
J. Stat. Appl. Pro.2, No. 3, 251-260 (2013) 251

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.12785/jsap/020308

The use of Power Normalization as a New Trend in the
Order Statistics Limit Theory
H. M. Barakat∗

Department of Mathematics, Faculty of Science-Zagazig University, Zagazig, Egypt

Received: 24 Mar. 2013, Revised: 12 May. 2013, Accepted: 18 May. 2012
Published online: 1 Nov. 2013

Abstract: In the last two decades E. Pancheva and her collaborators were investigating various limit theorems for extremes using a
wider class of normalizing mapping than the linear ones to get a wider class of limit laws. This wider class of extreme limits can be
used in solving approximation problems. This review and expository paper is about this new trend in the limit theory of order statistics.
We focus on the use of the power normalizing mapping. The review is given covering the possible limit laws of extreme, central
and intermediate order statistics under power normalization. The paper also traces the domains of attraction of these possible limits.
The final section focuses on the statistical inference about the upper tailof a distribution function by using the power normalization.
Moreover, two models for generalized Pareto distribution under power normalization are given.
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1 General Introduction

Let {Xn} be a sequence of i.i.d random variables (rv’s) with common distribution function (df)F ∈ F , whereF is some
class of df’s. LetYn be a measurable function ofX1,X2, ...,Xn (e.g.,Yn = Xn:n = max{X1,X2, ...,Xn}). We say that the df
of Yn weakly converges (writtenw−→n ) to a nondegenerate limitΦ if there exist normalizing constantsan > 0 andbn such
that

P(Yn ≤ Gn(x)) = P(Yn ≤ anx+bn)
w−→n Φ(x) ∈ F

′, (1)

on all continuity points ofΦ , whereF ′ ⊆ F . Naturally, one may have some questions concerning the limitrelation (1).
Question 1:Is the use of the normalizing constants in equation (1) is necessarily ?
The answer is yes, otherwise we get a degenerate limit, (or even no limit df), e.g.P(Xn:n ≤ x) = Fn(x)→ 0, if x < r(F) =
sup{x : F(x)< 1} andP(Xn:n ≤ x) = Fn(x)→ 1, if x ≥ r(F).
Question 2:Do the change of the normalizing constants can lead to a big change in the limitΦ ?
The following essential theorem gives the answer, which is no.
Theorem 1.1 (The classical Khinchin’s type theorem).Let Fn(x) be a sequence of df’s. Furthermore, let

Fn(Gn(x))
w−→n F(x), is a nondegenerate df,

with Gn(x) = anx+bn,an > 0. Then, with G∗
n(x) = cnx+dn, cn > 0, we have

Fn(G
∗
n(x))

w−→n F∗(x), F∗ is a nondegenerate df,

if and only if G−1
n (G∗

n(x)) = G−1
n oG∗

n(x) −→ g(x), ∀x, whereg(x) = ax+ b, cn
an

−→ a, dn−bn
an

−→ b, asn → ∞, and
F∗(x) = F(g(x)).
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Theorem 1.1 leads to the following definition.
Definition 1.1. We say that the df’sF(x) andF∗(x) are of the same type, under linear transformation, if there are real
numbersA > 0 and B such thatF∗(x) = F(Ax+B).

Clearly the relation betweenF and F∗ in definition 1.1 is symmetric, reflexive and transitive. Hence it gives rise to
equivalence classes of df’s. Therefore, Khinchin’s type theorem shows that the change of the normalizing constants can
not cause any change in the nondegenerate type ofΦ(x). This fact convinces us that the probability limit theory basically
deals with the types of df’s rather than the df’s themselves.

Now, if F ′ ⊂ F , the limit relation (1) gives a sufficiently simple approximation to the df ofYn. Namely,

P(Yn ≤ x)∼ Φ(G−1
n (x)) = Φ

(x−bn

an

)

.

In this case we callΦ(G−1
n (x)) = Φ( x−bn

an
) the asymptotic df ofYn or the statistical model of the df ofYn. For example, in

view of extreme value theorem, due to Gnedenko [16], we haveF ′ = {Φ1(
x−b

a ),Φ2(
x−b

a ),Φ3(
x−b

a )}, where

Φ1(x) =

{

0, x ≤ 0,
exp(−x−α), x > 0,

Φ2(x) =

{

exp(−(−x)α), x ≤ 0,
1, x > 0,

Φ3(x) = exp(−e−x), ∀ x. (2)

For statistical purposes, the above three limit laws can be incorporated into the von Mises type representation

Hγ(x) = exp(−(1+ γx)
−1
γ ), whereγ is a given real number. Whenγ = 0, Hγ(x) is defined as limγ→0 Hγ(x). A part

from changes of origin and the unit on the x-axis the dfHγ(x) yields the three lawsΦ1, Φ2 and Φ3, according as
γ > 0,γ < 0 or γ = 0 (γ → 0), respectively.Question 3:Can we use in the relation (1) nonlinear normalization ?
The answer is yes, but under some conditions. Namely, Pancheva ([22],[23]) showed that the normalizing mappingGn(x)
may be used in equation (1) if it is continuous strictly increasing and max-automorphism mapping (the
max-automorphisms preserve the max-operation), which forms a group G w.r.t the composition. Choosing mappings
from G , for normalization in the limit theorems, we are imposed to change the notion of type(F) for a nondegenerate df
F. We say a dfF1 belongs to type(F2) if ∃g ∈ G such that F1 = F2(g) = F2 ◦ g. The convergence to type Khinchin’s
theorem is the main tool for proving limit theorems. In this case, a convergence to type takes place if both convergences
Fn

w−→n F1 and Fn ◦ Gn
w−→n F2, where Gn ∈ G , imply F2 ∈ type(F1). Pancheva, et al. [25] showed that, the

compactness of the normalizing sequenceGn(x) is necessary and sufficient for a convergence to type, i.e., the
convergence to type Khinchin’s theorem is applicable. Pancheva, et al. [25] showed that this theorem is applicable for the
linear normalization, as well as the power normalizationGn(x) = bn|x|ansign(x),an,bn > 0, with

G−1
n (x) = | x

bn
|

1
an sign(x). The convergence to type Khinchin’s theorem under power normalization takes the form (see

Barakat and Nigm [6]).
Theorem 1.2 (Khinchin’s type theorem under power normalization). Let

Fn(Gn(x))
w−→n F(x), is a nondegenerate df,

with Gn(x) = bn|x|ansign(x). Then, with G∗
n(x) = βn|x|αnsign(x), we have

Fn(G
∗
n(x))

w−→n F∗(x), F∗ is a nondegenerate df,

if and only if G−1
n oG∗

n(x) −→ g(x), ∀x, where g(x) = B|x|Asign(x), αn
an

−→ A,
(

βn
bn

)
1
α −→ B, as n → ∞, and

F∗(x) = F(g(x)) = F(B|x|Asign(x)).
Clearly, the employment of a strictly monotone continuous transformation not cause any wastage of information,

which is contained in the data under consideration (e.g., the sufficiency property is preserved under one to one
transformation). Nevertheless, we may lose some flexibility when using the nonlinear normalization. For example under
linear normalization all negative data can be transformed to positive numbers and vise versa, but this can not be done
under the power normalization. Although, no one can claim that the employment of nonlinear normalization in general is
preferable, but as Pancheva [23] showed in some cases of practical interest it is not only better to use nonlinear
transformation, but we have to use it. For example, by using relatively non difficult monotone mappings, in certain cases,
we can achieve a better rate of convergence (see Barakat et al. [10]). Another reason for using nonlinear normalization is
to get a wider class of limit laws, which can be used in solvingapproximation problems.
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2 The Possible Limit Laws of Extreme Order Statistics Under PowerNormalization

Let X1,X2, ...,Xn be independent rv’s having a common left continuous dfF, and denote byX1:n ≤ X2:n ≤ ... ≤ Xn:n the
corresponding order statistics (os’s). Pancheva [21] considered the power normalization and derived all the possible limit
df’s of Xn:n subjected to this normalization. These limit df’s are usually called the power max stable df’s (p−max-stable
df’s) and are given byHi;β (x) = exp[−ui;β (x)], i = 1,2, . . . ,6, β > 0, where

u1;β (x) =

{

∞, x ≤ 1,
(logx)−β , x > 1;

u2;β (x) =







∞, x ≤ 0,
(− logx)β , 0< x ≤ 1,
0, x > 1;

u3;β (x) =







∞, x ≤−1,
(− log(−x))−β , −1< x ≤ 0,
0, x > 0;

u4;β (x) =

{

(log(−x))β , x ≤−1,
0, x >−1;

u5(x) =

{

∞, x ≤ 0,
1
x , x > 0;

u6(x) =

{

| x |, x ≤ 0,
0, x > 0, (3)

and we adopt the notationui;β (x) = ui(x), i = 5,6. The corresponding min-stable distribution can be easily written as

Li;β = 1−Hi;β (−x) = 1−exp
(

−u∗i;β (x)
)

= 1−exp
(

−ui;β (−x)
)

, i = 1,2, . . . ,6, β > 0.

Mohan and Ravi [19] showed that the p-max-stable df’s (3) attract more than linear stable df’s (2), see also
Subramanya [32]. Therefore, using the power normalization, we get a wider class of limit df’s which can be used in
solving approximation problems. In this way we can essentially extend the field of applications of the extreme value
model. A unified approach to the results of Mohan and Ravi [19] and Subramanya [32] has been obtained by Christoph
and Falk [15]. Barakat and Nigm [6] extended the result of Pancheva [21] to the extreme os’sXr:n andXn−r+1:n, where
the rankr is fixed w.r.tn.
Theorem 2.1. For suitable normalizing constantsan,bn > 0, the df of the normalized upper extreme os

G−1
n (Xn−r+1:n) = |Xn−r+1:n

bn
|

1
an sign(Xn−r+1:n) converges weakly to a nondegenerate dfΨr(x), if and only if

n(1−F(Gn(x)) = n
(

1−F(bn|x|ansign(x))
)

−→ ui;β (x), asn → ∞.

Moreover,Ψr(x) = Γr(ui;β (x)), whereΓr(.) is the incomplete gamma function.
As in the linear normalization case, Nasry-Roudsari [20] has summarized the types (3) by the following von Mises

type representations

H1;γ(x;a,b) = exp
[

−(1+ γ logaxb)−
1
γ
]

, x > 0, 1+ γ logaxb > 0 (4)

and
H2;γ(x;a,b) = exp

[

−(1− γ loga(−x)b)−
1
γ
]

, x > 0, 1− γ loga(−x)b > 0. (5)

Remark 2.1.The result of Christoph and Falk [15] reveals that the upper tail behaviour ofF, might determine whether
F belongs to the domain of attraction ofH1;γ(x;a,b) or of H2;γ(x;a,b). In the first case, the right end-pointx◦ = sup{x :
F(x) < 1} has to be positive, while for the second case necessarilyx◦ ≤ 0. It is worth mentioning that (4) and (5) can
be incorporated into the unified formula by using the result of Christoph and Falk [15] and by adopting the notation
S −(x) =−1, if x ≤ 0 andS −(x) = 1, if x > 0.

Hγ(x;a,b) = exp
[

−(1+S
−(x◦)γ loga|x|b)−

1
γ
]

, 1+S
−(x◦)γ loga|x|b > 0.

Barakat and Nigm [6] studied the weak convergence of extremes under power normalization assuming that the sample
size is a rv. The continuation of the restricted convergenceof the power normalized extremes on the half-line of real line
to the whole line is proved in Barakat and Nigm [7]. Barakat et al. [9] proved that the restricted convergence of the power
normalized extremes on an arbitrary nondegenerate interval implies the weak convergence. Recently, by using the theory
of the second-order regular variation, Barakat et al. [10] studied the rates of convergence of the extremes under the power
normalization to the each of thep−max-stable laws (3). Moreover, a comparison between the rates of convergence under
linear normalization and the power normalization is done. Barakat and Nigm [8] derived a symmetric nonparametric
measure of asymptotic dependence between the os’s under power normalization. This nonparametric measure is based on
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the notion of the associated copula for os’s and someL1−distances. More recently, Chen, et al [13] studied the rates of
convergence of extremes for a general error distribution type under power normalization. They have proved that, ifF is of
general error distribution type, then there exist two constantsC1,C2 (depending on the parameters ofF) and normalizing
constantsan,bn > 0 (they have found these normalizing constants), for whichC1

logn ≤ sup
x>0

|Fn(bn|x|ansign(x))−H5;β (x)| ≤
C2

logn and sup
x<0

|Fn(−bn(−x)an)| ≤ 2−n. An interesting result has been proved by Ravi and Praveena [28] concerning the

max domains of attraction under power normalization that every df in the max domain of attraction of the Frechéet
Φ1:1(x) (H5;β (x)) law, as well as WeibullΦ2:1(x) (H6;β (x)) law, under power normalization is tail equivalent to some df
satisfying the von-Mises type condition. More recently, Peng et al. [26] discussed two aspects of convergence of extremes
under power normalization: convergence of moments and convergence of densities. A comprehensive survey of all the
developments concerning the extremes under power normalization can be found in the recent book thesis by Barakat, et
al [11].

3 The Possible Limit Laws of Central Order Statistics under Power Normalization

We consider the central osXrn :n with variable rank sequences{rn}, which satisfy the condition
√

n( rn
n −λ )→ t ∈ ℜ, as

n → ∞, and λ ∈ (0,1). We begin with the normalλ−attraction case, in whicht = 0 (the results whent 6= 0 follow as
consequences). In the normalλ−attraction case, we have (c.f. Smirnov [30], and Leadbetter et al. [18], Pages 46-47)

Frn :n(Gn(x)) = IF(Gn(x))(rn ,n− rn +1) w−→n Ψ(x), (6)

whereΨ is a nondegenerate limit df, if and only if
√

n

(

F(Gn(x))−λ√
λ (1−λ )

)

→N −1(Ψ(x)), asn → ∞, where N is the standard

normal distribution andIu(a,b) =
(a+b−1)!

(a−1)!(b−1)!

∫ u
0 ta−1(1− t)b−1dt is the incomplete beta function. Moreover, we have the

following result.
Lemma 3.1 (Barakat and Omar [3]). Let the relation (6) be satisfied with a nondegenerate limit df Ψ . Then, for every
sequence of integers{mn} such thatmn < n, mn → ∞ and mn

n → θ ∈ (0,1), we have

√
θ N

−1((Ψ(x))) = N
−1(Ψ(gθ (x))), (7)

where gθ (x) = limn→∞ G−1
mn

◦Gn(x) exists and satisfies the functional equation

gθϕ (x) = gθ ◦gϕ (x), with θ ,ϕ ∈ (0,1). (8)

If for eachGn(x) ∈ G , then Pancheva ([21], [22], [23]) showed that the functiongθ (x), considered as a function ofθ ,
is solvable (i.e., each equation of the formgθ (x) = t for given x andt has a unique solutionθ = g(t,x). Moreover, the
general solution of the functional equation (8) is given by (cf., Sreehari [31] and Barakat and omar [3])

gθ (x) = h−1(h(x)−µ logθ), µ > 0,θ ∈ (0,1),x ∈ ℜ, (8)1

gθ (x) = ℓ−1(ℓ(x)+ µ́ logθ), µ́ > 0,θ ∈ (0,1),x ∈ ℜ, (8)2

gθ (x) = x, ∀θ ∈ (0,1), (8)3

whereh(x) andℓ(x) are arbitrary continuous reversible functions in the sensethath−1(y) andℓ−1(y) are unique fory ∈ ℜ
(see Pancheva [21] and Sreehari [31]).

Smirnov [30] solved the functional equation (7), whenGn(x) = anx+ bn, an > 0 andbn ∈ ℜ, which provides only
four nondegenerate possible limits for the df ofXrn :n (each type of these limits has a domain of normalλ -attraction, i.e.,√

n( rn
n −λ )→ 0, asn → ∞). These limit types are:

Ψ (0)
ℓ (x) =







0, x ≤−1,
1
2, −1< x ≤ 1,
1, x > 1;

Ψ (1)
ℓ (x) =

{

0, x ≤ 0,
N (c1xα), x > 0;

Ψ (2)
ℓ (x) =

{

1, x > 0,
N (−c2 | x |α), x ≤ 0; Ψ (3)

ℓ (x) =

{

N (−c2 | x |α), x ≤ 0,
N (c1xα), x > 0.
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Barakat and Omar [3] introduced another functional equation, which characterizes the possible nondegenerate limit
df’s of Xrn :n under transformationsGn(x) ∈ G . Namely, let the relation (6) be satisfied with a nondegenerate dfΨ and the
transformationGn(x). Then, asn → ∞, clearly we have

mn

(

F(Gn(x))−λ
√

λ (1−λ )

)2

→ (N −1◦Ψ(gθ (x)))
2,

(n−mn)

(

F(Gn(x))−λ
√

λ (1−λ )

)2

→
(

N
−1◦Ψ(g1−θ (x))

)2

and

n

(

F(Gn(x))−λ
√

λ (1−λ )

)2

→
(

N
−1◦Ψ(x)

)2
.

Therefore, by adding the first two above relations and comparing the resulting sum with the third one, we get

(N −1◦Ψ(gθ (x)))
2+(N −1◦Ψ(g1−θ (x)))

2 = (N −1◦Ψ(x))2.

By puttingJ(x) = N −1◦Ψ(x), we get the functional equation

J2(gθ (x))+ J2(g1−θ (x)) = J2(x).

Since both the functionsN andΨ are nondecreasing inx, then J(x) is also nondecreasing inx. Moreover, if ρ =
sup{x : Ψ(x)< 1} andρ = inf {x : Ψ(x)> 0} we haveJ(ρ) = ∞ andJ(ρ) = −∞. Barakat and Omar [3] obtained the
following two general results.
Theorem 3.1.Let

√
n( rn

n − λ ) → 0 andGn(x) be any strictly increasing continuous transformation for which (6) is
satisfied. Then the possible nondegenerate types ofFrn :n(Gn(x)) are

Ψ (0)(x) = N (J0(x)) =







0, x ≤ ρ ,
1
2, ρ < x ≤ ρ,
1, x > ρ ,

where −∞ < ρ < ρ < ∞, gθ (ρ) = ρ , gθ (ρ) = ρ ;

Ψ (1)(x) = N (J1(x)) =







0, x ≤ x01,

Φ(c1e
ℓ(x)
2µ́ ), x01 < x ≤ ρ ,

1, x > ρ,

wheregθ (x01) = x01 >−∞ (ℓ(x01) =−∞) and gθ (x)< x, ∀x > x01. Moreover, gθ (ρ) = ρ ≤ ∞ (ℓ(ρ) = ∞);

Ψ (2)(x) = N (J2(x)) =











0, x ≤ ρ ,

1−N (c2e−
h(x)
2µ ), ρ < x ≤ x02,

1, x > x02,

where gθ (x02) = x02 < ∞, (h(x02) = ∞) and gθ (x) > x, ∀x < x02. Moreover, gθ (ρ) = ρ ≥ −∞ (h(ρ) = −∞), and
finally,

Ψ (3)(x) = N (J3(x)) =



















0, x ≤ ρ ,

1−N (c2e−
h(x)
2µ ), ρ < x ≤ x03,

N (c1e
ℓ(x)
2µ́ ), x03 < x ≤ ρ,

1, x > ρ ,

where gθ (x03) = x03, gθ (ρ) = ρ, gθ (ρ) = ρ and −∞ ≤ ρ < x03 < ρ ≤ ∞. Moreover, gθ (x) > x, ∀x < x03 and
gθ (x)< x, ∀ x > x03.
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Theorem 3.2 (Barakat and Omar [3]). Let r⋆
n
→ ∞,

√
n(

r⋆n
n − λ ) → t ∈ ℜ and Gn(x) ∈ G be any strictly monotone

continuous transformation for which (6) is satisfied. Then the possible nondegenerate types ofF
r⋆n :n

(Gn(x)) are

Ψ
(i)
(x; t) = N

(

N
−1(Ψ

(i)
(x))− t

√

λ (1−λ )

)

= N

(

Ji(x)−
t

√

λ (1−λ )

)

, i = 0,1,2,3.

The following theorem due to Barakat and Omar [3] shows an interesting fact that the possible nondegenerateweak limits
of any central os with regular rank under the linear and powernormalization are the same.
Theorem 3.3.Let

√
n( rn

n − λ ) → 0 andGn(x) be any power transformation, i.e.,Gn(x) = bn | x |an sign(x),an,bn > 0.

Then the possible nondegenerate types ofFrn :n(Gn(x)) areΨ (0i)
p (x), i = 1, ...,6;

Ψ (1)
p (x) =

{

0, x ≤ 0,
N (x), x > 0; Ψ (2)

p (x) =

{

1, x > 0,
N (− | x |), x ≤ 0;

and

Ψ (3)
p (x) =

{

N (−c2 | x |), x ≤ 0,
N (c1x), x > 0,

whereΨ (01)
p (x), ...,Ψ (06)

p (x) are all defined byΨ (0)(x) (Ψ (0)(x) is defined in Theorem 3.1), withρ < 0 < ρ, | ρ |6= ρ ;
0< ρ < ρ ; ρ < ρ < 0; | ρ |=| ρ |; 0= ρ < ρ and 0= ρ > ρ, respectively.

The typeΨ 3(x) represents a family of two types forc1 6= c2 andc1 = c2 = 1.
Remark 3.1.Theorem 3.3 states that the possible nondegenerate limit types for the central os’s under linear and power
normalization are the same. Although this fact is interesting, however it should not surprise us. This is because in the
extremes case where the lower and upper extremes are sharplydistinguished, Christoph and Falk [15] showed that the
upper as well as the lower tail behaviour of the original dfF might determine whether the dfF belongs to one or another of
the six possible power limit types. However, on one hand, neither the lower nor the upper tail behaviour has any influence
on the weak convergence of the central os’s. On the other hand, there are no sharp distinction between the lower and the
upper central os’s.

Theorem 3.3 incites us to make comparisons between the domains of attraction of each of these possible limit types
under linear and power normalization.
Theorem 3.4 (Barakat and Omar [3].) Under linear normalization, let the dfF belong to the domain of normal

λ−attraction of the limit typeΨ (3)
ℓ (x), such thatF−1(λ ) 6= 0. Then, the domains of normalλ−attraction of the limit

typesΨ (1)
p (x),Ψ (2)

p (x) andΨ (3)
p (x), under the power normalization, do not contain the dfF.

Remark 3.2.Theorem 3.4 shows that if any dfF belongs to the domain of normalλ−attraction of the standard normal
df under linear normalization, whereF−1(λ ) 6= 0 (as happens in many cases, e.g., whenF is absolutely continuous with
finite positive probability density function atF−1(λ )), then the domains of normalλ−attraction of the three limit types

Ψ (i)
p (x), i = 1,2,3, do not contain the dfF.

Remark 3.3. Although, Theorem 3.4 gives some comparisons between the domains of attraction of the possible limit
types under linear and power normalization, but determining the domains of attraction of the four limit laws

Ψ (i)
p (x), i = 1,2,3,4, is still open problem till now. Moreover, since the power andlinear normalizations are leading to

the same families of limit df’s, the question of existence ofa nonlinear normalization with a larger domain of attraction
is still open for central os’s.

4 The class of weak limits of intermediate Order Statistics under power normalization

We call Xkn:n and Xrn :n the upper and lower intermediate os’s, respectively, ifkn = n− rn +1, rn
n → 0, as n → ∞. A

sequence{rn} is said to satisfy Chibisov’s condition, if

lim
n→∞

(

√

rn+zn
−√

rn

)

=
αlν

2
, l > 0, (9)

for any sequence{zn} of integer-values, where zn

n1− α
2
→ ν , asn → ∞ (0< α < 1 andν is any arbitrary real number).

As Chibisov [14] himself noted, the condition (9) implies thatrn
nα → ℓ2, as n → ∞. It is worth to mention that the

latter condition implies Chibisov’s condition (see, Barakat and Omar [5]), which means that the class of intermediate
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rank sequences which satisfy the Chibisov condition is a very wide class. Chibisov [14] showed that, whenever{rn}
satisfies (9), the possible nondegenerate types of the limiting distribution of the lower intermediate termXrn :n, under
linear normalization are

G1,β (x) = N (v1(x;β )) = N (β logx), x > 0;

G2,β (x) = N (v2(x;β )) = N (−β log|x|), x ≤ 0;

G3(x) = N (v3(x)) = N (x). (10)

The corresponding possible nondegenerate limiting distributions for the upper intermediate termXkn:n are
ϒi;β (x) = 1−N (vi(−x,β )), i = 1,2,3 (note thatϒ3;β (x) = 1−N (v3(−x))).
Remark 4.1. Note thatϒ1;β = G2;β , ϒ2;β = G1;β and ϒ3;β = G3;β . Therefore, we have

{

Gi;β , i = 1,2,3}≡
{

ϒi;β ,
i = 1,2,3} .

Barakat and Omar [5] showed that the possible nondegenerate types of the limit df’s H̃(x) andL̃(x) of the df’s of the
upper and lower intermediate os’sXkn:n andXrn :n, respectively, under the power normalization areN (− logui;β (x)) = 1−
N (logui;β (x)), i = 1,2, ...,6, andN (logui;β (−x)), i = 1,2, ...,6, respectively, where the functionsui;β (x), i = 1,2, ...,6,
are defined in (3), i.e.,

H̃1;β (x) = 1−N (β log((log | x |))), x ≤−1;

H̃2;β (x) = N (β log(− log | x |)), −1< x ≤ 0;

H̃3;β (x) = 1−N (β log(− logx)), 0< x ≤ 1;

H̃4;β (x) = N (β log(logx)), x > 1;

H̃5;β (x) = H̃5(x) = N (− log | x |), x ≤ 0;

H̃6;β (x) = H̃6(x) = N (logx), x > 0.

The corresponding types of the lower intermediate os are

L̃1,β (x) = N (β log logx), x > 1;

L̃2,β (x) = N (−β log(− logx)), 0< x ≤ 1;

L̃3,β (x) = N (β log(− log|x|)), −1< x ≤ 0;

L̃4,β (x) = N (−β log log|x|), x ≤−1;

L̃5;β (x) = L̃5(x) = N (logx), x > 0;

L̃6;β (x) = L̃6(x) = N (− log|x|), x ≤ 0. (11)

Remark 4.2. Although, in general, we havẽHi;β 6= L̃i;β , i = 1,2, ...,6, but a closer look at the two classes of possible
limit laws of lower and upper intermediate os’s under power normalization shows that they coincide, i.e.,
{

H̃i;β , i = 1,2, ...,6,
}

≡
{

L̃i;β , i = 1,2, ...,6,
}

.
Remark 4.3. It is worth to mention that the possible limiting types of theintermediate os’s under linear normalization,
which are defined in (10), coincide with those of suitably linearly normalized record value (see Barakat [2]). This
resemblance is due to the fact that both classes are governedby the same functional equation (see Barakat [2]).
Therefore, it is not accidentally to find that the possible limiting power types (11) are coincide with the possible limiting
types of record value under power normalization, which are obtained by Grigelionis [17].

Barakat and Omar [5] found the domains of attraction of all possible limit laws of the df of the lower intermediate os
Xrn :n in the following theorem. Throughout this theorem, we writeF ∈ Dℓ(G) andF ∈ Dp(L) to indicate thatF belongs
to the domain of attraction of the lawG, under linear normalizationCn(x) = anx+bn, andL, under power normalization
Tn(x) = αn | x |βn sign(x), respectively. Also, we writer(F) = sup{x : F(x)< 1} andℓ(F) = inf{x : F(x)> 0} to denote
the right and left end-points for the dfF, respectively. Moreover, for any nondecreasing functionF defineF−(y) = inf{x :
F(x)> y}.
Theorem 4.1.For any univariate continuous dfF, we have the following implications:

1.If 0< ℓ(F)< ∞, thenF ∈ Dp(L̃1,β )⇐⇒ G ∈ Dℓ(G1,β ), where

G(y) =

{

0, y ≤ logℓ(F),
F(ey), y > logℓ(F).
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2.If ℓ(F) = 0, thenF ∈ Dp(L̃2,β ) ⇐⇒ G(y) = F(ey) ∈ Dℓ(G2,β ).

3.If −∞ < ℓ(F) < 0, thenF ∈ Dp(L̃3,β ) ⇐⇒ G(y) = F(−e−y)
F(0) ∈ Dℓ(G1,β ∗), with rank sequencek∗ = [ k

F(0) ] andβ ∗ =
β√
F(0)

, where[θ ] denotes the integer part ofθ .

4.If ℓ(F) =−∞, thenF ∈ Dp(L̃4,β )⇐⇒ G ∈ Dℓ(G2,β ), where

G(y) =

{

F(−e−y), y ≤ 0,
1, y > 0.

5.(i) If ℓ(F) = 0, thenF ∈ Dp(L̃5)⇐⇒ F(ey) ∈ Dℓ(G3).
(ii) If ℓ(F)> 0, thenF ∈ Dp(L̃5) ⇐⇒ G(y) ∈ Dℓ(G3), where

G(y) =

{

0, y ≤ 0,
F(ey), y > 0.

6.If ℓ(F)< 0, thenF ∈ Dp(L̃6)⇐⇒ G(y) = F(−e−y)
F(0) ∈ Dℓ(G3), with rank sequencek∗ = [ k

F(0) ].

5 Statistical Inference under Power Normalization

In the literature, two classes of extreme value distributions are used in extreme value modeling. The first class, which
is known as the generalized extreme value distribution under linear normalization (GEVL)Hγ , encompasses the three
standard extreme value distributions (EVD), defined in (2):Fréchet, Weibull and Gumbel. The second class, which is
called the generalized Pareto distribution (GPDL) under linear normalization introduced by Pickand [27], nests the Pareto,
uniform and exponential distributions.

There are two main methods for modeling the extreme values, the Block Maxima (BM) method and the Peak Over
Thresholds (POT) method.

In the BM method it is supposed to have observed maxima valuesof some quantities over a number of blocks. A
typical example of the block is a year or a day and the observedquantities may be some environmental quantity such as
the air pollutant. In this method, the block maxima is modeled by EVD. The choice of EVD is motivated by the facts:
(i) The EVD are the only ones which can appear as the limit of linearly normalized maxima. (ii) They are the only ones
which are “max-stable”, i.e., any change of the block size only leads to a change of location and scale parameters in the
distribution.

In the POT method it is supposed to have all observed values, which are larger than some suitable threshold. These
values are then assumed to follow the Generalized Pareto Family of Distributions (GPDL). The choice of GPDL is
motivated by two characterizations: (i) The distribution of scale normalized exceedance over threshold asymptotically
converges to a limit belonging to GPDL if and only if the distribution of BM converges (as the block length tends to
infinity) to one of EVD. (ii) The distributions belonging to the GPDL are the only “stable”ones, i.e., the only ones for
which, the conditional distribution of an exceedance is scale transformation of the original distribution.

Each of the families (4) and (5) is called generalized extreme value distribution under power normalization (GEVP).
Clearly, both GEVP (4) and (5) satisfy thep−max−stable property, i.e., for everyn there exist power normalizing
constantsan,bn > 0, for which we haveHn

t;γ(bn|x|ansign(x)) = Ht;γ(x), t = 1,2. Therefore, the two parametric models
(4) and (5) enable us to apply the BM method under power normalization. For these models, the parametric approach to
modeling extremes is based on the assumption that the data inhand form an i.i.d sample from an exact GEVP(γ ,a,b) df
in (4) or (5).

The main aim of this section is to develop the mathematical modeling of extremes under power normalization. The
section material is quoted from Barakat [4] and Barakat, et al. [12], where the proofs of Theorems 5.1-5.4 can be found
in Barakat et al. [12]. Firstly, we propose an estimator for the shape parameterγ within the model GEVP(γ ,a,b). This
estimator corresponds to a Dubey estimate in the GEVL model (cf. Reiss and Thomas [29], Page 111). Secondly, we
derive the generalized Pareto distribution under power normalization (GPDP) for each of the models (4) and (5). Finally,
we deal with estimators for the shape parameter within the derived GPDP.

Let x1:n ≤ x2:n ≤ ... ≤ xn:n be a given data of maximums of the given blocks. Clearly, in view of Remark 2.1, the
modeling under power normalization can be applied only if all these maximums have the same sign. More specifically,
if 0 < x1:n ≤ x2:n ≤ ... ≤ xn:n, we select the model (4) and ifx1:n ≤ x2:n ≤ ... ≤ xn:n < 0, we select the model (5). The
estimate of the shape parameterγ corresponding to a Dubey estimate in the GEVL model is linearcombinations of ratios
of spacing

Rn =
log | xnq2:n | − log | xnq1:n |
log | xnq1:n | − log | xnq0:n |

,
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whereq0 < q1 < q2 andqi =
i
n . Note that this statistic is invariant under power transformation. We have the following

theorem.
Theorem 5.1 (Statistical inference using BM method). Let q0,q1,q2 satisfy the equation
(− logq1)

2 = (− logq2)(− logq0). Then,

γ̂ =
2logRn

log(logq0/ logq2)
.

On the other hand, ifq0 = q,q1 = qa,q2 = qa2
, for some 0< q,a < 1, we get the estimate familŷγ = logRn

− loga . By taking

a = 1
2, we get

γ̂ =
logRn

log2
.

Theorem 5.2 (GPDP).Let F [u](x) = P(X ≤ x|x > u).
(a) Let the df of the power normalized maximum os weakly converges toH1;γ(x;a,b). Then there existsα(u) > 0 such
that

F [u](uxα(u)) w−→Q1;γ(x; b̄), asu ↑ r(F)> 0, (12)

whereQ1;γ(x; b̄) = 1+ logH1;γ(x;1, b̄), b̄ = b
c andc = 1+ γ loga.

(b) Let the df of the power normalized maximum os weakly converges toH2;γ(x;a,b). Then there existsα(u) > 0 such
that

F [u](u|x|α(u)) w−→Q2;γ(x;b), asu ↑ r(F)≤ 0, (13)

whereQ2;γ(x;b) = 1+ logH2;γ(x;1,b), b = b
c andc = 1− γ loga.

The following elementary theorem shows that the GPDP’s (12)and (13) satisfy the peak over threshold stability
property (POT).
Theorem 5.3 (The peak over threshold stability property).The left truncated GPDP yields again a GPDP. This means

that, for every 0< k < x, we haveQ[k]
1;γ(x;σ) = Q1;γ(

x
k ; σ̄), where σ̄ = σ

c and c = 1+ γ logk. Moreover, for every

−1< k < x < 0, we haveQ[k]
2;γ(x;σ) = Q2;γ(

x
k ; σ̄), where σ̄ = σ

c′ andc′ = 1− γ log(−k).
In the following theorem we follow Pickand’s method [27] to get estimates for the shape and the scale parameters,

within (12) and (13).
Theorem 5.4 (Estimation of the shape and the scale parameters within GPDP model).Let n be the sample size and
let m = m(n) be an integer much smaller thann. Let {Yi, i = 1,2, ...,n} be the descending os’s, i.e.,Yi = Xn−i+1:n is the
ith largest observation in the sample. We treat the valuesYi

Y4m
, i = 1,2, ...,4m−1, as though they were the descending os’s

from a sample of size 4m−1 from a population with a df of the formQ1;γ(x; σ̄) for someσ̄ ,γ ,0< σ̄ < ∞,−∞ < γ < ∞.
The parametersγ andσ̄ can be estimated by

γ̂ = (log2)−1 log
logYm − logY2m

logY2m − logY4m

and

ˆ̄σ =
2γ̂ −1

γ̂(logY2m − logY4m)
.

Moreover, the estimates of the shape and the scale parameters γ andσ in the GPDP (5) are given by

γ̂ = (log2)−1 log
log | Ym | − log | Y2m |
log | Y2m | − log | Y4m |

and

σ̂ =
1−2γ̂

γ̂(log | Y2m | − log | Y4m |) .

The valuem = m(n) should satisfy the two conditions limn→∞ m = ∞ and limn→∞
m
n = 0.
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