 95% confidence intervals ofRs,k are given in Table 2. Thus the true value of reliability is
increases asλ decreases and vice versa. Both bias and MSE are decreases as sample size increases for both methods of
estimation in reliability. With respect to bias Moment estimator shows very close to exact MLE in most of the parametric
and sample combinations. Also the bias is negative whenσ1 ≤ σ2 and other cases bias is positive in both situations(s,k).
With respect to MSE also MLE shows first preference than moment method of estimation. The length of the confidence
interval is also decreases as the sample size increases. Thecoverage probability is close to the nominal value in all cases
for MLE. Overall, the performance of the confidence intervalis quite good for MLE. The simulation results also show that
there is no considerable difference in the average bias and average MSE for different choices of the parameters, whereas
considerable difference in MLE and MOM. The same phenomenonis observed for the average lengths and coverage
probabilities of the confidence intervals using MLE.
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Table 1: Results of the simulation study of Bias and MSE for estimates ofRs,k

(s,k)=(1,3) (s,k)=(2,4)
Bias MSE Bias MSE

σ1,σ2 (n,m) True MOM MLE MOM MLE True MOM MLE MOM MLE
(1,1) (5,5) -0.0402 -0.0120 0.0389 0.0148 -0.0289 -0.0067 0.0580 0.0265

(10,10) -0.0262 -0.0091 0.0246 0.0079 -0.0198 -0.0076 0.0409 0.0151
(15,15) 0.750 -0.0166 -0.0055 0.0208 0.0050 0.600 -0.0087 -0.0044 0.0338 0.0097
(20,20) -0.0191 -0.0022 0.0171 0.0037 -0.0152 -0.0006 0.0294 0.0073
(25,25) -0.0164 -0.0048 0.0152 0.0028 -0.0127 -0.0050 0.0267 0.0056

(1, 1.5) (5,5) -0.0437 -0.0136 0.0248 0.0069 -0.0525 -0.0173 0.0436 0.0153
(10,10) -0.0271 -0.0087 0.0131 0.0033 -0.0345 -0.0118 0.0266 0.0078
(15,15) 0.871 -0.0198 -0.0053 0.0118 0.0020 0.784 -0.0237 -0.0072 0.0225 0.0048
(20,20) -0.0191 -0.0028 0.0086 0.0014 -0.0249 -0.0035 0.0181 0.0035
(25,25) -0.0166 -0.0040 0.0074 0.0011 -0.0217 -0.0057 0.0160 0.0027

(1, 2) (5,5) -0.0367 -0.0108 0.0158 0.0033 -0.0504 -0.0159 0.0304 0.0082
(10,10) -0.0215 -0.0065 0.0071 0.0014 -0.0313 -0.0099 0.0158 0.0037
(15,15) 0.923 -0.0166 -0.0039 0.0068 0.0008 0.869 -0.0232 -0.0060 0.0142 0.0022
(20,20) -0.0149 -0.0022 0.0044 0.0006 -0.0220 -0.0032 0.0103 0.0016
(25,25) -0.0128 -0.0028 0.0036 0.0004 -0.0191 -0.0044 0.0087 0.0012

(1, 2.5) (5,5) 0.949 -0.0296 -0.0082 0.0105 0.0017 0.913 -0.0432 -0.0129 0.0212 0.0045
(10,10) -0.0165 -0.0048 0.0040 0.0007 -0.0255 -0.0077 0.0096 0.0019
(15,15) -0.0133 -0.0029 0.0042 0.0004 -0.0197 -0.0046 0.0092 0.0011
(20,20) -0.0113 -0.0016 0.0024 0.0003 -0.0176 -0.0026 0.0060 0.0008
(25,25) -0.0097 -0.0020 0.0019 0.0002 -0.0152 -0.0033 0.0049 0.0006

(1, 3) (5,5) -0.0239 -0.006 0.0072 0.0010 -0.0362 -0.0102 0.0152 0.0026
(10,10) -0.0128 -0.0036 0.0024 0.0004 -0.0204 -0.0059 0.0060 0.0010
(15,15) 0.964 -0.0106 -0.0022 0.0028 0.0002 0.938 -0.0163 -0.0036 0.0063 0.0006
(20,20) -0.0087 -0.0012 0.0014 0.0001 -0.0140 -0.0020 0.0037 0.0004
(25,25) -0.0073 -0.0015 0.0011 0.0001 -0.0119 -0.0025 0.0028 0.0003

(1.5, 1) (5,5) -0.0127 0.0011 0.0478 0.0216 0.0241 0.0186 0.0594 0.0286
(10,10) -0.0075 -0.0026 0.0334 0.0122 0.0182 0.0066 0.0434 0.0163
(15,15) 0.571 0.0006 -0.0012 0.0277 0.0079 0.366 0.0231 0.0048 0.0356 0.0106
(20,20) -0.0060 0.0016 0.0240 0.0060 0.0122 0.0067 0.0314 0.0083
(25,25) -0.0044 -0.0028 0.0216 0.0046 0.0122 0.0003 0.0280 0.0062

(2,1) (5,5) 0.0148 0.0137 0.0482 0.0219 0.0560 0.0321 0.0521 0.0218
(10,10) 0.0119 0.0044 0.0341 0.0122 0.0411 0.0150 0.0360 0.0114
(15,15) 0.429 0.0166 0.0033 0.0280 0.0078 0.214 0.0401 0.0101 0.0289 0.0071
(20,20) 0.0079 0.0051 0.0244 0.0061 0.0289 0.0102 0.0252 0.0056
(25,25) 0.0081 0.0002 0.0217 0.0046 0.0267 0.0039 0.0216 0.0041

(2.5, 1) (5,5) 0.0328 0.0209 0.0449 0.0190 0.0658 0.0335 0.0422 0.0142
(10,10) 0.0244 0.0087 0.0310 0.0102 0.0471 0.0163 0.0271 0.0067
(15,15) 0.324 0.0260 0.0060 0.0251 0.0064 0.127 0.0428 0.0107 0.0210 0.0039
(20,20) 0.0169 0.0069 0.0219 0.0050 0.0330 0.0100 0.0183 0.0031
(25,25) 0.0158 0.0016 0.0190 0.0037 0.0297 0.0048 0.0149 0.0022

(3, 1) (5,5) 0.0423 0.0236 0.0400 0.0153 0.0636 0.0294 0.0328 0.0087
(10,10) 0.0306 0.0105 0.0267 0.0079 0.0443 0.0143 0.0194 0.0037
(15,15) 0.250 0.0301 0.0070 0.0212 0.0048 0.077 0.0387 0.0092 0.0146 0.0020
(20,20) 0.0212 0.0074 0.0185 0.0038 0.0308 0.0083 0.0128 0.0016
(25,25) 0.0193 0.0025 0.0156 0.0028 0.0270 0.0043 0.0098 0.0011
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Table 2: Average confidence length and coverage probability of the simulated 95%confidence intervals ofRs,k using MLE
(s,k)=(1,3) (s,k)=(2,4)

σ1,σ2 (n,m) average coverage average coverage
confidence probability confidence probability

length length
(1,1) (5,5) 0.44710 0.9470 0.61153 0.9463

(10,10) 0.32180 0.9457 0.45127 0.9433
(15,15) 0.26696 0.9483 0.37643 0.9483
(20,20) 0.23108 0.9463 0.32790 0.9473
(25,25) 0.20659 0.9490 0.29421 0.9520

(1,1.5) (5,5) 0.29058 0.9423 0.44463 0.9440
(10,10) 0.20109 0.9440 0.31467 0.9460
(15,15) 0.16525 0.9500 0.26002 0.9500
(20,20) 0.14166 0.9500 0.22396 0.9483
(25,25) 0.12597 0.9493 0.19963 0.9483

(1,2) (5,5) 0.19354 0.9413 0.31136 0.9413
(10,10) 0.13033 0.9430 0.21336 0.9437
(15,15) 0.10637 0.9503 0.17486 0.9487
(20,20) 0.09065 0.9500 0.14953 0.9500
(25,25) 0.08038 0.9500 0.13279 0.9503

(1,2.5) (5,5) 0.13539 0.9413 0.22371 0.9413
(10,10) 0.08956 0.9417 0.14998 0.9423
(15,15) 0.07278 0.9503 0.12225 0.9503
(20,20) 0.06181 0.9510 0.10408 0.9507
(25,25) 0.05472 0.9497 0.09224 0.9497

(1,3) (5,5) 0.09907 0.9413 0.16630 0.9413
(10,10) 0.06476 0.9410 0.10985 0.9417
(15,15) 0.05248 0.9503 0.08923 0.9503
(20,20) 0.04448 0.9510 0.07576 0.9510
(25,25) 0.03934 0.9490 0.06706 0.9497

(1.5,1) (5,5) 0.55454 0.9483 0.63405 0.9457
(10,10) 0.40908 0.9440 0.47469 0.9510
(15,15) 0.34022 0.9480 0.39440 0.9467
(20,20) 0.29669 0.9457 0.34567 0.9520
(25,25) 0.26653 0.9507 0.31163 0.9510

(2,1) (5,5) 0.55611 0.9413 0.53166 0.9400
(10,10) 0.41050 0.9493 0.39039 0.9510
(15,15) 0.33943 0.9450 0.31893 0.9487
(20,20) 0.29646 0.9510 0.27889 0.9517
(25,25) 0.26668 0.9520 0.25118 0.9563

(2.5,1) (5,5) 0.51087 0.9377 0.41080 0.9307
(10,10) 0.37338 0.9493 0.29141 0.9477
(15,15) 0.30609 0.9447 0.23308 0.9473
(20,20) 0.26709 0.9500 0.20265 0.9473
(25,25) 0.24011 0.9537 0.18176 0.9570

(3,1) (5,5) 0.45178 0.9413 0.30794 0.9287
(10,10) 0.32572 0.9483 0.20993 0.9443
(15,15) 0.26471 0.9470 0.16441 0.9447
(20,20) 0.23056 0.9500 0.14204 0.9450
(25,25) 0.20699 0.9547 0.12672 0.9547

4 Conclusions

In this paper, we have studied the multicomponent stress-strength reliability for inverse Rayleigh distribution whenboth
of stress, strength variates follows the same population. Also, we have estimated asymptotic confidence interval for
multicomponent stress-strength reliability. The simulation results indicates that in order to estimate the multicomponent
stress-strength reliability for inverse Rayleigh distribution the ML method of estimation is preferable than the moment
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method of estimation. The length of the confidence interval is also decreases as the sample size increases and coverage
probability is close to the nominal value in all cases for MLE.
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