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New Explicit Solutions for Troesch’s Boundary Value Problem
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In this note, we consider a general problem

y′′ = λ(x) sinh(µ(x)y), 0 < x < 1,

y(0) = 0, y(1) = 1,

where λ(x) and µ(x) are two functions. An explicit solution is obtained.
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1 Introduction

Due to the development of systems of nonlinear ordinary differential equations, the
boundary value problem of the nonlinear Troesch equation [1–4]:

y′′ = λ sinh(λy), 0 < x < 1, (1.1)

y(0) = 0, y(1) = 1, (1.2)

where λ is a constant, has been given extensive attention in recent years numerically [5–8].
The analytic treatment was investigated in [3, 4], where the authors obtained the closed-
form solution to this boundary value problem in terms of the Jacobian elliptic function
as

y(x) =
2
λ

sinh−1

{
y′(0)

2
sc

(
λx|1− 1

4
y′2(0)

)}
,

where y′(0) is the derivative of y at 0 and given by the expression y′(0) = 2
√

1−m in
which m is the solution of the transcendental equation

sinh(λ/2)√
1−m

= sc(λ|m).
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The Jacobian elliptic function [1, 2] is defined by

sc(λ|m) =
sin φ

cos φ
,

where φ, λ and m are related through the integral

λ =
∫ φ

0

1√
1−m sin2 θ

dθ.

One of the main problem of mathematics appears when λ(x) and µ(x) are analytic
functions and are added to the original equation of Troesch.

The new problem, incorporating the above functions, is

y′′ = λ(x) sinh(µ(x)y), 0 < x < 1, (1.3)

y(0) = 0, y(1) = 1. (1.4)

Such additional functions of x arise when there is propagation in an inhomogenious
medium.

A question which arises naturally is under what conditions on the functions λ(x) and
µ(x) does the given boundary value problem (1.3)-(1.4) have an explicit solution?

2 The Explicit Solution

Let
u = µ(x)y. (2.1)

Substituting this into eq.(1.3) we get

d

dx

(
p(x)

du

dx

)
+ q(x)

du

dx
+ r(x)u =

λ(x)
2

(
eu − e−u

)
, (2.2)

where

p(x) =
1

µ(x)
, q(x) =

(
1

µ(x)

)′
and r(x) =

(
1

µ(x)

)′′
.

Multiplying both sides of (2.2) by

ξ(x) = exp
{∫

q(x)
p(x)

dx

}

and taking into account ξ
′
(x)p(x) = ξ(x)q(x), we obtain

(ξpu′)′ + ξru =
ξλ

2
(
eu − e−u

)
. (2.3)

Assume that r(x) = 0, that is, (1/µ(x))′′ = 0. Eq.(2.3) becomes

(ξpu′)′ =
ξλ

2
(
eu − e−u

)
. (2.4)
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Let
u = ln z. (2.5)

Then eq.(2.4) may be written as

(ξp)′
(

z′

z

)
+ (ξp)

(
z′′

z
−

(
z′

z

)2
)

=
ξλ

2

(
z − 1

z

)
. (2.6)

The transformation of v = z′/z into eq.(2.6) leads to

(ξp)′ v + (ξp) v′ =
ξλ

2

(
z − 1

z

)
.

Since z = z′/v, we get

(ξp)′ v + (ξp) v′ =
ξλ

2

(
z′

v
− z′

vz2

)
.

It follows that

v ((ξp)v)′ =
ξλ

2

(
z′ − z′

z2

)
. (2.7)

To integrate (2.7) we set w = ξpv and, if we choose ξ2(x)p(x)λ(x) = a > 0, where a

is a constant, that is, λ(x) = aµ3(x), because of ξ(x) = 1/µ(x) and p(x) = 1/µ(x), we
obtain

w2 = a

(
z +

1
z

)
+ b,

where b is an arbitrary constant of integration. Thus

w = ±
√

az +
a

z
+ b

and so

v =
±1
ξp

√
az +

a

z
+ b.

Hence
z′

z
=
±1
ξp

√
az +

a

z
+ b.

It follows that
dz√

az3 + bz2 + az
=

±1
ξ(x)p(x)

dx. (2.8)

Integrating both sides of eq.(2.8) we obtain

Φ(z)z (φ | m)
Ψ(z)

= ±
∫

µ2(x)dx + c, (2.9)

where

Φ(z) = iz
3
2
√

2

√
2a/z + b +

√
b2 − 4a2

b +
√

b2 − 4a2

√
2a

(b−√b2 − 4a2)z
+ 1,
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z (φ | m) is the elliptic integral of the first kind,

φ = i sinh−1

(√2
√

a/
[
b +

√
b2 − 4a2

]
√

z

)
,

m =
b +

√
b2 − 4a2

b−√b2 − 4a2

and
Ψ(z) =

√
a

b +
√

b2 − 4a2

√
z ((z2 + 1)a + bz).

The general solution of eq.(1.3) is given by y = (1/µ(x)) ln z, where the implicit solution
for z is given by (2.9).

Now, if we choose b = 2a and from (2.8) we have

2 tan−1(
√

z)√
a

= ±
∫

µ2(x)dx + c,

then

z = tan2(±
√

a

2

∫
µ2(x)dx + c1), (2.10)

where c1 = (1/2)
√

ac.

In order to find the particular solution to the given boundary value problem, (1.3)-(1.4),
we use the boundary conditions (1.4) and the substitution y = (1/µ(x)) ln z to get z(0) = 1
and z(1) = eµ1 , where µ1 = µ(1). Therefore with this choice the values of c1 become

c1 = nπ +
π

4
±
√

a

2
s(0), n = 0, 1, . . . ,

and

c1 = tan−1
(
exp

[µ1

2

])
±
√

a

2
s(1),

where s(x) =
∫

µ2(x)dx, and we get in both of theses cases the following condition

tan−1
(
exp

[µ1

2

])
= ±

√
a

2
(
s(0) + s(1)

)
+ nπ +

π

4
.

Thus we have proved the following theorem

Theorem 2.1. Let µ(x) > 0 be continuously differentiable function such that (1/µ(x))′′ =
0 and let λ(x) = aµ3(x), where a > 0 is a constant. Then the functions

y =
1

µ(x)
ln

(
tan2

(
±
√

a

2

∫
µ2(x)dx + nπ +

π

4
±
√

a

2
s(0)

))
, n = 0, 1, . . . ,

solve the problem (1.3)-(1.4) if

tan−1
(
exp

[µ1

2

])
= ±

√
a

2

(
s(0) + s(1)

)
+ nπ +

π

4
,

where µ1 = µ(1) and s(x) =
∫

µ2(x)dx.
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Remark 2.1. The solutions obtained in Theorem 2.1 for the functions λ(x) and µ(x) are
based on the choice of the arbitrary constant of integration. In principle we can choose the
other from eq.(2.8).

Below we present the general theory of the Lie symmetry analysis for (1.3)-(1.4).

3 General Theory of Lie Symmetries

The original equation of Troesch is autonomous and so possesses the Lie point symme-
try ∂x. The generalized equation does not possess any Lie point symmetries for arbitrary
functions λ(x) and µ(x). Consequently one asks the question. Is there any combination of
functions λ(x) and µ(x) for which there does exist a Lie point symmetry? If this is the case,
there exists a transformation of the independent and dependent variables which renders the
equation autonomous. The second-order equation can then be reduced to a quadrature and,
maybe under some further restrictions, evaluated along the lines already indicated in the
paper.

By definition [9, 10] a second-order differential equation L(x, y, y′, y′′) = 0 possesses
a Lie point symmetry of the form, Γ = ξ(x, y)∂x + η(x, y)∂y, such that

Γ[µ(x)y] = 0. (3.1)

The advantage of this condition is that the coefficient functions can be taken to be simply
functions of x and y. Also the action of the second extension of Γ, i.e. Γ[2] on L, is equal
to zero, i.e.

Γ[2]L(x, y, y′, y′′) =
[
ξ

∂

∂x
+ η

∂

∂y
+ η[1] ∂

∂y′
+ η[2] ∂

∂y′′

]
L(x, y, y′, y′′) = 0 (3.2)

with η[2] is given by

η[k](x, y, y′, . . . , y(k)) =
Dη(k−1)

Dx
− y(k) Dξ

Dx
, k = 1, 2, . . . ,

where η[0] = η and D
Dx is the total derivative with respect to x, i.e.

D

Dx
=

∂

∂x
+ y′

∂

∂y
+ · · ·+ y(n+1) ∂

∂y(n)
+ · · ·

In our case L(x, y, y′, y′′) is defined by

L(x, y, y′, y′′) = −y′′ + f(x, y), (3.3)

where f(x, y) = λ(x) sinh(µ(x)y), and the action of the operator Γ[2] on L(x, y, y′, y′′)
leads to a polynomial equation in y′. By equating coefficients of powers of y′ one arrives
at

ξyy = 0, (3.4)
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ηyy − 2ξyx = 0, (3.5)

2ηxy − ξxx − 3fξy = 0, (3.6)

ηxx − ξfx − ηfy + ηyf − 2ξxf = 0. (3.7)

Integrating eq.(3.4) and eq.(3.5) we get

ξ(x, y) = a(x)y + b(x), η(x, y) = a′(x)y2 + c(x)y + d(x). (3.8)

Substituting these expressions into eq.(3.6) we obtain

2c′(x) = b′′(x), a(x) = 0. (3.9)

Finally, after we substitute eq.(3.4) and eq.(3.5) into eq.(3.6)-eq.(3.7), we get

ξ(x, y) = b(x), (3.10)

η(x, y) = c(x)y (3.11)

and

c′′y −
(
(c− 2b′)λ− bλ′

)
sinh(µ(x)y)− λy (µ′b + cµ) cosh(µ(x)y) = 0. (3.12)

From eq.(3.12) and by identification we get

c′′(x) = 0, i.e., c(x) = αx + β, (3.13)

µ′(x)
µ(x)

= −c(x)
b(x)

, (3.14)

which is obtained by the first condition eq.(3.1), and

(c(x)− 2b′(x)) λ(x)− b(x)λ′(x) = 0. (3.15)

Hence
λ′(x)
λ(x)

=
c(x)
b(x)

− 2
b′(x)
b(x)

. (3.16)

The substitution of eq.(3.14) into eq.(3.16) gives

λ(x) =
Λ0

µ(x)b2(x)
, (3.17)

where Λ0 is a constant. Differentiating eq.(3.9) and taking into account eq.(3.13) we obtain

b′′′(x) = 0, i.e., b(x) = Ax2 + Bx + C, (3.18)

where A, B and C are constants.
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Integrating eq.(3.14) and with the help of eq.(3.13) we get

µ(x) = µ0 exp
{
−

∫ x

0

αs + β

b(s)
ds

}
. (3.19)

If we summarize the previous calculations, the Lie point symmetry is of the form

Γ = b(x)∂x + c(x)y∂y, (3.20)

where

µ(x) = µ0 exp
{
−

∫ x

0

αs + β

b(s)
ds

}
, (3.21)

b(x) = Ax2 + Bx + C (3.22)

and

c(x) =
1
2
b′(x) + D, (3.23)

where D is a constant.

The equations (3.21)-(3.23) give the pairs {λ(x), µ(x)} for which a Lie point symme-
try exists.

To relate the expressions for λ(x) and µ(x) obtained in this section with those obtained
previously, we consider µ0 = 1, A = α, B = 2β, C = β2/α and D = 0, i.e.

b(x) =
1
α

(αx + β)2.

Then by eq.(3.21) we obtain

µ(x) =
1

αx + β
, i.e.

( 1
µ(x)

)′′
= 0 (3.24)

and by eq.(3.17),

λ(x) =
α2Λ0

(αx + β)3
, i.e. λ(x) = aµ3(x), (3.25)

where a = α2Λ0, which are the same expressions as obtained in Theorem 2.1.
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