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1 General Introduction

Let {Xy} be a sequence of i.i.d random variables (rv’s) with commatrithution function (dfjF € %, where.# is some
class of df’s. LetY, be a measurable function ¥§,Xz,..., Xy (€.9.,Yn = Xnn = max{Xy, Xy, ..., X1 }). We say that the df
of Y,, weakly converges (Written%) to a nondegenerate lim@ if there exist normalizing constandg > 0 andb,, such
that

P(Ya < Gn(x)) = P(Yn < anX+by) 5 @(x) € 7, (1)

on all continuity points of®, where.#’ C .%. Naturally, one may have some questions concerning theetation (1).
Question 1:1s the use of the normalizing constants in equation (1) iessarily ?

The answer is yes, otherwise we get a degenerate limit, or ew limit df), e.gP(Xpn <X) =F"(x) = 0, if x<r(F) =
sup{x: F(x) < 1} andP(Xpn < X) = F"(x) = 1, if x> r(F).

Question 2: Do the change of the normalizing constants can lead to a lasiggshin the limit® ?

The following essential theorem gives the answer, whictois n

Theorem 1.1 (The classical Khinchin's type theorem)Let F,(x) be a sequence of df’s. Furthermore, let

F(Gn(x)) —» F(X), is a nondegenerate df
with Gp(X) = anx+ bn, &, > 0. Then, with G;;(x) = cyx+dn, ¢, > 0, we have
Fa(Gh(X)) - F*(x), F* is a nondegenerate df

if and only if G;1(Gy(x)) = G;10G;(x) — g(x), VX, whereg(x) = ax+b, & — a, 9B — b, asn — e, and
F*(x) = F(9(x)).
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Theorem 1.1 leads to the following definition.
Definition 1.1. We say that the df'$-(x) andF*(x) are of the same type, under linear transformation, if theeereal
numbersA > 0 and B such thafF*(x) = F(Ax+ B).

Clearly the relation betweeRr and F* in definition 1.1 is symmetric, reflexive and transitive. Iderit gives rise to
equivalence classes of df's. Therefore, Khinchin’s typeotiem shows that the change of the normalizing constants can
not cause any change in the nondegenerate ty@g»f. This fact convinces us that the probability limit theory ioafly
deals with the types of df’s rather than the df’'s themselves.

Now, if #' C %, the limit relation (1) gives a sufficiently simple approxitioa to the df ofY,. Namely,

X—bn).

P(Ya < X) ~ ®(Gy(X)) = cp( .

In this case we calp(G1(x)) = cb(%b”) the asymptotic df o¥, or the statistical model of the df af,. For example, in

view of extreme value theorem, due to Gnederii,[we haveZ’ = {®1(X2), @,(*2P), d5(X2)}, where

0, x <0,
P1(x) = { exp(—x~%), x>0,

o - (958
®3(x) = exp(—e™), Vx (2)

For statistical purposes, the above three limit laws can nm®rporated into the von Mises type representation

Hy(x) = exp(—(1+ yx)Tl), wherey is a given real number. Whewy = 0, H,(x) is defined as lim.,oHy(x). A part
from changes of origin and the unit on the x-axis theHlj(x) yields the three laws®;, @, and @3, according as
y>0,y<0 or y=0(y— 0), respectivelyQuestion 3:Can we use in the relation (1) nonlinear normalization ?

The answer is yes, but under some conditions. Namely, Pea¢f22],[ 23]) showed that the normalizing mappi(x)
may be used in equation (1) if it is continuous strictly irasimg and max-automorphism mapping (the
max-automorphisms preserve the max-operation), whiams$ax group ¥ w.r.t the composition. Choosing mappings
from ¢, for normalization in the limit theorems, we are imposed targe the notion of typ&() for a nondegenerate df
F. We say a dfF; belongs to typdt) if g€ ¢ such thatF; = Fx(g) = R, og. The convergence to type Khinchin’s
theorem is the main tool for proving limit theorems. In thi&se, a convergence to type takes place if both convergences
Fn—‘;]">F1 and F, oGn—‘;]V>F2, where G € ¢, imply F, € type(F1). Pancheva, et al.2p] showed that, the
compactness of the normalizing sequenés(x) is necessary and sufficient for a convergence to type, he., t
convergence to type Khinchin’s theorem is applicable. Rava, et al. 25] showed that this theorem is applicable for the
linear normalization, as well as the power normalizatidB,(x) = by|x|#sign(x),an,bn > O, with

G,l(x) = \b—m%sigr\(x). The convergence to type Khinchin’s theorem under power abration takes the form (see
Barakat and Nigm4]).
Theorem 1.2 (Khinchin’s type theorem under power normalizdion). Let

Fa(Gn(X)) -+ F(X), is a nondegenerate df
with Gn(x) = bp|x|#sign(x). Then, with G;;(x) = Bn|x|sign(x), we have

Fa(Gh(X)) -+ F*(x), F* is a nondegenerate df,

1
if and only if G;10G:(x) — g(x), Vx, where g(x) = B|x|Asign(x), & —; A (/g—;) “ — B, ash— o, and

’ an
F*(x) = F(g(x)) = F(B[x/"sign(x)).

Clearly, the employment of a strictly monotone continuoasmsformation not cause any wastage of information,
which is contained in the data under consideration (e.g, ghfficiency property is preserved under one to one
transformation). Nevertheless, we may lose some flexjhitthen using the nonlinear normalization. For example under
linear normalization all negative data can be transfornoepasitive numbers and vise versa, but this can not be done
under the power normalization. Although, no one can claiat the employment of nonlinear normalization in general is
preferable, but as Pancheva3] showed in some cases of practical interest it is not onlyebeb use nonlinear
transformation, but we have to use it. For example, by ussagively non difficult monotone mappings, in certain cases
we can achieve a better rate of convergence (see Baraka{&dJal Another reason for using nonlinear normalization is
to get a wider class of limit laws, which can be used in sohdapgroximation problems.
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2 The Possible Limit Laws of Extreme Order Statistics Under PoweilNormalization

Let Xy, Xy, ..., X, be independent rv’s having a common left continuou&,dind denote b, < Xoin < ... < Xpn the

corresponding order statistics (0s's). Panch@iq¢onsidered the power normalization and derived all thesiades limit

df’s of X.n subjected to this normalization. These limit df’s are usuedlled the power max stable df'p{max-stable
df’'s) and are given byH; g (x) = exp—u;.3(x)], i =1,2,...,6, B > 0, where

0 X<1 007 X§O7
umx){ s 5l w0 ={ ClogwP 0<x< 1,
(logx)~F, x> 1; 0, x> 1:
00 x< -1
’ _ -7 log(—x))B, x < —1,
Ul = { (~10g(—x) P, ~1<x <0, ugg( = { (O =
0, x> 0; ’ !
0, X< 0, x|, x <0,
0= { T x50 wi={ 5 x= @)
X7 L b 9

and we adopt the notatio;.(x) = ui(x), i = 5,6. The corresponding min-stable distribution can be easiltevr as
Lig=1-Hip(—x) = 1—exp<—ui*;ﬁ(x)) =1-exp(—U.g(—x)),i=12...,6, >0.

Mohan and Ravi 19 showed that the p-max-stable df's (3) attract more thaedinstable df's (2), see also
Subramanyad?2]. Therefore, using the power normalization, we get a widas< of limit df's which can be used in
solving approximation problems. In this way we can esshytextend the field of applications of the extreme value
model. A unified approach to the results of Mohan and R&9j dnd Subramanya3p] has been obtained by Christoph
and Falk [L5]. Barakat and Nigm#§] extended the result of Panched] to the extreme 0s'%;:n andXn_;1:n, Where
the rankr is fixed w.r.tn.

Theorem 2.1. For suitable normalizing constants,,b, > 0, the df of the normalized upper extreme os

Ggl(xn,prl;n) = |X”+n“¢” | %sign(xn,prl;n) converges weakly to a nondegeneraté{di), if and only if
N(1—F(Gn(X) = n(l_ F(bn|x|a“sign(x))) — Up(x), asn — o,

Moreover, ¥ (x) = I (u;.g(X)), whererl;(.) is the incomplete gamma function.
As in the linear normalization case, Nasry-Roudsa@] has summarized the types (3) by the following von Mises
type representations

Hyy(x;a,b) = exp{—(1+ ylogaxb)’ﬂ , x>0, 14 ylogax® > 0 (4)

and
Ha.y (X a,b) = exp[—(l— yloga(—x)b)_ﬂ , x>0, 1—yloga(—x)® > 0. (5)

Remark 2.1.The result of Christoph and Falk$] reveals that the upper tail behaviour & might determine whether
F belongs to the domain of attraction K., (x; a,b) or of Ho.,(x;a,b). In the first case, the right end-poixft = sup{x:
F(x) < 1} has to be positive, while for the second case necessatily 0. It is worth mentioning that (4) and (5) can
be incorporated into the unified formula by using the restii€bristoph and Falk 15 and by adopting the notation
(X)) =—1,if x<0ands (x) =1, if x> 0.

Hy(x;a,b) = exp[f(1+Y‘(xo)yloga|x|b)’ﬂ , 1+.77(x°)ylogalx|® > 0.

Barakat and Nigmg] studied the weak convergence of extremes under power tigatian assuming that the sample
size is a rv. The continuation of the restricted convergearitche power normalized extremes on the half-line of rea lin
to the whole line is proved in Barakat and Nigifj.[Barakat et al. §] proved that the restricted convergence of the power
normalized extremes on an arbitrary nondegenerate irtfienpdies the weak convergence. Recently, by using the theor
of the second-order regular variation, Barakat etH]] ftudied the rates of convergence of the extremes undeictherp
normalization to the each of the-max-stable laws (3). Moreover, a comparison between tles ftconvergence under
linear normalization and the power normalization is donataRat and Nigm§] derived a symmetric nonparametric
measure of asymptotic dependence between the 0s’s under pownalization. This nonparametric measure is based on
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the notion of the associated copula for os’s and sbmedistances. More recently, Chen, et &8] studied the rates of

convergence of extremes for a general error distributipe tynder power normalization. They have proved thag,ig of

general error distribution type, then there exist two cantsiC;,C, (depending on the parametersijfand normalizing

constants,, b, > 0 (they have found these normalizing constants), for Wlﬁ%bg sup|F"(bn|x/#sign(x)) — Hs. ()| <
x>0

&

loen and Xi%QF”(—bn(—x)a")\ < 27" An interesting result has been proved by Ravi and Prave28jafpncerning the

max domains of attraction under power normalization tha&rewf in the max domain of attraction of the Fréeh
@1:1(X) (Hs,3(x)) law, as well as Weibultb,:1(x) (He:g(X)) law, under power normalization is tail equivalent to sorfie d
satisfying the von-Mises type condition. More recentlynet al. p6] discussed two aspects of convergence of extremes
under power normalization: convergence of moments andezgence of densities. A comprehensive survey of all the
developments concerning the extremes under power nomtializcan be found in the recent book thesis by Barakat, et
al [11].

3 The Possible Limit Laws of Central Order Statistics under Powe Normalization

We consider the central 0§, ., with variable rank sequencgs, }, which satisfy the conditionﬁ(%” —A)—tel as
n— o, and A € (0,1). We begin with the normal —attraction case, in which= 0 (the results wheh= 0 follow as
consequences). In the normat-attraction case, we have (c.f. Smirn@0], and Leadbetter et al1p], Pages 46-47)

Fipin(Gn(X)) = 1E(Gy() (s N =T + 1) <1 W(X), (6)

whereW is a nondegenerate limit df, if and onlyyfn (W) — 4/ "HW(x)), asn — o, where ./ is the standard

normal distribution and,(a,b) = % Jo't31(1—t)P~1dt is the incomplete beta function. Moreover, we have the
following result.

Lemma 3.1 (Barakat and Omar [3]). Let the relation (6) be satisfied with a nondegenerate lifn#’dThen, for every
sequence of integefsn, } such thatm, <n, m; — and ™ — 6 € (0,1), we have

VBN TH(W(x) = A HW(G, (X)), (7)
where g, (x) = limp_.e Gr;}} o Gp(X) exists and satisfies the functional equation

oy (X) =gy 00, (x), with 8,¢ € (0,1). (8)
If for eachGn(x) € ¢, then Pancheva Z[l], [22], [23]) showed that the functiog, (x), considered as a function &f,

is solvable (i.e., each equation of the fogy(x) =t for givenx andt has a unique solutiof = g(t,x). Moreover, the
general solution of the functional equation (8) is given ty, (Sreehari31] and Barakat and omas])

g (X) =h*(h(x) — ulogh), 1> 0,6 € (0,1),x€ O, (8)1
9, (X) = £71(£(x) + f1logB), 1 > 0,0 € (0,1),x€ O, (8)2
g,(X) =x, V8 € (0,1), (8)3

whereh(x) and/(x) are arbitrary continuous reversible functions in the séinath—(y) and/—(y) are unique foy € [
(see Panchev&]] and Sreehari31]).

Smirnov 0] solved the functional equation (7), wh&(X) = anXx+ bn, a, > 0 andb,, € O, which provides only
four nondegenerate possible limits for the db@f.n (each type of these limits has a domain of norvattraction, i.e.,

\m(%‘ —A) =0, asn — ). These limit types are:

(0 0 x<-1, 1 0 x<0
00011 -1<xs1 0w -{% o 350
1, x>1; L ’
(2 _ 1a X>Oa (3) _ ‘/V(_C |X‘a)7XS0>
% (X)_{W(cz|x|“),xgo; i (X)_{W(clx%’), x> 0.
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Barakat and Omar3] introduced another functional equation, which charazésrthe possible nondegenerate limit
df’s of X :n under transformationGn(x) € ¥. Namely, let the relation (6) be satisfied with a nondegeeeatt’ and the
transformationGn(x). Then, asn — o, clearly we have

2
F(Gn(x)) —A -1, 2
My (/\(1)\)) — (AN (g, (X))

2
(n—my) <F(GA((I)_);;> L rew(g, ()2

and

2
F(Gn(x)) — A - 2
n<m_M> 2 (e wk)”

Therefore, by adding the first two above relations and comgahe resulting sum with the third one, we get
(Ao (g, () + (A o W(g, (X)) = (A ToW(x)2
By puttingJ(x) = .4 ~1o W(x), we get the functional equation
3%(gy (%) +32(g, 4 (X)) = I(%).
Since both the functions?” and ¥ are nondecreasing iR thenJ(x) is also nondecreasing i Moreover, ifp =
sup{x: ¥(x) <1} andp = inf{x: ¥(x) > 0} we havel(p) = « andJ(p) = —. Barakat and Omar3] obtained the
following two general results. a

Theorem 3.1.Let ﬁ(%“ —A) — 0 andG,(x) be any strictly increasing continuous transformation fdvich (6) is
satisfied. Then the possible nondegenerate typEs ofG, (x)) are

Oa XSBa
WO (x) =4 (J(x) =1 3, p<x<p,
1, x>p

where —o < p <p <o, g,(p)=p, 9,(P) =P;

0, X< Xy,
£(x)
L[J(l) (X) = JV(Jl(X)) = { ¢(Cle7ﬁ)’ X01 <x< ﬁ7
1a X>p,

whereg, (X,,) = X, > — (£(X,,) = —) and g, () < X, ¥X > X,,. Moreover, g,(p) =p < e (£(p) = o);

0, X<p,
h(x) -
WEX) =N (2(X) =4 1-.4(c,e %), p<X< X,
1, X > X0

¥yh<ellre O (Xo2) = Xgp < @, (N(X,) = ) and g, (X) > X, VX < X,,. Moreover, gy(p) =p > — (h(p) = —»), and
inally,

0, x<p,
h(x) -
1- 4 (c,e 20 <x<
W) = () = T B TR XS
H(G,e%), Xy <X<P,
17 X>ﬁ7

where g, (X;) = X53:  9o(P) =P, Go(P) =p and —oo < p <%, <P < 0. Moreover, g, (X) > X, VX < X, and
Gy (X) <X, VX > Xy
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Theorem 3.2 (Barakat and Omar [3]). Letr” — oo, \m(% —A)—tedand G,(x) € 4 be any strictly monotone
continuous transformation for which (6) is satisfied. THespossible nondegenerate types of (G, (x)) are
.

" (xt) = </1(W<i>(x)) — \//ﬁ) =N (Ji (X) — )\(;_)\)) ,1=0,1,2,3.

The following theorem due to Barakat and Omrghows an interesting fact that the possible nondegenees& limits
of any central os with regular rank under the linear and povwemalization are the same.
Theorem 3.3.Let \m(%“ —A) — 0 andG,(x) be any power transformation, i.65, (x) = by | X |2* sign(x),an, by > 0.

Then the possible nondegenerate typeg, of(G, (x)) arel#p(Oi)(x), i=1,..,6;

(1) 0, X< 0, (2) () —
b (X>_{,/V(x),x>0; b (X)_{JV(—XD,XSO;

e A (e, 1X]),x<0
3 —C, | x]),x<0,
lp‘g)(x):{g/l/(clx%, x>0,
where W (x), ... W% (x) are all defined by?(© (x) (WO (x) is defined in Theorem 3.1), with < 0 < 7, | p |# P;
O0<p<p;p<p<O0;|p|=|pl;0=p < pand0=p > p, respectively.
The typeW3(x) represents a family of two types fof # ¢, andc; = ¢, = 1.
Remark 3.1. Theorem 3.3 states that the possible nondegenerate lipgstior the central os’s under linear and power
normalization are the same. Although this fact is intengsthowever it should not surprise us. This is because in the
extremes case where the lower and upper extremes are sk@thguished, Christoph and Falkq] showed that the
upper as well as the lower tail behaviour of the originaFdhight determine whether the Bfbelongs to one or another of
the six possible power limit types. However, on one handheeihe lower nor the upper tail behaviour has any influence
on the weak convergence of the central os’s. On the other, llaeicd are no sharp distinction between the lower and the
upper central os’s.
Theorem 3.3 incites us to make comparisons between the derofattraction of each of these possible limit types
under linear and power normalization.
Theorem 3.4 (Barakat and Omar [3].) Under linear normalization, let the df belong to the domain of normal

A —attraction of the limit typewf) (x), such thatF~1(A) # 0. Then, the domains of normal—attraction of the limit

typestl-frgl)(x), ‘.Uéa (x) andw,§3>(x), under the power normalization, do not contain th&df

Remark 3.2. Theorem 3.4 shows that if any &f belongs to the domain of normal-attraction of the standard normal
df under linear normalization, whefe (1) # 0 (as happens in many cases, e.g., Whés absolutely continuous with

finite positive probability density function & (A )), then the domains of normal—attraction of the three limit types

l,UFS')(x), i = 1,2,3, do not contain the df.

Remark 3.3. Although, Theorem 3.4 gives some comparisons between thmids of attraction of the possible limit
types under linear and power normalization, but determinine domains of attraction of the four limit laws

Wé')(x), i =1,2,3,4, is still open problem till now. Moreover, since the power dimg¢ar normalizations are leading to
the same families of limit df’s, the question of existenceafonlinear normalization with a larger domain of attractio
is still open for central os’s.

4 The class of weak limits of intermediate Order Statistics uder power normalization

We call X,.n and X .n the upper and lower intermediate os’s, respectivelfknit=n—r_ +1, %” —0, asn— . A
sequencdr, } is said to satisfy Chibisov’s condition, if

. alv
rI]l_rno( Tz —,/rn) = I >0, (9)
for any sequencez,} of integer-values, Wherelzj—% — Vv, ashn— o (0 < a < 1andv is any arbitrary real number).
n

As Chibisov [L4] himself noted, the condition (9) implies thﬁg — (2, asn — . It is worth to mention that the
latter condition implies Chibisov’s condition (see, Bamland Omar%]), which means that the class of intermediate
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rank sequences which satisfy the Chibisov condition is & wade class. Chibisovl[4] showed that, whenevelr, }
satisfies (9), the possible nondegenerate types of theirgndistribution of the lower intermediate ter .n, under
linear normalization are
Gy p(X) = A (vi(x B)) = A (Blogx), x> O;
Gz p(X) = A (Va(X; B)) = A (—=Blog|x]), x < 0;

G3(X) = A (v3(X)) = A (X). (10)
The corresponding possible nondegenerate limiting Oistions for the upper intermediate ter¥ ., are
Yig(X) =1— A (Vi(—=x,B)), i =1,2,3 (note thatrz g (x) = 1 — A" (v3(—X))).
Remark 4.1. Note thatY;.s = Gp.5, Y25 = Gyp and Va3 = Ggg. Therefore, we havg G5, i=1,2,3}= {Yg,
i=123}. B .

Barakat and Omai5] showed that the possible nondegenerate types of the Ilifaitt{x) andL(x) of the df’s of the
upper and lower intermediate 0%g,.n andX; :n, respectively, under the power normalization af€—logu;.g(x)) = 1—
A (logui.g(x)),i = 1,2,...,6, and_#"(logu;.3(—X)),i = 1,2,...,6, respectively, where the functiowisg (x),i = 1,2, ...,6,
are defined in (3), i.e., .

Hip(X) = 1— .4 (Blog((log | x[))), x< —1;

Hz,p(x) = A (Blog(—log| X)), —1<x<0;
Hap(x) = 1— .4 (Blog(—logx)), 0 < x < 1;
Hap(x) = A (Blog(logx)), x> 1;
Hs;p(x) = Hs(x) = 4 (~log | x|), x< 0;
He.p(X) = He(x) = 4" (logx), x > O.
The corresponding types of the lower intermediate os are

L1g(x) =4 (Bloglogx), x> 1,

Lop(X) =4 (~Blog(~logx)), 0 < x<1;
Lap(x) =4 (Blog(—log|x|)), —1<x<0;
L4p(X) =4 (~Bloglog|x)), x < —1;
Ls.5(x) = Ls(x) = 47 (logx), x> 0;
Lep(x) = Ls(x) = 4 (—log|X|), x< 0. (11)

Remark 4.2. Although, in general, we havidl.g # Lj.5, i = 1,2,...,6, but a closer look at the two classes of possible
limit laws of lower and upper intermediate os’s under powernmlization shows that they coincide, i.e.,
{Hi;B7 i = 172,...767} = {Li;B7 i = 172,...76, } .

Remark 4.3. 1t is worth to mention that the possible limiting types of ihéermediate os’s under linear normalization,
which are defined in (10), coincide with those of suitablyeliny normalized record value (see Barak2}).[ This
resemblance is due to the fact that both classes are govénndéde same functional equation (see Barald]. [
Therefore, it is not accidentally to find that the possibheiing power types (11) are coincide with the possible lingt
types of record value under power normalization, which d&taioed by Grigelionis]7].

Barakat and Omars| found the domains of attraction of all possible limit lawfgtlee df of the lower intermediate os
X:n in the following theorem. Throughout this theorem, we whte D,(G) andF € Dp(L) to indicate thaF belongs
to the domain of attraction of the la@, under linear normalizatioB(x) = a,x+ bn, andL, under power normalization
Ta(X) = an | x|Pr sign(x), respectively. Also, we write(F) = sup{x : F(x) < 1} and/(F) = inf{x: F(x) > 0} to denote
the right and left end-points for the 8f respectively. Moreover, for any nondecreasing funcEatefineF ~ (y) = inf{x:
F(x) >y}

Theorem 4.1.For any univariate continuous &f we have the following implications:

1.If 0 < {(F) < oo, thenF € Dp(L1 ) <= G € Dy(Gy ), where

0, <log(F),
G(y){F(eV),¥>IggéEF§.
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2.If ((F) =0, thenF € Dp(L,5) <= G(y) =F (&) € D(Gzyp)-
3.If —0 < £(F) < 0, thenF € Dp(L35) <= G(y) = B2 € Dy(Gy ), with rank sequenck’ = [£.] andB* =

© F(
B
VFO !
4.1f L(F) = —oo, thenF € Dp(Lap) <= G € Dy(Gy ), where

=

, where[6] denotes the integer part 6f
F(-e7),y<0,

G(y):{l, y > 0.

F(eV) S Dg(Gg).
G(y) € Dy(Gs), where

5.(i) If £(F) =0, thenF € Dp(Ls) <=
(ii) If £(F) >0, thenF € Dp(Ls) +=
0, y<o0

Gly) = { F(¢),y>0.

6.If £(F) < 0, thenF € Dp(Ls) <= G(y) = F(,;(%;” € Dy(Gg), with rank sequenck’ = [£{;;]-

5 Statistical Inference under Power Normalization

In the literature, two classes of extreme value distrimgiare used in extreme value modeling. The first class, which
is known as the generalized extreme value distribution utidear normalization (GEVLH,, encompasses the three
standard extreme value distributions (EVD), defined in R2&chet, Weibull and Gumbel. The second class, which is
called the generalized Pareto distribution (GPDL) underdr normalization introduced by Pickar&¥], nests the Pareto,
uniform and exponential distributions.

There are two main methods for modeling the extreme valhesBtock Maxima (BM) method and the Peak Over
Thresholds (POT) method.

In the BM method it is supposed to have observed maxima vailfissme quantities over a number of blocks. A
typical example of the block is a year or a day and the obseguadtities may be some environmental quantity such as
the air pollutant. In this method, the block maxima is modddg EVD. The choice of EVD is motivated by the facts:
(i) The EVD are the only ones which can appear as the limitregdily normalized maxima. (ii) They are the only ones
which are “max-stable”, i.e., any change of the block sizly teads to a change of location and scale parameters in the
distribution.

In the POT method it is supposed to have all observed valueishvare larger than some suitable threshold. These
values are then assumed to follow the Generalized Paretdy-ahDistributions (GPDL). The choice of GPDL is
motivated by two characterizations: (i) The distributionsoale normalized exceedance over threshold asymptegtical
converges to a limit belonging to GPDL if and only if the distition of BM converges (as the block length tends to
infinity) to one of EVD. (ii) The distributions belonging thé GPDL are the only “stable”ones, i.e., the only ones for
which, the conditional distribution of an exceedance idestransformation of the original distribution.

Each of the families (4) and (5) is called generalized exérealue distribution under power normalization (GEVP).
Clearly, both GEVP (4) and (5) satisfy the— max—stable property, i.e., for eveny there exist power normalizing
constantsan, by > 0, for which we haveH), (bn|X|*sign(x)) = H.,(x), t = 1,2. Therefore, the two parametric models
(4) and (5) enable us to apply the BM method under power nézatain. For these models, the parametric approach to
modeling extremes is based on the assumption that the dagmahform an i.i.d sample from an exact GEYRy, b) df
in (4) or (5).

The main aim of this section is to develop the mathematicaleting of extremes under power normalization. The
section material is quoted from Barakd} pnd Barakat, et al.12], where the proofs of Theorems 5.1-5.4 can be found
in Barakat et al. 12]. Firstly, we propose an estimator for the shape parametéthin the model GEVPy,a,b). This
estimator corresponds to a Dubey estimate in the GEVL madeRgiss and Thomag9], Page 111). Secondly, we
derive the generalized Pareto distribution under powemadization (GPDP) for each of the models (4) and (5). Finally
we deal with estimators for the shape parameter within thieett GPDP.

Let xp:n < Xon < ... < Xyn be a given data of maximums of the given blocks. Clearly, ewvdf Remark 2.1, the
modeling under power normalization can be applied onlyliffedse maximums have the same sign. More specifically,
if 0 < X1 < Xon < ... < X, We select the model (4) and X, < Xon < ... < Xnn < 0, we select the model (5). The
estimate of the shape paramegarorresponding to a Dubey estimate in the GEVL model is limeanbinations of ratios
of spacing
_ |Og ‘ anzn | B |Og | anl:n ‘

Ry = ;
log ‘ Xnop:n | —log| Xnqo:n ‘
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whereqo < g1 < gz andg; = 'ﬁ Note that this statistic is invariant under power transfation. \We have the following
theorem.
Theorem 5.1 (Statistical inference using BM method). Let qo,01,02 satisfy the equation

(—logqu)? = (—logaz)(—logqo). Then,
. 2logR,

~ log(logdo/logz)”
On the other hand, ifip = q,01 = @7, g2 = qaz, for some 0< g,a < 1, we get the estimate family = E’%';”a. By taking
a= 3, we get
2

. logR,
Y= log2"

Theorem 5.2 (GPDP)Let F U (x) = P(X < xx > u).
(a) Let the df of the power normalized maximum os weakly convertged;.,(x;a,b). Then there exists (u) > 0 such
that _

FUuxa@y W, Q. (xb), asutr(F) >0, (12)
whereQ.(x;b) = 1+ logH1,(x 1,b), b= 2 andc = 1+ yloga.
(b) Let the df of the power normalized maximum os weakly converge,,, (x;a,b). Then there exists (u) > 0 such
that

M (ux® ) ¥, Qzy(x;b), asutr(F) <0, (13)
whereQz.(x;b) = 1+ logHz,,(x;1,b), b= % andc=1- yloga.
The following elementary theorem shows that the GPDP’s i) (13) satisfy the peak over threshold stability
property (POT).
Theorem 5.3 (The peak over threshold stability property).The left truncated GPDP yields again a GPDP. This means
that, for every O< k < x, we haveQ[k.] (x,0) = Quy(§:0), where 0 = ¢ andc = 1+ ylogk. Moreover, for every

—1<k<x<0,we haveQ[zk;]y( 0) = Qy(%;0), where ¢ = g andc’ = 1 ylog(—k).

In the following theorem we follow Plckand s metho#7] to get estimates for the shape and the scale parameters,
within (12) and (13).
Theorem 5.4 (Estimation of the shape and the scale parametewithin GPDP model).Let n be the sample size and
let m= m(n) be an integer much smaller thanLet {Y;,i = 1,2,...,n} be the descending os’s, i.&,= Xn_i+1:n is the
ith largest observation in the sample. We treat the va&es =1, 2 .,4m— 1, as though they were the descending 0s’s
from a sample of sizem— 1 from a population with a df of the fon@l (X, 0) for somed,y,0 < 0 < 00, —00 < y < co.
The parameterg andg can be estimated by

~ 1 logYm—logYom

y=(log2) "log logYom — 109 Yam

and .
-1
y(logYom — logYam)
Moreover, the estimates of the shape and the scale parametedo in the GPDP (5) are given by

o=

l0g | Ym | —10og| Yom |
09| Yam | —log | Yam |

7= (log2) *log;

and .
5 1-2
= y(log | Yom| —log| Yam|)

The valuem= m(n) should satisfy the two conditions lime. m= c and lim, ;. 7 = 0.
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