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Abstract: In this work we derive a novel procedure for obtaining the bosonic Bogoliubov vacuum states by using a recursive scheme.
The vacuum state for the new creation and annihilation operators is explicitly constructed in terms of the number states of the old
operators, which are connected by a Bogoliubov transformation. The coefficients of the ground state in Fock basis are thus obtained as
exclusive functions of the parameters of the Bogoliubov transformations.
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1 Introduction

The Bogoliubov transformation has been used as a
powerful tool in studying the properties of various
quantum systems [1,2]. One of the advantages in using
this method is that linear canonical transformations
provide the exact diagonalization of quadratic
multidimensional Hamiltonians [3,4]. It is well known
that the problem of finding the Hamiltonian eigenvalues
and eigenvectors for a set of coupled harmonic oscillators
can be solved in analogy with the classical case, when a
Bogoliubov transformation is performed. In order to
obtain the complete solution, one needs the quantum state
transformations from the base states of the old operator to
those of the new one. Ultimately, this is equivalent to
obtain the relations between linear canonical
transformations and the related unitary operators in
Hilbert space, which were extensively studied for bosonic
and fermionic operators by many authors [5,6,7].

The unitary operator corresponding to the Bogoliubov
transformation has no classical equivalent and its study
contributes to understanding remarkable quantum aspects.
Particularly, it is theoretically relevant the bosonic
Bogoliubov vacuum, or bosonic ground states. For
example, in Bose-Einstein condensate state [8,9], and in
the study of vacuum structure of de Sitter space [10].

In the coherent state representation, the ground state is
given by a Gaussian function [13]. However, in some
situations it turns to be convenient to have the ground

states in the Fock space, given in terms of the number
states of the old creation and annihilation operators (i. e.,
before the Bogoliubov transformation is carried out). In
principle, it is possible to construct the Bogoliubov
vacuum state in the occupation number representation by
simply changing the basis. However this is a very
cumbersome task which demands a huge work.

In this work we give explicit formulas for the
coefficients cn1,n2,... = |n1,n2, . . . ,0⟩b, appearing in the
expansion of the Bogoliubov transformed vacuum with
respect to the original number of particles basis. The
formulas we propose allow a recursive computation of the
coefficients cn1,n2,... based only on the parameters
characterizing the Bogoliubov transformation. The
proposed new formulas are an alternative calculation of
standard formulas based on coherent states and Gaussian
integration.

The work is organized as follows. In Section 2, we
briefly discuss the properties of the Bogoliubov
transformation of creation and annihilation bosonic
operators. In Section 3, we present a recursive method of
calculation of the coefficients of the Bogoliubov
transformation. In Section 4 we present the conclusions.

2 The Bogoliubov transformation

Let us consider a bosonic Fock space, with creation and
annihilation operators, a†

j and a j, satisfying canonical
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commutation relations. An orthonormal basis for the Fock
space is given by vectors |n1,n2, . . .⟩, where the integers
n j specify how many particles occupy the j-th
one-particle state.

The linear canonical transformation acting on creation
and annihilation bosonic operators was first introduced by
N. Bogoliubov in 1947 [11,12]. In such transformation
the new creation (bi) and annihilation (b†

i ) operators are
related to the corresponding old operators ai and a†

i
through,

bi =
s

∑
j=1

(
µi ja j +νi ja†

j

)
, (1)

b†
i =

s

∑
j=1

(
ν̄i ja j + µ̄i ja†

j

)
, (2)

where i = 1, . . . ,s, being s the number of oscillators. Using
matrix notation, we may write

b = µa+ va†, (3)

b† = ν̄a+µ̄a†, (4)

where we have denoted the matrices µ = [µ jk]s×s,
ν = [ν jk]s×s, a = [ai]s×1, etc. The commutation relations
satisfied by the bosonic operators

[b j,b†
k ] = δ jk, [b j,bk] = 0, (5)

yield the following two matrix relations:

µµ† −νν† = 1, (6)

and
µνT −νµT = 0. (7)

The number states in the Fock basis can be written in
terms of the old vacuum states, namely

|n1 . . .ns⟩a =
s

∏
j=1

1√
n j!

(
a†

j

)n j
|0, . . . ,0⟩a, (8)

where {|n1, ...,ns⟩a} represent the eigenvectors of the old
number operator a†ai.

In the same way, the construction of the number states
in the Fock basis for the new number operator b†b j can
be expressed in terms of the vacuum state
|0⟩b = |0, . . . ,0⟩b. Notice that |0⟩b are not necessarily the
ground states. By definition, the minimum energy state
correspond to the vacuum state associated with a
transformation that diagonalizes the system Hamiltonian.
In fact, any quadratic multidimensional Hamiltonian can
be written as

H = ∑
i

Eib+
i bi, (9)

from an appropriate Bogoliubov transformation.
In view of the discussion in the previous section, we

can ask how to obtain the vacuum state |0⟩b in terms of the

old number states |n1, . . . ,ns⟩a given in Eq. (8). From the
formal point of view, this may be written in the form

|0⟩b = ∑
n1...ns

cn1...ns |n1, . . . ,ns⟩a. (10)

The explicit form of |0⟩b obtained in the coherent
representation is given by [13],

a⟨α1, . . . ,αs|0⟩b =
[
det
(
µ†µ

)]−1/4

×exp

(
−1

2 ∑
i

ᾱiαi +
1
2 ∑

i j
σi jᾱiᾱ j

)
, (11)

where |αi⟩a represent the coherent states associated with
the operator ai (ai|αi⟩ = αi|αi⟩), where the matrix σ is
defined as

σ =−µ−1ν . (12)

Notice that the matrix µ is invertible, since from Eq.
(6) follows that det(µ) ̸= 0. It is not difficult to obtain |0⟩a,
if we assume µ = 1 and ν = 0 (with b = a) in Eq. (11).
Thus, we get

a⟨α1, . . . ,αs|0⟩a = exp

(
−1

2 ∑
i

ᾱiαi

)
(13)

In terms of the number states |n1, . . . ,ns⟩a relative to
the old creation and annihilation operators, the change of
basis of Eq. (13) yields

cn1,...,ns =
[
det
(
µ†µ

)]−1/4
∫

Πi

(
d2αi

π
ᾱni

i√
ni!

)
×exp

[
−∑ ᾱiαi −

1
2 ∑

i j
σi jᾱiᾱ j

]
, (14)

where the integral in the right hand side of the last equation
is carried out over the whole complex plane.

So, we have a close relationship for the coefficients.
However, calculating the integral on the right side of the
last equation, using analytical or numerical methods, it is
usually a difficult task to be performed. So is the
determination of values for cn1,...,ns . In particular, for
ni = 0, i = 1, . . . ,s, the last equation provides

c0,...,0 =
[
det
(
µ†µ

)]−1/4
. (15)

It is useful to obtain the vacuum |0⟩b independent
representation, which is given by

|0⟩b =
[
det
(
µ†µ

)]−1/4
exp

(
1
2 ∑

i j
σi ja+i a+j

)
|0⟩a. (16)

In order to verify Eq. (16), we just multiply it by
a⟨α1, . . . ,αs| and then use Eq. (13). It is also possible to
obtain the coefficients {cn1,...,ns} by means of a expansion
in power series of Eq. (16). For example, for s = 1, the
direct calculation leads to

cn = ⟨n|0⟩b =
1√
|µ|

(
− ν

2µ

)n/2 √
n!

(n/2)!
. (17)
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Nevertheless, for s > 1 the calculation of the
coefficients {cn1,...,ns} by expansion in power series of Eq.
(16) is not easy to carry out, and this justifies the search
for an alternative method for calculating the coefficients.

3 Description of the method

We want to show that the vacuum state |0⟩b given in the
Fock basis can be constructed avoiding the use of Eq. (14).
We then take the expression

b⟨0|b†
j |n1, ...,ns⟩a = 0. (18)

But from Eqs. (1) and (2), this equation can be put in the
form

∑
j

b⟨0|
(

µ̄i ja†
j + ν̄i ja j

)
|n1, ...,ns⟩a = 0, (19)

from which we get

∑
j

( µi j
√

n j +1cn1,...,n j+1,...,ns

+ νi j
√

n jcn1,...,n j−1,...,ns) = 0. (20)

The last equation can also be written in the matrix form cn1+1,...,ns

√
n1 +1

...
cn1,...,ns+1

√
ns +1

= σ

 cn1−1,...,ns

√
n1

...
cn1,...,ns−1

√
ns

 ,

(21)
From Eq. (7) follows

ν = µνT (µT )−1
, (22)

and
µ−1ν =

(
µ−1ν

)T
. (23)

So, from Eq. (12) together with the two last equations,
one shows that σ is a symmetric matrix. Thus, Eq. (21)
provides s equations in the form of

cn1,...,ni+1,...,ns =
s

∑
j=1

σi j

√
n j

ni +1
cn1,...,n j−1,...,ns

(i = 1, ...,s), (24)

which yields the recursive equations

cn1,...,ns = σii

√
ni −1

ni
cn1,...,ni−2,...,ns

+
s

∑
j ̸=i

σi j

√
n j

ni
cn1,...,ni−1,...,n j−1,...,ns . (25)

Eq. (24) is the natural way to obtain the vacuum |0⟩b
in Fock basis. Our goal in this work is to obtain, from Eq.
(24), an explicit expression for any of the coefficients
cn1,...,ns given as a function of the parameters of the
Bogoliubov transformation. Initially, we will distribute

the coefficients into sets CN = {cn1,...,ns |n1 + ...+ns = N},
where N is a nonnegative integer. We point out that the
coefficients cn1...ns ∈ CN are generated from the
coefficients cn′1...n

′
s
∈ CN−2. So we must conclude that we

have two independent groups of coefficients: cn1...ns ∈CN ,
for N an even integer, and cn1...ns ∈ CN , for N an odd
integer. It is very important to note that none of the
members of a group relates to the elements of another
group.

The starting values of the odd group are s coefficients
c0,...,1,...,0 ∈C1, which can be determined from Eq. (20):

µ

 c1,0...,0
...

c0,...,0,1

= 0. (26)

Since the matrix µ is always invertible, we have

c0,...,ni=1,...,0 = 0 (27)

for every i. Therefore, for n1 + ...+ ns an odd integer
number one has

cn1,...,ns = 0. (28)

When considering the even group, we see that the
coefficient c0,...,0 is the only element of the set C0, and so
it is taken as the initial value. However, it can not be
determined by Eq. (20), and its value yet determined by
Eq. (15). Thus, it is possible obtaining cn1...ns ∈ CN , for
every even N from Eq. (25) using the starting value
c0,...,0 =

[
det
(
µ†µ

)]−1/4.
In order to derive the general expression, we need first

define a permutation group particularly useful in solving
the proposed problem. So, suppose the product

σ k11
11 σ k12

12 ...σ kss
ss , (29)

consisting of N/2 factors, where ki j (ki j = k ji) are non-
negative integers satisfying the condition

2kii +
s

∑
j ̸=i

ki j = ni. (30)

Imposing the condition given by the last equation is
equivalent to requiring that each index i must appear ni
times in the product (29).

Let us call Kn1,...,ns the set of all different
configurations of ki j satisfying Eq. (30). Formally, we can
write

Kn1,...,ns = {k11,k12, ...,kss) | 2kii +
s

∑
j ̸=i

ki j = ni,

ki j ∈ N andki j = k ji}. (31)

The set Kn1,...,ns is equivalent to get all different
products in (29) obtained by index permutation,
preserving j ≥ i in σi j. For example, for s = 3, with
n1 = 4, n2 = 1, and n3 = 3, we have the possibilities
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{σ2
11σ23σ33,σ11σ12σ13σ33,σ11σ2

13σ23,σ3
13σ12}, which is

equivalent to write

K4,1,3 = {(k11 = 2, k23 = 1, k33 = 1,
ki j = 0, inallothercases), . . .}. (32)

From Kn1,...,ns we can obtain directly Kn1,...,ni−2,...,ns ,
not considering elements with kii = 0 and, for kii > 0,
replace kii → kii − 1. Similarly, Kn1,...,ni−1,...,n j−1,...ns is
obtained by deleting the elements ki j = 0 and, for ki j > 0,
replace ki j → ki j −1.

With Kn1,...,ns determined, we can now try to show that
the recursive relation Eq. (25), together with Eq. (15),
result in the following expression for the coefficients
cn1,...,ns :

cn1,...,ns =

√
n1! . . .ns!

[det(µ†µ)]1/4

× ∑
Kn1,...,ns

s

∏
i=1

 σ kii
ii

(2kii)kii!

s

∏
l>k

σ ki j
i j

ki j!

 , (33)

where the summation is carried out over all elements of
Kn1,...,ns . We have thus

cn1,...,ni−2,...,ns =

√
n1! . . .ns!

[det(µ†µ)]1/4√ni (ni −1)

× ∑
Kn1,...,ns

2kiiσ kii−1
ii

(2kii)kii!

s

∏
p̸=i

(
σ kpq

pq(
2kpq
)

kpq!

s

∏
q>p

σ kpq
pq

kpq!

)
. (34)

Notice that ∑Kn1 ,...,ns
and ∑Kn1 ,...,nl−2,...,ns

represent
different summations, but multiplication by kii will
exclude any additional terms in ∑Kn1 ,...,ns

. Thus, we arrive
at

σii

√
ni −1
√

ni
cn1,...,ni−2,...,ns =

√
n1! . . .ns!

[det(µ†µ)]1/4

× ∑
Kn1 ,...,ns

2kii

ni

s

∏
p=1

(
σ kpq

pq(
2kpq
)

kpq!

s

∏
q>p

σ kpq
pq

kpq!

)
. (35)

Analogously, we have

σi j

√n j√
ni

cn1,...,ni−1,...,n j−1,...,ns =

√
n1! . . .ns!

[det(µ†µ)]1/4

× ∑
Kn1 ,...,ns

ki j

ni

s

∏
p=1

(
σ kpq

pq(
2kpq
)

kpq!

s

∏
q>p

σ kpq
pq

kpq!

)
, (36)

which leads directly to Eq. (25), since

1
ni

(
2kii +

s

∑
j ̸=i

ki j

)
= 1, (37)

concluding the proof.

4 Conclusions

In this work we derive a new alternative procedure where
the vacuum state for the new creation and annihilation
operators is constructed in terms of the number states of
the old operators. The new and old creation and
annihilation operators are connected by a Bogoliubov
transformation, given by Eqs. (1) and (2). Formally, the
new vacuum state can be written as in Eq. (10), which
requires knowing the complete set of coefficients
{cn1,...,ns}. We have shown that such coefficients can be
obtained recursively from Eq. (33). It is worth to mention
that the coefficients of the ground state in Fock basis are
written as exclusive functions of the parameters of the
Bogoliubov transformation.

Finally, it should be mentioned that formula (34) can
be understood as a method to calculate the integral defined
in the right-hand side of equation (14).
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