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Abstract: In this paper, the critical transmitting range for connectivity in wireless ad hoc networks is analyzed. More specifically,
we consider the following problem: Assume n nodes, each capable of communicating with nodes within a radius of r. The nods are
randomly and uniformly distributed in a d-dimensional region with a side of lengthl. In this paper the critical transmission range in
dense and sparse network is studied. The critical transmission range in RWP mobile network and the critical transmission range for
k-connectivity are investigated. The results of this paper could be improved the accuracy of ad hoc network which is commonly used
to evaluate the performance of ad hoc network protocols.

Keywords: Mobile Ad-Hoc Networks, CTR, dense network, sparse network, RWP, k-connectivity.

1 Introduction

A wireless ad hoc network is a collection of radio devices
(transceivers) located in geographical region. Each node
is equipped with an omni directional antenna and has
limited transmission power. A communication session is
established either through a single hop radio transmission
if the communication parties are close enough, or through
relaying by intermediate devices otherwise. Because of
the no need for a fixed infrastructure, wireless ad hoc
networks can be flexibly deployed at low cost for varying
mission such as decision making in the battlefield,
emergency disaster relief and environmental monitoring.
In most applications, the ad hoc wireless devices
deployed couples with the potential harsh environment
often hinder or completely eliminated the possibility of
strategic device placement, and consequently, random
deployment is often the only viable option. In some other
applications, the ad hoc wireless devices may be
continuously in motion or be dynamically switched to on
or off. For all the applications, it is natural to represent the
ad hoc devices by a finite random point process over the
(finite) deployment region. Correspondingly, the wireless
ad hoc network is represented by a random [1].

In this paper, we make a step forward towards the
accurate of ad hoc networks. We consider the critical
transmission range (CTR) for connectivity, and we study
how this network changes in the presence of node
mobility. The critical transmission range (CTR)
corresponds to the minimum common values of the nodes
transmitting range that produces a connected graph. It is
known that setting the nodes transmitting range to the
critical value minimizes energy consumption while
maximizing network capacity [2, 3].

Due to the possible occurrence of the border effect,
the CTR in presence of mobility is in general different
from the critical transmitting range in the stationary case
with uniformly distributed nodes. This observation
discloses another potential source of inaccuracy in the
simulation of mobile networks. Suppose we want to
evaluate the performance of a routing protocol for mobile
network. The main effects of mobility on a routing
protocol are (i) frequent route reconfigurations and (ii)
occasional network disconnections. In order to fully
understand the behavior of the protocol, the relative
effects of (i) and (ii) on the routing performance should
be carefully evaluated. It is clear that the frequency of
network disconnections depends on the choice of the
nodes transmitting range the larger the range, the less
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likely it is that the network becomes disconnected. on the
other hand, for the reason described above (energy
consummation and network capacity) the nodes
transmitting range cannot be excessively large. Thus
setting the transmitting range to the critical value for
connectivity is a reasonable choice. For instance if the
CTR in presence of mobility is larger than in case of
stationary networks and the CTR is wrongly set as if the
network were stationary, then there is a relatively high
likelihood of generating a disconnected topology as the
nodes move. In turn this causes a relatively low packet
delivery rate, which could erroneously be interpreted as a
scarce protocol’s ability of performing route maintenance.

In this paper we have assumed that all the network
nodes have the same transmission range r and the
problem is to identify the minimum value of r (critical
range). The most studied version of CTR problem in ad
hoc network is the characterization of the CTR for
connectivity. In section 2 we have been proved that the
CTR for connectivity equals the length of the longest
edge of the Euclidean Minimum Spanning Tree (EMST).
In section 3 we have been studied the theory of geometric
random graph (GRG) that has been often used in the
derivation of analytical characterization of the CTR. Also
in section 4 and section 5 we have presented several
characteristics of the CTR for connectivity in the case of
dense and sparse network respectively. We conclude the
dense and sparse ad hoc network displays the same
behavior. In section 6 we characterize the CTR for
connectivity in case of Random WayPoint (RWP)
mobility. In section 7 we consider characterizations of the
critical value of the range for other important network
properties, such as k- connectivity. In section 8 the CTR
for connectivity with Bernoulli nodes is presented. In
section 9 the experimental results are introduced. Our
conclusion is presented in section 10.

2 Euclidean Minimum Spanning Tree

The following theorem shows that the CTR for
connectivity equals the length of the longest edge of the
Euclidean Minimum Spanning Tree (EMST) built on the
network nodes.
Definition 2.1. (Euclidean MST) Given a set N of nodes
placed in the d- dimensional space (with 1,2,3 ) and a set
of edges E between these nodes, an Euclidean MST
(EMST) is a MST of the edge weighted graph G=(N,E),
where each edge has weight equal to the Eulidean
distance between its endpoints.
Theorem 2.1 [4]. Let N be a set of n nodes placed in R =
[0,l]d , with d = 1, 2, o r3.The CTR for connectivity rc of
the network composed of nodes in N equals the length of
the longest edge of the EMST T built on the same set of
nodes.
Proof: Let e denote the longest edge in T, and let l(e)
denote its length. We ?rst show that rc cannot be larger
thanl(e). This follows by observing that the

l(e)-homogeneous range assignment produces a graph
that contains T as a subgraph and that T is connected by
definition of CTR, we must have rc =l(e). Let us now
prove that it cannot be that rc<l(e). Consider the sets of
nodes corresponding to the two connected components
T1and T2obtained from T by removing edge e (see Figure
1). By de?nition of EMST, edge e is the shortest edge
connecting any pair (u, v) of nodes such that u ? T1 and v
? T2. Thus, any node in T1 is at distance at least l(e) from
any node in T2. This implies that setting the transmitting
range to a value smaller than l(e) would leave the
communication graph disconnected, and the theorem is
proved.
According to theorem 2.1, computing the CTR is
equivalent to computing the EMST on the network nodes,
and ?nding the longest edge in the EMST. Unfortunately,
this way of calculating the CTR is not apt to distributed
implementation, since building the EMST requires global
knowledge (the exact positions of all the nodes in the
network), which can be acquired in a distributed setting
only by exchanging a considerable amount of messages.

Figure 1: Connected components resulting from
removing the longest edge e from the EMST.

For the reasons described above, considerable
attention has been devoted to characterizing the CTR in
the presence of some form of uncertainty about node
positions. If nodes’ positions are not known, the
minimum value of r ensuring connectivity in all possible
cases is r l

√
d since nodes could be concentrated at the

opposite corners of R. However, this scenario is overly
pessimistic in many real-life situations. For this reason, a
typical approach is to assume that nodes are distributed in
R according to some probability density function f , and
to study the conditions for asymptotically almost sure
connectivity.

3 Geometric Random Graphs

The theory of geometric random graph (GRG) has been
often used in the derivation of analytical characterization
of the CTR. In the theory of GRG, a set of points is
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distributed according to some probability density function
(pdf) in a d-dimension region and some property of the
resulting node placement is investigated. For example, the
longest nearest neighbor link, the longest edge of the
Euclidean Minimum Spanning Tree (MST), and the total
cost of the MST have been investigated. For a survey of
GRG, the reader is referred to [5].

Some of these results can be applied in the study of
connectivity in ad hoc networks. For instance, consider a
set S of points distributed in the deployment region R. It is
known that the minimum common value of the
transmitting range such that the resulting communication
graph is connected equals the length of the longest edge
of the Euclidean Minimum Spanning Tree built on S [6].
Hence, results concerning the asymptotic distribution of
the longest MST edge [7, 6] can be used to characterize
the critical transmission range, as it has been done by the
authors [8]. Another notable result of the theory of GRG
is that, under the assumption of uniformly distributed
points, the longest nearest neighbor link and the longest
MST edge have the same value (asymptotically). In term
of the resulting communication graph, this means that
connectivity occurs (asymptotically) when the last
isolated node disappears from the graph. This observation
can be generalized to the case of k-connected [9]. This
result has been showed in [10] to characterize the
k-connectivity of ad hoc networks.

We have been used the following result due to
Penrose [7], which characterizes the distribution of the
longest MST edge for points distributed according to an
arbitrary pdf with connected and compact support.
Theorem 3.1 [11]. Let X1, X2, X3. . . ..Xn be independent
random points in R2 and assume that the points are
distributed according to a common pdf f , having
connected and compact support Ω with smooth boundary
∂Ω . Further, assume that f is continuous on ∂Ω . let Mn
denotes the length of the longest MST edge built on the
first n points of this random process. Then:

lim
n→∞

nπ(Mn)
2

lnn
=

1
minΩ f

Almost surely.
We recall that the boundary ∂Ω is smooth if and only

if it is twice differentiable. Theorem 3.1 holds in the
hypothesis thatminΩ f > 0. However, Penrose states that
given the similarities with the result on the largest nearest
neighbor link of [12], the theorem holds also
whenminΩ f = 0. In this case the value of the limit must
be intended as+∞. in words theorem 3.1 states that the
asymptotic behavior of the longest MST edge (and,
consequently, of the critical transmitting range) depends
only on the minimum value of the pdf used to distributed
the nodes inΩ . In the next sections, we use these results
to characterize the asymptotic behavior of the CTR in
presence of mobility.

4 The CTR in Dense Networks

The CTR in dense networks can be characterized using
results taken from a recent applied probability theory, the
theory of Geometric Random Graphs (GRGs). Since the
CTR equals the longest EMST edge, probabilistic
solutions to the CTR problem in dense networks can be
derived using results concerning the asymptotic
distribution of the longest EMST edge. The following
theorem is proven in [13].
Theorem 4.1 [13] Assume n points are distributed
uniformly at random in the unit square [0, 1]2, and let Mn
be the random variable denoting the length of the longest
MST edge built on the n nodes. Then,

lim
n→∞

P[nπ(Mn)
2 − logn ≤ β ] =

1
exp(e−β )

for anyβ ∈ R.
Corollary 4.1 If R is the unit square and n nodes are
distributed uniformly at random in R, then the CTR for
connectivity is

rc =

√
logn+ f (n)

nπ

where f (n)is an arbitrary function such that
limn→∞ f(n) = +∞.
Proof: Let Gr denote the communication graph obtained
when the transmitting range is set to r. Given the
characterization of the CTR for connectivity of Theorem
2.1 and Theorem 4.1, Gr is asymptotically almost surly
(a.a.s) connected if and only if

lim
n→∞

P

[
r ≤

√
logn+β

nπ

]
= 1.

It is immediate to see that corollary (??) is satis?ed if and
only if β = f (n) for any function f (n) such that
limn→∞ f(n) = +∞.

The CTR in case of three-dimensional networks can be
derived by combining theorem 1.4 of [14] and theorem 1.1
of [15].
Theorem 4.2[4] If R is the unit cube [0, 1]3 and n nodes
are distributed uniformly at random in R, then the CTR for
connectivity is

rc =
3

√
logn− log logn

nπ
+

3
2
.
1.41+g(n)

πn

where g(n) is an arbitrary function such thatlimn→∞ g(n) =
+∞.

Note that, with respect to the case of two-dimensional
networks and disregarding constants, the expression of
the CTR in three-dimensional networks contains an
additional log log nterm. It is observed in [14] that this
term is due to the boundary effect which is asymptotically
negligible in the two-dimensional case, while it is not
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negligible for three-dimensional networks. In case of
one-dimensional networks (nodes along a line), the CTR
can be characterized by combining Theorem 3.1 of [16],
Theorem 2 of [13], and Theorem 2 of [12].
Theorem 4.3[4] If R is the segment of unit length [0, 1]
and n nodes are distributed uniformly at random in R,
and then the CTR for connectivity is

rc =
logn

n

5 The CTR in Sparse Networks

A common assumption of the GRG model is that the node
deployment region R is ?xed (typically, it is a
d-dimensional cube), and the asymptotic investigation is
for increasing number of deployed nodes (i.e. for
increasing density). Combining this observation with the
fact that the rate of convergence of the actual CTR to the
theoretical value of the CTR is quite low, we can
conclude that the results presented in the previous section
in principle can be applied only to networks with very
high node density. To circumvent this problem, some
authors suggested adding a further parameter to the
model, the side l of the deployment region. In this model,
l is the independent variable, and the asymptotic values of
r and n (which can be seen as functions of l) yielding
connectivity with high probability are investigated
forl → ∞. Differing from the GRG model, node density n

ld

can either converge to 0, or to a constantc > 0, or diverge
asl → ∞ depending on the relative magnitude of n andl.
Let us ?rst consider one-dimensional networks. The
following result, as well as the other results presented in
this section, has been proven in [17] by making use of the
occupancy theory, which is another applied probability
theory used in the analysis of ad hoc network properties.
Theorem 5.1 [17] Assume n nodes, each with
transmitting range r, are placed uniformly at random in
[0,l], and assume that rn = kl log l, for some constant k>
0. Further, assume that r = r(l)<< l and n = n(l)>> 1.
If k> 2, or k=2 andr = r(l) >> 1, then the resulting
communication graph is a.a.s. connected. If k ≤ (1− ε)
and r = r(l) ∈ Θ(lε) for some0 < ε < 1, then the
communication graph is a.a.s. disconnected. If r = r(l) is
not of the form Θ(lε)but,rn << l log l, then the
communication graph is a.a.s. disconnected.
Corollary 5.1 If R = [0, l] and n nodes are distributed
uniformly at random in R, the CTR for connectivity is

rC = k
l log l

n

where k is a constant with 1 = k = 2.
As compared to Theorem 4.3, the statement of

Theorem 5.1 is more involved, and contains several
technical conditions. In particular, there are assumptions
on the relative magnitudes of r and n when expressed as
functions of the independent variable l, namely,

r = r(l) << l and n = n(l) >> 1.Given the more general
nature of this model as compared to the GRG model,
these assumptions are necessary to investigate the
asymptotic behavior of the CTR in a nontrivial setting. In
fact, suppose r l. In this case, each node has a direct
connection to most of the other network nodes, and
connectivity is ensured independent of n.

On the other hand, if n would remain constant as l
increases, the only way of obtaining a connected network
would be to have r l, which is also a trivial case. It is
interesting to compare Corollary 5.1 with the analogous
theorem for dense networks. First of all, we observe that
the characterization of the CTR in case of sparse
networks is only partial since the exact value of the
constant k is not known. The authors of [17] argue that k
is probably 1, indicating a clear similarity with Theorem
4.3 Assuming k = 1, the only difference between the
formulas presented in the two theorems is the ‘geometric
factor’ while in case of ?xed deployment region R the
product rc n is proportional to log n, in case of
deployment region of side l, the product is proportional to
l log l. The l term can be interpreted as the scaling factor,
while the log l term indicates the dependence of the CTR
on a geometric parameter.
Theorem 5.2 [17] Assume n nodes, each with
transmitting range r, are placed uniformly at random in
[0,l]d , with d = 2, 3 and assume that rdn = kld log l, for
some constant k > 0. Further, assume that r = r(l) << l
andn = n(l) >> 1. If k > dkd , or k = dkd
andr = r(l) >> 1, then the resulting communication
graph is a.a.s. connected, wherekd = 2ddd/2.
Theorem 5.3 [17] Assume n nodes, each with
transmitting range r, are placed uniformly at random in
[0, l]d , with d = 2, 3, and assume that r = r(l) << land
n = n(l) >> 1. If rdn ∈ O(ld), then the resulting
communication graph is not a.a.s. connected.

Note the asymptotic gap between the necessary and
sufficient condition for a.a.s. connectivity: it is known that
rdn ∈ Θ(ld log l) is sufficient for a.a.s. connectivity
[Theorem 5.2] and that rdn >> ld is necessary for a.a.s.
connectivity [Theorem 5.3]. Thus, the CTR for
connectivity rC might be any function of the following
type:

ld f (l)
n

where f(l) is a function such that f(l) ? O(log l) and f(l) 1.
The authors of [17] argue that f(l) = log l is also a

necessary condition for a.a.s. connectivity. We then claim
the following result, which is only partially proven.
Proposition 5.1 If R = [0,l]d , with d = 2, 3, and n nodes
are distributed uniformly at random in R, the CTR for
connectivity is

rc = k
ld log l

n

where k is a constant with 0 ≤ k ≤ 2ddd/2+1.
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6 The CTR in Mobile Networks

Our first result is the characterization of the CTR in the
presence of bounded and obstacle free mobility, which we
known define.
Definition 6.1 Let R be a bounded region, and let ∂R be
its boundary. Let M be an arbitrary mobility model, and
let fM be the pdf that resembles the long-term node
spatial distribution generated by M-like mobility. M is
bounded within R if the support of fMis contained in R. M
is obstacle free if the support of fM contains R - ∂R.

In words, a mobility model is bounded within R if the
nodes are allowed to move only within that region, while
it is obstacle free if the probability of finding a mobile
node in any subregion of R (excluding the border) is
greater than 0. For instance, the random waypoint model,
the random direction model, and the Brownian-like model
are bounded and obstacle free.
For simplicity, in the rest of this paper, we assume that R
[0, 1]2, i.e., it is the unit square.
Theorem 6.1 [18]. Let M be an arbitrary mobility model
which is bounded within R[0,1]2and obstacle free.
Furthermore, assume that fMis continuous on ∂R and
minR fM > 0. The critical transmitting range for
connectivity of an ad hoc network with M- like mobility is

rM = c
√

lnn
πn with high probability, for some constant

Proof: We observe that, if the hypotheses of Penrose’s
theorem hold, our result follows immediately since
minR fM > 0 by hypothesis. Thus, we only have to show
that the hypotheses of Penrose’s theorem are satisfied.
First, we observe that, since M is bounded within R and
obstacle free, the support of fM is contained in R and
contains R-∂R. Since R is connected and compact, it
follows that the support of fMis connected and compact
also. Furthermore, fM is continuous on ∂R by hypothesis.
The only hypothesis left to prove is that ∂Ris smooth.
Unfortunately, this is not true due to the presence of the
corners. This problem can be circumvented by
considering the regionRε , obtained by “rounding” the
corners of ∂R with a portion of the circle of radius ε(see
[18]). The boundary of Rε is smooth for any value of
0 < ε < 1

/
2 andlimε→0 Rε = R.

6.1 The CTR in RWP Mobile Networks

In this section, we characterize the CTR for connectivity
in case of RWP mobility, which is by far the most popular
mobility model used in the simulation of ad hoc
networks. It is known that the asymptotic node spatial
distribution generated by RWP mobility is not uniform
but is somewhat concentrated in the center of the
deployment region [19, 20]. This phenomenon, which is
called the border effect, is due to the fact that the
waypoints (i.e. the destinations of a movement) in the
RWP model are selected uniformly at random in a
bounded deployment region R. To better understand this

point, consider a RWP mobile node u, and assume that
node u is currently resting at a waypoint that is close to
the border of R (see Figure 2). Since the next waypoint is
chosen uniformly at random in R, it is very likely that the
trajectory connecting node u with its next waypoint will
cross the center of R. So, the probability of ?nding a
mobile node close to the center of R is higher than the
probability of ?nding the node on the boundary. This
means that mobile nodes contribute a nonuniform
component to the asymptotic node spatial distribution
generated by RWP mobility, which we denote by fm (m
stands for ‘mobile’). On the other hand, a node resting at
a waypoint contributes a uniform component fu to the
asymptotic RWP distribution, since the waypoints are
chosen uniformly at random in R. Then, the asymptotic
node spatial distribution generated by RWP mobility,
denoted by fRWP is given by fRWP = fm + fu, which is
nonuniform. The amount of this nonuniformity (and,
hence, the intensity of the border effect) depends on the
relative strength of the two components of fRWP. It is easy
to see that a longer pause time strengthens fu, since the
nodes remain stationary for a longer time. Conversely, fm
is maximal when the pause time is 1 because, in this case,
nodes are constantly moving.

Figure 2: The border effect in RWP mobile networks

When a node is resting close to the border, it is likely
that the trajectory to the next waypoint crosses the center
of the deployment region (dark shaded area). In the ?gure
2, the probability that the trajectory of node u to the next
waypoint intersects A1 equals the sum of the areas of A1
and A2 (we are assuming R = [0, 1]2). The informal
argument above is theoretically supported by the
following theorem proven in [21], which derives a very
good approximation of fRWP when nodes move in R = [0,
1]2.
Theorem 6.1.1 [21] the asymptotic spatial density
function of a node moving in R = [0, 1]2 according to the
RWP model with pause time tp and velocity v is closely
approximated by

fRWP(x,y)=
{

Ppause +(1−Ppause) fm(x,y)....i f (x,y) ∈ [0,1]2
0...............................................otherwise
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where

PPause =
tp

tp +
0.521405

v

,

fRWP(x,y) =
{

0...............................i f (x = 0)or(y = 0)
fR(x,y).......................otherwise

The expression of fR(x,y) could be written as:
fR(x,y) = 6y+ 3

4 (1−2x+2x2)( y
y−1 +

y2

(x−1)x )

+ 3
2 ((2x−1)y(1+ y) log( 1−x

x )+y(1−2x+2x2 + y) log( 1−y
y ))

We remark that the expression of fm(x,y) above is valid
only for
(x,y) ∈ R =

{
(x,y) ∈ [0,1]2 |(x ≥ y) ∧ (x ≤ 1

/
2) } the

expression of fm(x,y) on the remainder of [0, 1]2 can be
easily obtained observing that by symmetry we have

fm(x,y) = fm(y,x) = fm(1− x,y) = fm(x,1− y).

The CTR in presence of RWP mobility can be
characterized by using the following result of the GRG
theory, which is due to Penrose [22] [23].
Theorem 6.1.2 [22] Assume n nodes are distributed
independently at random in R2 according to a common
probability density function f , having connected and
compact support Ωwith smooth boundary∂Ω . Further,
assume that f is continuous on ∂Ω .Let Mn denote the
length of the longest MST edge built on the n points. Then,

lim
n→∞

nπ(Mn)
2

logn
=

1
minΩ f

Almost surely
We recall that the support Ω of a probability density

function is the set of points in which it has nonzero value,
and that the boundary ∂Ω is smooth if and only if it is
twice differentiable. Informally speaking, Theorem 6.1.2
states that the asymptotic behavior of the CTR for
connectivity with arbitrary density f depends only on the
minimum value of f in its support. In caseminΩ f = 0,
the limit of equation in theorem 6.1.2 must be intended as
+8. In order to apply Theorem 6.1.2 to fRWP, we have to
check that all the conditions of the theorem are satis?ed. It
is immediate to see that R = [0, 1]2, the support of fRWP, is
connected and compacted. However, the boundary ?R of
R is not smooth because of the presence of the corners.
This problem can be circumvented by using the
‘corner-rounding’ technique described in [24]. Thus, we
are in the hypotheses of Theorem 6.1.2, and the only
thing left to do to characterize the CTR is to determine
the minimum value of fRWP in R. This can be easily done,
given the expression of fRWP introduced in Theorem
6.1.1.
Corollary 6.1.1 Let f tp

RWP denote the asymptotic node
spatial density generated by RWP mobile networks with
pause time tp and velocity v. The minimum value of f tp

RWP
is achieved on ?R, and it equals PPause =

tp

tp+
0.521405

v

Whentp → ∞, f tp
RWP becomes the uniform distribution on

[0, 1]2, and minR f ∞
RWP = 1.

We are now ready to characterize the CTR in presence of
RWP mobility.
Theorem 6.1.3 [24] If R = [0, 1]2 and n nodes move in R
according to the RWP mobility model with pause time tp
and velocity v, then the CTR for connectivity is

rtp
RWP =

1
Ppause

√
logn
πn

=
tp +

0.521405
v

tp

√
logn
πn

if tp > 0. If tp = 0, we have

r0
RWP >>

√
logn

n

a.a.s.
Note that the CTR in presence of RWP mobility is

always larger than the CTR in case of uniform node
distribution since 1/Ppause is larger than 1 for any value of
tp. For instance, with tp = 75 and v = 0.01, we have
1/Ppause = 1.69485. Clearly, a longer pause time results in
a more uniform node distribution and, consequently, in a
smaller value of the CTR. For instance, with tp = 150, we
have 1/Ppause = 1.34743.

Note also the asymptotic gap of the CTR in the most
extreme case of RWP mobility, that is, when tp = 0: in
this case, for any constant c > 0, setting the transmitting

range to c
√

logn
n is not sufficient for achieving a.a.s.

connectivity. The exact value of the CTR with RWP
mobility when tp = 0 is not known to date. In [24], it is

conjectured that r0
RWP ≈ 1

4 logn
√

logn
πn .

Theorem 6.1.4 [4] A network with RWP mobility is
ergodic with respect to the CTR for connectivity.
Proof: In order to prove the theorem, we have to show
that the RWP mobility model is stable and c-independent,
for some constantc > 0. The ?rst property is an immediate
consequence of Theorem 6.1.1. As for the second,
consider an arbitrary time instant i. We have to determine
a certain value c > 0such that the positions of all the
nodes at time i+c are independent of node positions at
time i. Let us de?ne a movement epoch as the time needed
for a node just arrived at a waypoint to reach the next
waypoint. In other words, a movement epoch is composed
of the pause time plus the travel time between two
consecutive waypoints. Since the length of the trajectory
and node velocity is in general random variables, the
duration of a movement epoch is also a random variable.
Indeed, we have a sequence of random variables
representing the duration of the various epochs that
constitute the movement trace of a node. We denote these
variables with Eu, j ,where u is the node to which the
variable is referred and j denotes the jth epoch of node u.
By de?nition of RWP mobility, node u’s position at time i
+ c is independent of its position at time i if and only if c
is larger than Eu, j+ Eu, j+1,where j is the index of the
epoch occurring at time i. In words, the node must
conclude the current and the next epoch before its
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position is independent of the position at time i. Note that
it is not enough for the node to terminate the current
epoch, since a node which is traveling at time i is on its
trajectory to a certain waypoint Wu, j, which is also the
starting point of the next trajectory. However, after the
node has reached the next waypoint, the conditions for
independence are satis?ed. So, proving the theorem
reduces to proving that there exists constant c > 0 such
that Eu, j+ Eu, j+1 = c, for any j = 0 and for any node u.
This is accomplished by settingc = 2

√
n

vmin
. In fact, the

maximum length of a linear trajectory in R = [0, 1]2 is
√

2,
and node velocity in the RWP model is at least vmin > 0.
Note that, by settingc = 2

√
n

vmin
, we ensure that the

positions of all the nodes at time i + c are independent of
their positions at time i. This follows from the fact that
inequality Eu, j+ Eu, j+1 = c is satisfied for any epoch and
for any node.

7 The CTR for k –connectivity

The k-connectivity graph property is an immediate
extension of the concept of graph connectivity. Formally,
k-connectivity is defined as follows:
Definition 7.1 [Connectivity] A graph G is said to be
k-connected, where 1 ≤ k < n, if for any pair of nodes u, v
there exist at least k node disjoint paths connecting them.
The connectivity of G, denoted ask(G), is the maximum
value of k such that G is k-connected. A 1-connected
graph is also called simply connected.

A similar definition of connectivity can be given by
considering edge, instead of node, disjoint paths between
nodes. Denoting with ξ (G) the edge-connectivity of G, it
is seen immediately that k(G)≤ ξ (G). Figure 3 illustrates
the concepts of k-connectivity and k-edge connectivity.

The interest in studying the CTR for k-connectivity is
motivated by the fact that, when a network is k-connected,
at most k - 1 node or link faults can be tolerated without
disconnecting the network. So, a k-connected network is
more resilient to faults than a simply connected network,
where a single node or link failure might partition the
network. A network satisfying k-connectivity in general
achieves also a better load balancing with respect to a
simply connected network in fact, messages between any
two nodes u and v can be routed along at least k different
paths, instead of along at least one single.

On the other hand, a connectivity value that is too
high is detrimental for network capacity since any
transmission would interfere with a large number of
nodes. For instance, if k(G) = n

2 , it is seen immediately
that any node in the communication graph has at least n

2
neighbors. In turn, this implies that when any node
transmits, it interferes with at least n

2 nodes, and the
network traffic carrying capacity is compromised. Thus,
from a practical point of view, only networks with
relatively low connectivity are of some interest. The ?rst
study of k-connectivity that can be applied to ad hoc

networks is due to Penrose. In [15], Penrose shows that
the giant component phenomenon occurs in case of
k-connectivity also, for any constant1 ≤ k < n. More
formally, Penrose proved the following theorem.

Figure 3: Simple and 2-connectivity.

(a)-The graph is simply connected (removing node w,
or edge (w, v), is sufficient to disconnect the network).

(b)-The graph is 2-edge-connected, but not 2-(node)
connected. In fact, removing any edge does not
disconnect the graph, but removing node w does
disconnect the graph.

(c)-The graph 2-connected: removing any node or
edge does not disconnect the graph path. In turn, better
load balancing means a more evenly distributed energy
consumption in the network, which potentially results in a
longer network lifetime.

Theorem 7.1 [15] Assume n nodes are distributed
uniformly at random in R = [0, 1]d , with d = 2, 3. Let rn
(respectively, σn) denote the minimum value of the
transmitting range at which the communication graph
becomes k-connected (respectively, has minimum degree
k), where 1 ≤ k < n is an arbitrary constant. Then,

lim
n→∞

P[rn = σn] = 1
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In words, Theorem 7.1 states that, with high
probability, the network becomes k-connected when the
minimum node degree in the communication graph
becomes k. Theorem7.1 proved useful in the
characterization of the CTR for k-connectivity, which can
be derived by analyzing the probability of the relatively
simpler event that every node in the network has degree at
least k. The value of the CTR for k-connectivity, which
was partially characterized in [15], has been derived in
[15] in case of two-dimensional networks.
Theorem 7.2 [25] Assume n nodes are distributed
uniformly at random in the unit square R = [0, 1]2. The
CTR for k-connectivity, for any constant k, with
1 ≤ k < n, is

rk =

√
logn+(2k−3) log logn+ f (n)

πn

where f(n) is a function such that limn→∞ f (n) = +∞.
Wan and Yi [26, 27] proved that a similar expression

holds when nodes are uniformly distributed in the disk of
unit area.

Comparing the expression of the CTR for
k-connectivity with that of the CTR for simple
connectivity (Corollary 4.1), we see that the difference
between the two values is only in the second-order term
(2k − 3) log logn (we recall that k is a constant). This
means that, asymptotically, k-connectivity with k > 1 is
achieved by slightly increasing the transmitting range
with respect to the critical value for simple connectivity.
The CTR for k-connectivity has also been studied under
the assumption that n nodes are distributed in a
two-dimensional region A with very large area [26]. With
this assumption, the number of nodes per units of area is
ρ = n

a with high probability, where a is the area of A.
Theorem 7.3 [26] Assume n nodes, each with
transmitting range r0, are distributed uniformly at
random in A, where A has a very large area. The
probability that the minimum node degree in the
communication graph is at least k, for some1 ≤ k < n, is
closely approximated by

P(degmin ≥ k)≈

(
1−

k−1

∑
i=0

(ρπr2
0)

i

i!
.e−ρπr2

0

)n

a.a.s., where ρ = n
a .

Given Theorem 7.1, the expression reported in
Theorem 7.3 is also a close approximation of the
probability of having a k-connected network [4].

8 The CTR for Connectivity with Bernoulli
Nodes

Wireless ad hoc networks with Bernoulli nodes provide a
unified model of various important problems including
fault-tolerances, randomized construction of virtual

backbone, randomized broadcast routing and randomized
wake/sleep management. We assume that the wireless ad
hoc network consists of n nodes which are distributed
independently and uniformly in a unit-area disk and are
active independently with some constant probabilityp. let
rn denote the random variable which is the smallest
transmission range at which the active nodes form a
connected network , and r′n denote the random variable
which is the smallest transmission range at which the
active nodes from a connected network and each inactive
nodes is adjacent to at least one active node. rn is referred
to as the critical transmission range for connectivity of
active nodes , and r′nis referred to as the critical
transmission range for connectivity of all nodes . The
precise asymptotic distribution of rnandr′n. The
Asymptotic Critical Transmission Range for Connectivity
in Wireless Ad Hoc Network with Bernoulli nodes paper
has been studied by Peng-Jun Wan and Chih-Wei Yi [1].

9 Experimental results

Figure 4 depicts the rate convergence of the CTR to the
asymptotic value in case of two dimensional networks,
where the asymptotic value of the CTR is obtained by
setting the formula in corollary 4.1 with n nodes are
distributed uniformly at random [0,1]2. As seen from
figure 4 the CTR in dense network is decreased with the
increasing of the node density ( number of network nodes
). Table 1 CTR in dense network

n CTR n CTR
10 0.323348 500 0.073219
20 0.261181 1000 0.054284
50 0.187547 1500 0.045468
100 0.142973 2000 0.040061
250 0.098184 2500 0.036297

Figure 4: CTR for connectivity according to Corollary
4.1 in dense network.

Figure 5 shows the rate of convergence of the actual
CTR in one-dimensional networks to the asymptotic value
as predicted by Corollary 5.1, where k is set to1. as in the
case of dense networks. In the experiments, the number n
of nodes to distribute for a given value of l is set to

√
l.
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As seen from the ?gure, in this case. The asymptotic CTR
formula of Corollary 5.1 is a very good approximation of
the actual CTR for moderate to high values of l. Note that
these values of l correspond to values of n. Thus, contrary
to the case of dense networks, the formula of Corollary
5.1 is very accurate even for networks composed of few
nodes. In case of two- and three-dimensional networks, the
characterization of the CTR proven in [17] is weaker.

Table2 CTR in sparse network

l CTRk=0.5 CTRk=0.7 CTRk=1.0
10 0.00768 0.01075 0.01535
20 0.01997 0.02796 0.03994
50 0.0652 0.09128 0.1304
100 0.15351 0.21491 0.30701
250 0.46012 0.64417 0.92024
500 1.03577 1.45008 2.07154
1000 2.30259 3.22362 4.60517
1500 3.65661 5.11925 7.31322
2000 5.06727 7.09418 10.1345
2500 6.52004 9.12805 13.0401

Figure 5: CTR for connectivity according to Corollary
5.1 in sparse network

Figure 6 shows the rate of convergence of the actual
CTR for connectivity to the asymptotic value stated in
theorem 6.1.3 in case of RWP mobility with tp =1, 50,
and tp = 150. The actual CTR value is computed as
follows: Initially, n nodes are distributed uniformly
randomly in R = [0, 1]2. Then, they start moving
according to the RWP mobility model. From figure 6, we
show that the formula of theorem 6.1.3 is quite accurate
only for large values of n. The experimental value of the
CTR for RWP mobile networks with different values of
the pause time is reported in table 3.

Table 3 CTR in RWP in mobile network

n Tp=1 Tp=50 Tp=150
10 1.68274 0.29904 0.28021
20 1.35721 0.24119 0.226
50 0.9809 0.17431 0.16334
100 0.75255 0.13373 0.12531
250 0.52116 0.09261 0.08678
500 0.39096 0.06948 0.0651
1000 0.29146 0.05179 0.04853
1500 0.24486 0.04351 0.04077
2000 0.21619 0.03842 0.036
2500 0.19618 0.03486 0.03267

Figure 6: CTR for connectivity in RWP mobility with
tp=1, 50,150

Figure 7 depicts comparing the expression of the CTR
for k-connectivity with that of the CTR for simple
connectivity (Corollary 4.1), we see that the difference
between the two values is only in the second-order term
(2k − 3) log logn (we recall that k is a constant). This
means that, asymptotically, k-connectivity with k > 1 is
achieved by slightly increasing the transmitting range
with respect to the critical value for simple connectivity.
The CTR is decreased with the increasing of the node
density of network.

Table 4 CTR for k-connectivity

n CTRk=2 CTRk=3
10 0.363806 0.43354
20 0.294112 0.35082
50 0.210399 0.24991
100 0.159787 0.188979
500 0.081111 0.094946
750 0.067988 0.079388
1000 0.059925 0.069853
1500 0.050095 0.058256
2000 0.044078 0.051176
2500 0.039897 0.046264
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Figure 7: the CTR for k-connectivity.

10 Conclusion

In this paper, we have analyzed the critical transmitting
range for connectivity in dense, sparse network and
mobile wireless ad hoc networks. For dense and sparse
networks, we have provided both analytical and
experimental results. The most notable aspect of our
analysis is that, contrary to the case of existing theoretical
results, it can be applied to both dense and sparse ad hoc
networks We have also investigated the critical
transmitting range in two-dimensional mobile networks
We have considered a mobility random waypoint.

For the case of RWP mobility, we have proven a more
accurate characterization of the CTR and shown that, if
the pause time is 1, there is an asymptotic gap between
the mobile and uniform scenario. We have verified the
quality of our experimental results. We have also
presented a formula that, given the value of the CTR in
the uniform case, provides a good approximation of the
CTR in the most extreme case of RWP mobility, i.e.,
when the pause time is set to 1. We remark that the
approach presented in this paper could be easily extended
to other mobility models. If the expression of the pdf fm
that resembles the long-term node distribution is known
and satisfies certain properties, it is sufficient to compute
the minimum value of fmon R to determine the value of
the critical range for connectivity. In this paper we
consider characterization of the CTR for other important
network prosperities such as k-connectivity and
connectivity with Bernoulli nodes. We believe that the
results of this paper can be improving the accuracy of ad
hoc network which is commonly used to evaluate the
performance of ad hoc network protocols.
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