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Abstract: In this paper, we study the diophantine equation ax2+b=cyn where a, b, c, n, x, y are positive integers and we prove 
some results concerning this equation when b = 7, 11. In Theorem 3, we are able to correct the result of Demirpolat and  Cenberci 
appeared in [9]. 
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Introduction 

Many special cases of the diophantine equation  

ax2+b=cyn,                                                                            (1) 

where a, b, c , n  are positive integers and n ≥ 3, have been considered over the years. If we put a=1, b=7, c=1 and 

y=2 in (1) we obtain the equation  

x2+7=2n,                                                                                 (2) 

which was studied by an  Indian mathematician S. Ramanujan [1] , and he conjectured that the equation (2) has only the 

following  five solutions : 

(n, x)=(3,1),(4,3),(5,5),(7,11),(15,181). 

This conjecture was first proved by Nagell [2]. In 2003 Siksek and Cremona [4] solved equation (2) for n=p where p 

is odd prime and they proved that this equation has no solution for 11 ≤ p ≤ 188. 

Bugeaud and Shorey [3] were proved that equation (1) has no solution when a=1, b=7 and c=4.  

In 2008, Abu Muriefah [5] studied the general case px2+ q2m=yn where p, q are primes under some conditions, and 

recently she proved with Luca and Togbé [6] that the equation x2+5a.13b=yn where a, b ≥ 0, has the following 

solution:  

(x,y,a,b,n)=(70,17,0,1,3),(142,29,2,2,3), (4,3,1,1,4). 

Now we study the equation (1) for a=p, b=72m+1, c=1 and we prove the following theorem: 

Theorem 1 

If p≠7 , x is an even integer and (h,p)=1 where h is the class number of the field ( 7 )p , then the diophantine 

equation 

                                               

2 2 17 ,m ppx y                                                              (3) 

has no solution in integers x and y. 

Proof 
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I. (x,y)=1, 

If  x  is even then y is odd, we factorize equation (3) to obtain 

 7 7 7 ,
p

mpx pa b                                                                (4) 

where a, b are integers and 
2 27y pa b  . 

On equating the imaginary parts in (4) we get 

1
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Since y is odd, therefore b is odd, hence a is even and (a,7)=1. 

If b=±7
k  
 , 0 ≤  k < m then (5) is impossible modulo 7, so b=±7

m
. 

Let  

7a p b     , 7a p b     ,                                                            (6) 

hence from (4) we get 

7 7 , 7 7.p m p mx p x p                                                           (7) 

From (6) and (7) we obtain 

2 7 7 7
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Since 
2( ,( ) ) 1     and 




 is not a root of unity, therefore  ( , )

p
U    is a Lehmer pair has no 

primitive divisor. When [5,29]p , there are only finitely many possibilities for the pair ( , )   and all such 

instances appear in Table 2 in [7]. A quick inspection of that table reveals that there exists no Lehmer number which 

has no primitive divisors whose roots   and are in [ ]i
.
 

II. (x,y)≠1, 

Let x=7uX, y=7vY such that u, v > 0  and (7, X)=(7, Y)=1. 

Equation (3) becomes 

2 2 1(7 ) 7 7 .u m pv pp X Y                                                              (8) 

There are three cases: 

(1) If  2u=min(2u, pv, 2m+1) then equation (8) becomes  

2 2( ) 1 27 7 .m u pv u ppX Y     

This equation is impossible modulo 7 unless pv-2u=0, so 

2 2( ) 17 ,m u ppX Y    
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which has no solution from the first part of this proof, since (X, Y)=1. 

(2) If  2m+1=min(2u, pv, 2m+1) then equation (8) becomes 

2 2 1 2 2 17 1 7 ,u m pv m pp X Y      

This equation is impossible modulo 7 unless v-2m-1=0, so 

1 27 (7 ) 1 .u m pp X Y                                                                      (9) 

By [8] equation (9) has no solution. 

(3) If  pv=min(2u, pv, 2m+1) then we get  

2 2 2 17 7 .u pv m pv pp X Y                                                               (10) 

This equation is possible only if 2u-pv=0 or 2m+1-pv=0 , and these two cases have been discussed before.◊ 

 

Now, we give a nice result in rational.
 

Theorem 2 

Let p be an odd prime such that  p-7 has no perfect square.  

I-The diophantine equation 

x2+7=pyp-1,                                                                                     (11) 

has no solution in rational  x and y such that 
Y

y
t

  where Y is an odd integer. 

II- The diophantine equation   

x2+7=py(p-1)/2, 1(mod4)p                                                               (12) 

has no solution in rational x and y such that 
Y

y
t

  where Y is an odd integer. 

Proof 

Assume that x = X/Q,  y = Y/T is a solution of (11) or (12) for some integers X, Y, Q, T with Q≥1, T≥1 and  

(X, Q)=(Y,T)=1.                                                                            (13) 

Put 

0, 3(mod4)

1, 1(mod4).

if p
n

if p


 


 

Then equation (11) and (12) can be written in the form 

1 1 1

2 2 22 2 27

p p p

n n n

X T Q T pQ Y

  

   .                                                         (14) 

Considering equation (14) modulo Q2, and from (13) we get  

1

2 20(mod ).

p

n

T Q



                                                                                   (15) 

In the same way, we get 
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1

2 20(mod ).
n

p

pQ T



                                (16) 

Since ( 1) / 2np   is even, it follows from (15) and (16) that  

1

22

p

n

T Q



 , hence from (14) we get 

1 1

2 22 7

p p

n n

X T pY

 

  .                                                                    (17) 

So it follows that 

    (X, p)=(T,p)=(X,T)=(Y,T)=(X, Y)=(X, 7)=1. 

 

Rewrite equation (17) as 

1 1 1

1 1 12 2 2

7 7

p p p

n n n

X T i X T i pY

  

    
      

  

.                                       (18) 

It is easy to see that the two algebraic integers appearing in the left-hand side of equation (18) are coprime in the 

ring of algebraic integers ( 7).i  Since the ring ( 7)i  is a unique factorization domain it follows that 

there exist four integers A, B, s, v with (mod2), (mod2)A B s v     and two units ±1 such that 

1

12

1

27 7
7

2 2

p n
n

p

A B i s v i
X T i







  
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 
,                                          (19) 

where 

2 27

4

A B
p


  . 

Multiplying both parts of (19) by 

1 1
1

2 22
n n

p p

B

 


  we get 

  1

11 1 1 1
1

22 2 2 22 7 7 ( 7) ,
nn n n n

pp p p p

XB T B i A B i sB Av A B i v


   
  

       
 

for 

some U, K, R in Z . Comparing imaginary parts and taking into account that  p│A2+7B2 we get 

         

1

1 1 1 1
1

2 2 2 22 (mod )
n n n n

p p p p

T B BU p


   


 . 

Raising both sides of the last congruence to the power 2n+1 , by Fermat's little theorem we get 

      

1 12 22 (mod ), {0,1}.
n n

B p n
 

   

For  n=1, we get 

 
2 2( 4)( 4) 0(mod )B B p   . 
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● If 
2 4 0(mod )B p  , then  B2=4+kp ≥ 0 for some integer k, and  we get  4p=A2+28+7kp , which implies 

that k=0, so B2=4. Hence   

22 27
7,

4 2

A B A
p

  
   

 
 

this implies that p-7 is a perfect square and we get a contradiction. 

● If 
2 4 0(mod )B p  , then  B2 =-4+k1p ≥ 0 for some integer k1, and we get 4p=A2-28+7pk1 , which implies 

that 4p+28-7pk1 ≥ 0,that is  k1=0,1. 

If k1=0, then B2=-4 which is not true, and if  k1=1, then  B2 =-4+p,  

and we get p=5. Hence from equation (3) and (4) we obtain 
2 3(mod5)x   , which is impossible.  

By using the same method we can prove that equation (3) has no solution when n=0.  So our equations (11) and (12) 

has no solutions.◊ 

 

In the following theorem we study the equation  x2+112k+1=yn which was studied by the two mathematicians 

Demirpolat and Cenberci [9] but they failed to find all solutions of it. 

Theorem 3 

The diophantine equation 

x2+112k+1=yn,  n ≥ 3, k ≥ 0,                                                                    (20) 

has only three families of solutions and these solutions are                                                                

(x, y, k, n)= (4. 113M , 3. 112M , 3M,3),     

(58. 113M ,15. 112M , 3M,3), ( 9324. 113M,443. 112M,3M,3). 

Moreover  when  n=3 , (x, y)=1 and 1(mod3),k    the equation may have a solution  given by 

38 3x a a   where a is an integer satisfies 

2 111 1

3

k

a
 

 . 

Proof 

If k = 0, then the equation (20) has only two solutions given by  

(x, y, n) = (4,3,3),(58,15,3) [10]. 

So we shall suppose  k > 0. 

I. Let 11 | x  then from [11] the equation has no solution when n ≥ 5. 

(1) n=3, we factorize equation (20) to obtain 

311 11 ( 11) .kx a b                                                                       (21) 

where y=a2+11b2 is odd, so a and b have the opposite parity.  

Or 

311
11 11 ( ) ,

2

k a b
x

 
                                                                      (22) 
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where 

2 211
and 1(mod2).

4

a b
y a b


      

On equating the imaginary parts in equation (21) we get 

2 211 (3 11 ).k b a b                                                                        (23) 

From (23) we deduce that 11 , 0lb l k    , so (23) becomes  

2 2 111 3 11 .k l la                                                                                (24) 

Equation (24) is  impossible modulo 11, unless l = k, that is 

2 2 11 3 11 .ka                                                                                   (25) 

The negative sing is impossible, and for the positive sing equation (25) has no solution if 3 2 1,k  [11]. 

So, the equation (20) may have solution when n=3 and 1(mod3)k    

and this solution if it exists is given by 
38 3x a a   where a is an integer satisfies 

2 111 1
.

3

k

a
 

  

Now we equating the imaginary parts in (23) and we get 

8.11
k
=b(3a

2
-11b

2
).                                                                   (26) 

 

We have two cases: 

i. If b=±11l where 0 ≤ l < k, then the equation (26) is impossible modulo 11. 

ii. If b=±11k, then the equation (26) becomes 8=3a2-112k+1.This equation has one solution (a,k)=(21,1) [12], which 

implies x=9324 and y=443. 

(2) n=4, here we can write equation (20) as 

2 2 1

2

11 ,

1.

ky x

y x

  


    
We get 

2 2 12 11 1,ky  
 

this equation is impossible modulo 11. 

Summarizing the above, equation (20) has the following solution when (11,x)=1  we  

(x, y, k, n)= (4,3,0 3), (58,15,0,3), ( 9324,443,1,3). 

II. Let,
 
11 x  then 11sx X  and 11ty Y  such that s, t >0 and (X, 11)=(Y, 11)=1. Equation (20) becomes 

2 2 2 111 11 11 ,s k nt nX Y                                                                (27) 

We have two cases: 

(1)  If 2s=nt, then from (27) we get 

2 2( ) 111 ,k s nX Y    

this equation has solution when n=3 and either k-s=0 or k-s=1, since 2s=3t then
 
3 s . Let s=3M then t=2M , hence 

either k=3M or k=3M+1. 

So equation (20) has three families of solution 

(x,y,k,n)=(4.113M,3.112M,3M,3), (58. 113M ,15. 112M , 3M,3), 
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( 9324. 113M,443. 112M,3M+1,3). 

(2)  If   2k+1=nt then equation (27) become 

1 211(11 ) 1 ,s k nX Y   
 

which has no solution [8].◊ 

 

By using the same argument used in Theorem 2 we get the following:  

Theorem4 

If  p  an odd prime such that 5( 8)p mod and (h,p)=1 where h is the class number of the field 

( 11 )p , then the diophantine equation
 
 

px2+112k+1=yp, p > 11, 

has no solution in integers x and y.◊ 

 

References 

[1] S. Ramanujan, "Collected papers of Ramanujan", Cambridge univ. press, Cambridge, (1927).  

[2] T. Nagell, "The diophantine equation 
2

7 2
n

x   ", Nordisk. Mat. Tidsker, 30, 62-64, Ark. Mat., 4(1960), 185-187.  

[3] Y. Bugeaud and T. Shorey, "On the number of solutions of the generalized Ramanujan-Nagell equation", J. Reine Angew. 

Math., 539(2001), 55-74. 

[4] S. Siksek and J. Cremona, "On the diophantine equation x2+7=ym", Acta Arith.109 (2003), 143-149. 

[5] F. S. Abu Muriefah, " On the diophantine equation px2+q2k=yp" , J. Number Theory, 90 (2008), 1-6. 

[6] F. S. Abu Muriefah, F. Luca and A. A. Togbé, "On the diophantine equation x2+5a.13b=yn", Glasg. Math. J., 50(2008), 175-

181. 

[7] Y. Bilu, G. Hanrot and P. M. Voutier, "Existence of primitive divisor of Lucas and Lehmer numbers", J. Reine Angew. Math., 

539 (2001), 75-122. 

[8] W. Ljunggren, "Einige bemerkungen uber die darstellung ganzer zahlen durch binary kubische formen mite positive 

diskriminante", Acta Math., 75 (1942),1-21. 

[9] E. Demirpolat and S. Cenberci, "On the diophantine equation x2+112k+1=yn", Internat. Math. Forum, 4(2009), 277-280. 

[10] J. H. E. Cohn, "The diophantine equation x2+C=yn", Acta Arith., 65 (1993), 367-381. 

[11] S. A. Arif and F. S. Abu Muriefah," On the diophantine equation x2+q2k+1= yn ",  J. Number Theory, 95 (2002), 95-100. 

[12] O. Korhonen,"On the diophantine equation  Cx2+D=yn", Acta Univ. Oulu. Ser. Asci. Rerum. Natur. Math., 25 (1981), 9-17. 

[13] L. J. Mordell, "Diophantine equations", Academic press, London, (1969). 

 

 

 


