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In the present paper we consider a von Neumann algebra M with a faithful normal
semi-finite trace 7, and {a¢; }¢;>0,- .-, {®y }tx>0, N strongly continuous semi-
groups of absolute contractions on L,(M,7) (p > 1). We prove that for every
x € L,(M, T) and Besicovitch function b(t1, . . . t) the averages

1 TN T
mA ) b(tl,...,tN)(OétN"'atl)(ﬂf)dtldtQ"'dtN

converge b.a.u. in L,(M) as max{T1,...,Tn} — 0and min{Th,...,Tn} — oo,

respectively.
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1 Introduction

Individual ergodic theorem with respect to almost everywhere convergence in von Neu-
mann algebras was studied by many authors [3,4,7, 14]. In [7] various maximal ergodic
theorems in non-commutative L,-spaces were proved and as applications of such results
the corresponding individual and local ergodic theorems were obtained. Almost every-
where convergence of the Besicovitch weighted ergodic averages in von Neumann algebras
was firstly proved in [6]. Further, in [1] by means of the Banach principle the Besicovitch
weighted ergodic theorem was proved. In [10] bilateral almost uniform convergence of
weighted multi-parameter averages was proved with respect to bounded Besicovitch fami-
lies for positive contractions in non-commutative L,,-spaces. In [11], recently, a Besicov-

itch function weighted local ergodic theorem has been proved in the L,,-spaces.
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In this paper we prove weighted local and individual ergodic theorems for multi-
parameter strongly continuous semigroups of absolute contractions, with respect to
bounded Besicovitch families, in the non-commutative L, -spaces. As a particular case,
we will obtain a result of [11]. To prove the main result we use the maximal ergodic in-
equality given in [4] and the Banach principle for semigroups proved in [14].

2 Preliminaries and Notations

Let M be a semifinite von Neumann algebra acting on a Hilbert space H, let 7 be a
faithful normal semifinite trace on M, and let P(M) be the complete lattice of all projec-
tions in M. A densely-defined closed operator x in H is said to be affiliated with M if
y'x C xy for every y' € M’, where M’ is the commutant of the algebra M. An operator
z, affiliated with M, is said to be T-measurable if for each £ > 0 there exists e € P(M)
with 7(e*) < e such that eH C D,, where e = 1 — e, 1 is the unit of M, D, is the
domain of x. Let Lo(M) be the set of all 7—measurable operators affiliated with M. Let
|| - || stand for the uniform norm in M.

For a positive self-adjoint operator x = fooo Ade) affiliated with M, one can define

(@) s2p7</0n AdeA) /Ooo dr(ey).

If 0 < p < o0, then

{z € Lo(M) : ||zll, = 7(]z[?)/? < 00} for p # oo,

L”:L”(M):{ (a4,]-1) for = oc.

Here, |x| is the absolute value of x, i.e. the square root of x*z. By L, (resp. Lsq)
we denote the set of positive (resp. self-adjoint) elements of L. We refer the reader to
[13] for more information about non-commutative integration and to [15, 16] for general
terminology of von Neumann algebras.

There are several different types of convergences in Ly(M), each of them, in the com-
mutative case with finite measure, reduces to the almost everywhere convergence (see for
example [12]). In this paper we deal with the so called bilateral almost uniform (b.a.u.)
convergence in Lo(M) for which z, — =z means that for every ¢ > 0 there exists
e € P(M) with 7(et) < e such that |le(z, — z)e|]| — 0. Itis clear that b.a.u. implies
convergence in measure.

Now take any set A C RY, where N > 1. Recall that the space L, (M;{(A)) is
defined as the set of all families © = {x;}4c 4 in L, (M) which admit a factorization of the
following form: there are a,b € Loy(M) and y = {y,} C M such that z, = ay:b Vt € A.
Then we define

1l a1 a) = mEllall2p SUP flgelloc b2}
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where the infimum runs over all factorizations as above. Then (L,(M;{lx(A)),
1zl (ar;6. (a))) is @ Banach space [7]. There it was shown that a family of positive
elements © = {x};c 4 belongs to L, (M; £ (A)) iff thereis a € L} (M) such that z; < a
for all t € A, moreover, |||, (are. (a)) = inf{lall, : a € Lf (M), x; < a, Vt € A}.
The norm of z in L,(M; ¢ (A)) will be often denoted by ||sup, z;||,. In the sequel we
will be interested with the spaces Ly, (M; oo (RY)) and L, (M; €5 ((0,1]V)).

For t = (t1,...,tn) € RY, we denote m(t) = min{t;,...,txn}, M(t) =
max{t1,...,tn} Appn = {t = (t1,...,tn) € RY :m < m(t), M(t) < n}.

In order to prove ergodic theorem by the corresponding maximal ergodic theorems, it
is convenient to use a subspace L, (M;co(RY)) of L,(M; oo (RY)) which is defined as
the space of all families x = {z }teRf C L,(M) such that there are a,b € Lo,(M)
and {ys} C M satisfying vy = ay¢b and lim,, )~ [|9t]lc = 0, and the subspace
Ly (M;¢o((0,11V)) of L,(M;€5((0,1]Y)) which is defined as the space of all families
{T¢}ee0,1yy € Lp(M) such that there are a,b € Lo, (M) and {yt} C M satisfying
xy = ayeb and limyyg)—o [|yell = 0. It is easy to check that L,(M;co(RY)) and
L,(M;co((0,1]V)) are closed subspaces of Ly, (M; o (RY)) and Ly,(M;€s((0, 1Y),
respectively.

For the sake of completeness, we provide the proof of the next lemma, which is an
analog of Lemma 6.2 in [7].

Lemma 2.1. Let {x¢} € L,(M;co((0,1]V)) with 1 < p < oo, then {x4} converges b.a.u.
to0as M(t) — 0.

Proof. Let {z4} € L,(M;co((0,1])). Then there are a,b € Loy(M) and {yt} € M
such that zy = ayb and ||all2, < 1, [|bll2, < 1, limpzey—o [|¥tllc = 0. We can assume
a,b > 0. Let e, be a spectral projection of a such that 7(el) < /2 and ||eqa|

(2/£)'/?». Similarly, we find a spectral projection e;, of b. Set e = e, A e;,. Then 7(et)

VAR VAN VAN

(er) +T(e§_) < eand [[ezsel|oc < [lealloo [[Usloo [[balloe < |Ytlloo [l€atlloo [[€nbllo
(2/€)"? ||yg||oc- Thus limpzg)—o |lezel| oo = 0 and so 2y — 0 bau. as M(t) — 0. O

Let (Z,R, 1) be a measurable space with a probability measure p. Let M be the
von Neumann algebra of all essentially bounded ultraweakly measurable functions A :
(Z, 1) — M equipped with the trace 7(h) = [, 7(h(z))dp(2), and let L, = L,(M,7).

Lemma 2.2 ( [10]). a) Let {xt}teRf € L,,(]T]; co(RY)).  Then {:Ct(z)}teRf €
Ly(M;co(RY)) for almost all z € Z.

b) If for every p € RY {wyyp — xt}teRf € Ly(M;co(RY)) with1 < p < oo, then
{z+} convergence b.a.u. as m(t) — oo to some x from L,,(M).

Notice that Lemma 2.2. is true for the spaces Lp(M ;¢0((0,1]Y)) and
L, (M;c((0,1]7)). Recall that a positive linear map o : L1 (M, 1) — Ly (M, 7) is called
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an absolute contraction if a(z) < T and 7(a(z)) < 7(z) for every x € M N Ly with
0 <z < 1. If a is a positive contraction in L4, then, as is shown in [17], ||a(x)], < ||z,
holds for x = * € M N L, and all 1 < p < co. Besides, there exist unique continuous
extensions « : L, — L, forall 1 < p < oo and a unique ultra-weakly continuous exten-
sion o« : M — M (see [7,17]). This implies that, for every € L,, and any positive integer
k, one has

llo* (@)1l < 2ll]l,.

Let {ov }+ >0 be semigroup of absolute contraction on L. This means that each «; is an
absolute contractionon L1, ag = Id and iy = oy forall ¢, s > 0. By the same symbol
a; we will denote its extension to L, (1 < p < o0). In the sequel we assume that the
semigroup {a;} is strongly continuous in L,, for fixed p, i.e. lim;_; |[|ou f — asf|l, =0
forall s > 0and f € L.

Let us consider {a, };>0,- .-, {0y }ty>0 semigroups of absolute contraction of
L,(M). We form their ergodic averages

Ty, Ta, Ty
1

== QU ceoy dtidty - - dty.
T1T2"'TN tnGtn 1 t1 1402 N

ﬁTlTZ"'TN (O[tl,OltZ, ey thN)

(=)

The last one is always denoted by

1 T
ﬂT(OZt) = m/o o dt,

where T = (T1,T5,...,Tn), I(T) = T1To - TN, a4 = QypQppy_, - - Oy, and dt =
dtidty - - - dtn.
In [7] the following maximal inequality has been proved.

Theorem 2.1. Let {ay, }1,>0,- - -, {ouy }in>0 be semigroups as above. Then for any 1 <

p < oo one has

< C;];V”pr Va € Ly(M).
P

1 T
sup 7/ ag(x)dt
Hm(T)>O I(T) Jo (=)

Definition 2.1. Let (B, | - ||,>) be an ordered real Banach space with the closed convex
cone By, B = By — B;. A subset By C B, is said to be minorantly dense in B
if for every © € B, there is a sequence {x,} in By such that z,, < x for each n, and

|z — 2n|| = 0asn — oo.

For example, M N Ly (M) N Ly(M) is a minorantly dense subset of L1 (M)s,.

In [14] Banach principle has been proved for /N semigroups.
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Theorem 2.2. Let X be an ordered real Banach space with the closed convex cone X
X =X, — X, andforeacht = (t1,...,tn) € RY, N e X, R -natural numbers.
Let ay : X — Lo(M) be a continuous positive linear map. Assume that the following

conditions are satisfied:

(i) for eachb € X, and § > 0 there exists y € M+ 0 # y < 1 and n € X such that

sup [lyag(b)ylleo < 00
m(t)>n
and 7(1 —y) <,
(1) there exists X, a minorantly dense subset of X such that for each b € X the family

operators ax(b) — s (b) (t,s € RY) b.a.u. converge to 0 as m(t) — oo, m(s) — oc.
Then for each b € X, oy (b) is b.a.u. convergent to some element of Lo(M) as m(t) — oo.

Notice that Theorem 2.2. is true when we replace RY by (0, 1]".

3 Multiparameter Weighted Ergodic Theorem for Non-Commutative
L,-Spaces

Recall the following ergodic theorem for /N semigroups, which has been proved in [7,
Theorem 6.8].

Theorem 3.1. Let {ay, }t;>0,-- -, {Quy fty>0 be N semigroups. Let 1 < p < oo, x €
L,(M), and

pr(a(z)) = ﬁ/o ot () dt.

Then
D) {Brip(at(zx)) — BT(Oét(x))}TeRﬁ € Ly(M;co(RY)), for every P € RY.
2) {Brip(ac(z))—Lrlaw(®)rey € Lp(M;co(0,11V), for every P e (0,1].

Recall that a function P : (0,1]Y — C (P : RY — () is called trigonometric

polynomial in N variables if it is of the form

n

P(t) = Z ke (Pirt)

Jj=1

where (pj,t) = YN 09t t € (0,1]N (¢ € RY), p; = @) € RN for some

K2

(kj) C C. By 5((0,1]V) we denote the set of all trigonometric polynomials defined on
(0,1]*.
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Definition 3.1. We say that measurable function b : (0,1]Y — C is a 0-Besicovitch
function if (i) b € L>=((0,1]V),
(ii) given any & > 0 there is P € S((0,1]") such that

1 T
Jim sup 7/ Ib(t) — P(6)]dt < <.
M(T)—0 (T) 0
Similarly in the last definition if we require m(T) — oo instead of M (T) — 0, then
the function b : RY — C'is called Besicovitch function.

Lemma 3.1. Let {ay, }4, >0, .-+, {0y }tn>0 be N semigroups on L,(M). Then for every
trigonometric polynomial P(t) on (0,1]N (respectively on RY ) and every x € L, (M) the

averages

~ T
fr(x) = ﬁ/o P(t)ag(x)dt

converge b.a.u. as M (T) — 0 (respect. as m(T) — o0).

Proof. Let B = {z € C : |z| = 1} be the unit circle in C' with normalized Lebesque
measure o. Denote

Now consider Ep = LP(M) with M = M ® Lo(B,p)and T =7 ® p. Letus fixs € B
and define &és) : Zp — Zp by

(@ (1)) = au(f(sto2), feL,, z€B. 3.0
Here s oz = (8121, 8222,...,8nzN) withs = (s1,82,...,8N), Z = (21, 22,...,2n) and
st = (sit, 852, ..., s"), where t = (t1,ta,...,tN).

One can see that the mapping &Es) is a multiple semigroup of absolute contractions.

Now according to Theorem 3.1 we have

T+P - N
e | a0 g | aéS’(f)dt}Te(O,l]NeLp<M;cO<<o,1JN>>

for every P € (0,1]N and f € L,. Hence, Lemma 2.2 implies that

TP -
i) @on@a g [@ome) < nanaon)

Te(0,1]N
a.e. z € B.
Now instead of f we take f,(z) = II(z)x with fixed © € L,(M). Then according the
equality &% (f,(z)) = TI(s*)TI(z) o (z), we get

TP T
z # sH g (z — L st o (x -c N
II( ){H(T+P)/H( Jowg (z)dt H(T)O/H( Yo ( )dt}Te(O’l]in(M, 0((0,1]M))

0
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for almost all z € B. Consequently, by TI(z) # 0, one concludes that

T+P

T
# sHay (z —71 st au (2 e N
{H(T—i—P) / HisDen(o)dt = e / (e >dt} € Ly(M; eo((0, V).

Te(0,1]N

Since every polynomial P(t) is linear combination of TI(s*), we get the assertion for every
trigonometric polynomial in /V variables. O

Theorem 3.2. Let {ay, }i,>0,. .., {0y }tny>0 be N strongly continuous semigroups of
absolute contractions on L,(M). Then, for every x € L, (M)

(1) The averages

(o) = g [ Mban(ode

converge b.a.u. in L,(M) as M(T) — 0, where b(t)- is bounded 0-Besicovitch
function on (0,1]¥
(ii) The averages

Br(x) = H( /b ag(z

converge b.a.u. in L,(M) as m(T) — oo, where b(t)- is bounded Besicovitch

Sfunction on Rf .

Proof. (i) Let b(T) be a bounded 0-Besicovitch function on (0, 1]V. For ¢ > 0 there is a
trigonometric polynomial P-(t) on (0, 1]% such that

T
lim (S*}l)p—m H(lT) /0 |b(t) — P.(t)|dt < e.
Then, for z € M N Ly (M) one has
1 " 1 "
oo [ ottt — o [Pwantorte] < s o) - Paoiaol

< ellrcHoo. (3.2)

We may suppose that |b(t)| < 1 for almostall t € (0,1]". Letx € L, (M), then Theorem
4.5 in [7] implies

< Nl (3.3)

sup Br(2)
T Lp(M;€e((0,1]V))

Now consider
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and
Bt (x) = Br(z) + Br(z) Pr(x) = Fr(z) + Br ().
Then we have 38 (z) < 281 (z) fh(z) < 26r(z) and, from (3.3) one gets

sup ,(?F(I‘R) (z)
T

< 20" ||zlp,
Ly (M;£00((0,1]V))

sup A7) (z)
T

N
Lp(M;3les ((0,1]))
Consequently

< AC) ||zl forall z € Ly (M) (3.4)

sup fr ()
T Lyp(Mi£so((0,1]N))

Any z € L,(M) can be represented as z = 22:0 ikzy, where 7, € L,(M)y k =
0,1, 2, 3. Therefore, the inequality (3.4) implies that

< 16C;)V||x||p forany x € L,(M). (3.5)

sup fr ()
T L,(M;lso ((0,1]))

From (3.2) and [7, Proposition 2.5] we have

- " 1-q/p
s (Br(e)—Fr()) <| sw  (Br(@)-Br()
TeA[2™,27F] Lp(Miloo ((0,1]V))  IITEA[2™,27F] o0
a/p

9
i < gl—q/p”le—q/p

s (Br(e)—Fr(x))

TeA[2™,27F]

s (Br(e)—Fr())

TeA[2™,27F]

q q

(3.6)
We define a sequence b(F) = (br(:[l?))Te(O’l]N € Ly(M;co((0,1]Y)) as follows:

w | Br(x)—Br(x), ifTeAl27F 1],
b = . L
0, T ¢ A2, 1].
From (3.6) one finds that b — {Br(z) — Br(x)} in Ly(M; s ((0,1]V)) as k — oc.
Since L, (M;co((0,1]%)) is closed subspace in L, (M; £ ((0, 1]V)) we have

{Br(z) — Br(x)} € Ly(M;co((0,1]V)).
From Lemma 3.1, we obtain {314 p(z) — BT(CE)}TE(OJ]N € L,(M;co((0,1]V)) and the
equality
Bryp(x) = Br(z) = Brip(2) — Brip(@) + Br(2) — Br(x) + frip(x) — Br(x)

implies that {frip(z) — fr(z)} ey € Lp(M;co((0,1]Y)). Now from minorant
density of L1 (M) N M in L,(M), by using Theorem 2.2 and (3.5), we get {fSr4p(z) —
Br(x)re@ny € Lp(M;co((0,1]Y)) forany z € Ly(M).

(i) This statement can be similarly proved by using the same arguments as used in (i)
with application of the spaces L, (M; ls (RY)), L,(M;co(RY)). O
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Remark. Note that the proved theorem extends the results of the papers [1] to semigroups
setting. Moreover, it generalizes a result of [11].
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