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1 Introduction

The Bernoulli numbers and polynomials, Euler numbers
and polynomials, Genocchi numbers and polynomials,
Stirling numbers of the second kind, Bernstein
polynomials and Eulerian polynomials possess many
interesting properties not only in complex analysis, and
analytic numbers theory but also in mathematical physics
related to knot theory andζ -function, andp-adic analysis.
These polynomials have been studied by many
mathematicians for a long time (for details, see [1-30]).

Eulerian polynomial sequence{An(x)}n≥0 is given by
the following summation:

∞

∑
l=0

lnxl =
An (x)

(1− x)n+1 , |x|< 1. (1)

It is well-known that the Eulerian polynomial,An (x),
of degreen can be introduced as

An (x) =
n

∑
k=1

A (n,k)xk, A0 (z) = 1 (2)

whereA (n,k) are called the Eulerian numbers that can be
computed by using

A (n,k) =
k

∑
j=0

(

n+1
j

)

(−1) j (k− j)n , 1≤ k≤ n, (3)

whereA (n,0) = 1. Eulerian polynomials,An(x), are also
given by means of the following exponential generating
function:

eA (x)t =
∞

∑
n=0

An (x)
tn

n!
=

1− x

et(1−x)− x
(4)

where A n (x) := An (x), symbolically. Eulerian
polynomials can be found via the following recurrence
relation:

(A (t)+ (t−1))n− tAn(t) =

{

1− t, if n= 0
0, if n 6= 0, (5)

(for details, see [5], [6], [25], [9] and [10]).
Now also, we give the definition of Eulerian fraction,

αn (x), can be expressed as

αn (x) :=
An(x)

(1− x)n+1 . (6)
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We want to note that Eulerian fraction is very useful
in the study of the Eulerian numbers, Eulerian
polynomials, Euler function and its generalization, Jordan
function in Number Theory (for details, see [16]). Firstly,
Acikgoz and Araci introduced the generating function of
Bernstein polynomials as follows:

∞

∑
n=k

Bk,n (x)
tn

n!
=

(tx)k

k!
et(1−x), t ∈ C, (7)

whereBk,n (x) are called Bernstein polynomials, which are
defined by

Bk,n (x) =

(

n
k

)

xk (1− x)n−k , 0≤ x≤ 1, (8)

(for details on this subject, see [8]).
The Poly-logarithms can be defined by the series:

Lin (z) =
∞

∑
k=1

zk

kn (9)

for n≥ 0, and|z|< 1. We easily see that ifn= 0

Li0 (z) =
z

1− z
.

Also, Poly-logarithms can be given by the integral
representation, as follows:

Lin (z) =
∫ z

0

Lin (z)
z

dz

in C\ [1,∞) . We note thatLi1 (z) = − log(1− z) is the
usual logarithm (see [27]).

In [28], [29], Luo et al. defined the generalization of
the Bernoulli and Euler polynomials with parameters
a,b,c as follows:

tcxt

bt −at =
∞

∑
n=0

Bn (x;a,b,c)
n!

tn,

(∣

∣

∣

∣

t log
b
a

∣

∣

∣

∣

< 2π
)

, (10)

2cxt

bt +at =
∞

∑
n=0

En (x;a,b,c)
n!

tn,

(∣

∣

∣

∣

t log
b
a

∣

∣

∣

∣

< π
)

. (11)

So that, obviously,

Bn (x;1,e,e) := Bn (x) andEn (x;1,e,e) := En (x) . (12)

Here Bn (x) and En (x) are the classical Bernoulli
polynomials and the classical Euler polynomials,
respectively.

Next, for the classical Bernoulli numbers,Bn and the
classical Euler numbers,En we have

Bn (0) := Bn andEn (0) := En. (13)

By the same motivation of all the above
generalizations, we consider, in this paper, the
generalization of Eulerian polynomials and derive some

new theoretical properties for them. Also, we show that
our polynomials are related to poly-logarithm function,
the Bernstein polynomials, Bernoulli numbers, Euler
numbers, Genocchi numbers, Euler-Zeta function and
Stirling numbers of the second kind. Finally, we get
Witt’s formula for new generalization of Eulerian
polynomials which seems to be interesting for further
work in p-adic analysis.

2 On the new generalization of Eulerian
polynomials

In this section, we start by giving the following definition
of new generalization of Eulerian polynomials.

Definition 1.Let b∈ R+(positive real numbers) and a∈
C(field of complex numbers), then we define the following:

etA (a,b) =
∞

∑
n=0

An (a,b)
tn

n!
=

1−a

bt(1−a)−a
(14)

whereAn (a,b) are called the generalization of Eulerian
polynomials (or Eulerian polynomials with parameters a
and b). Also,A n (a,b) := An(a,b), symbolically.

So that, obviously,

An(x,e) := An(x) .

By (14), we have the following recurrence relation for
the Eulerian polynomials with parametersa andb:

etA (a,b) =
1−a

et(1−a) lnb−a
.

By applying combinatorial techniques to the above
equality, then we easily derive the following theorem:

Theorem 1.The following recurrence relation holds:

[An (a,b)+ (1−a) lnb]n−aAn(a,b) = (1−a)δn,0 (15)

whereδn,0 is the Kronecker’s symbol.

We now consider forn> 0 in (15), becomes

An (a,b) =
1

a−1

n−1

∑
k=0

(

n
k

)

Ak (a,b)(1−a)n−k (lnb)n−k .

(16)
We want to note that takinga = x andb = e in (16)

reduces to

An (x) =
1

x−1

n−1

∑
k=0

(

n
k

)

Ak (x) (1− x)n−k (17)

(see [5] and [25]). We see that (17) is proportional with
Bernstein polynomials which we state in the following
theorem:
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Theorem 2.The following identity

An(x) =
n−1

∑
k=0

Ak (x)Bk,n (x)

xk+1− xk

is true.

Let us now consider limt→0
dk

dtk
in (14), then we readily

arrive at the following theorem.

Theorem 3.Let b∈ R+ and a∈C, then we have

Ak (a,b) = lim
t→0

[

dk

dtk

(

1−a

bt(1−a)−a

)]

. (18)

By (18), we easily conclude the following corollary.

Corollary 1.The following Cauchy-type integral holds
true:

1
1−a

Ak (a,b) =
k!

2π i

∫

C

t−k−1

bt(1−a)−a
dt

where C is a loop which starts at−∞, encircles the origin
once in the positive direction, and the returns−∞.

By (14), we discover the following:
∞

∑
n=0

An
(

a2,b2) tn

n!
=

[

1−a

bt(1+a)(1−a)−a

][

1+a

bt(1−a)(1+a)−a

]

=

[

∞

∑
n=0

(1+a)n
An (a,b)

tn

n!

][

∞

∑
n=0

(1−a)n
An (−a,b)

tn

n!

]

.

By using Cauchy product on the above equality, then
we get the following theorem.

Theorem 4.The following equality

An
(

a2,b2
)

= ∑n
k=0

(n
k

)

(1+a)k Ak (a,b)An−k (−a,b)(1−a)n−k

(19)
is true.

After the basic operations in (19), we discover the
following corollary.

Corollary 2.The following property holds:

An
(

a2,b2)=
n

∑
k=0

(

1+
1
a

)k

Bk,n (a)Ak (a,b)An−k(−a,b) .

Now also, we consider geometric series in (14), then
we compute as follows:

∞

∑
n=0

An(a,b)
tn

n!
=

1−a

et(1−a) lnb−a
=

1−a−1

1−a−1et(1−a) lnb

=

(

1−
1
a

) ∞

∑
j=0

a− jejt (1−a) lnb

=

(

1−
1
a

) ∞

∑
j=0

a− j
∞

∑
n=0

jn (1−a)n (lnb)n tn

n!

=
∞

∑
n=0

[

(

1−
1
a

) ∞

∑
j=0

a− j jn(1−a)n(lnb)n
]

tn

n!
.

By comparing the coefficients oftn
n! on the above equation,

then we readily derive the following theorem.

Theorem 5.The following
(

1
a−1

)n

An (a,b) =

[

(lnb)n

a
− (lnb)n

] ∞

∑
j=1

a− j

j−n

is true.

The above theorem is related to Poly-logarithm
function, as follows:
(

1
a−1

)n

An (a,b) =

[

(lnb)n

a
− (lnb)n

]

Li−n
(

a−1) .

(20)
In [27], it is well-known that

Li−n (x) =
(

x d
dx

)n x
1−x = ∑n

k=0k!S(n+1,k+1)
(

x
1−x

)k+1

(21)
whereS(n,k) are the Stirling numbers of the second kind.
By (20) and (21), we have the following interesting
theorem.

Theorem 6.The following holds true:

aAn(a,b) =−(lnb)n
n

∑
k=0

k!S(n+1,k+1)

(

1
a−1

)k−n

.

3 Further Remarks

Now, we consider (14) for evaluating ata = −1, as
follows:

∞

∑
n=0

An (−1,b)
tn

n!
=

2
b2t +1

(22)

where An (−1,b) are called Eulerian polynomials with
parameterb.

By (22), we derive the following equality in complex
plane:

∞

∑
n=0

inAn (−1,b)
tn

n!
=

2
b2it +1

=
2

e2it lnb+1
.

From this, we discover the following:

∞

∑
n=0

inAn (−1,b)
tn

n!
=

∞

∑
n=0

En2nin (lnb)
tn

n!
(23)

whereEn aren-th Euler numbers which are defined by the
following exponential generating function:

∞

∑
n=0

En
tn

n!
=

2
et +1

, |t|< π . (24)

By (23) and (24), we have the following theorem.

Theorem 7.Let n∈N (field of natural numbers) and b∈C,
then we get

An(−1,b) = 2nEn (lnb)n .
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We now give the definition of Bernoulli numbers for
sequel of this paper via the following exponential
generating function:

∞

∑
n=0

Bn
tn

n!
=

t
et −1

, |t|< 2π . (25)

By using (22) and (25), we see that

∞

∑
n=0

An(−1,b)
tn

n!
=

2
e2t lnb+1

=
1
t

[

2t

e2t lnb−1
−

4t

e4t lnb−1

]

.

So from above

∞

∑
n=0

An (−1,b)
tn

n!
=

∞

∑
n=0

[2n(lnb)nBn−4n(lnb)nBn]
tn−1

n!
.

By comparing the coefficients oftn on the above
equation, then we can state the following theorem.

Theorem 8.The following identity

An (−1,b) =
2n+1(lnb)n+1(1−2n+1

)

Bn+1

n+1

holds true.

By (22), we obtain the following:

∑∞
n=0An(−1,b) tn

n! =
1
t ∑∞

n=02n(lnb)nGn
tn
n! = ∑∞

n=02n (lnb)nGn
tn−1

n! .

That is, we reach the following theorem.

Theorem 9.The following holds true:

An (−1,b) =
2n+1(lnb)n+1Gn+1

n+1

where Gn are the familiar Genocchi numbers which is
defined by

∞

∑
n=0

Gn
tn

n!
=

2t
et +1

.

We reconsider (22) and using definition of geometric
series, then we compute as follows:

∞

∑
n=0

An (−1,b)

(

t
2

)n

n!
= 2

∞

∑
j=0

(−1) j ejt lnb

=
∞

∑
n=0

(

2(lnb)n
∞

∑
j=0

(−1) j jn
)

tn

n!
.

Therefore, we obtain the following theorem

Theorem 10.For n> 0, then we have

An(−1,b) = 2n+1(lnb)n
∞

∑
j=1

(−1) j jn. (26)

As is well known, Euler-zeta function is defined by

ζE (s) = 2
∞

∑
j=1

(−1) j

js
, s∈C (see[3]). (27)

From (26) and (27), we obtain the interpolation
function of new generalization of Eulerian polynomials at
a=−1, as follow:

An (−1,b) = 2n(lnb)n ζE (−n) . (28)

Equation (28) seems to be interpolation function at
negative integers for Eulerian polynomials with parameter
b.

Let us now consider Witt’s formula for our
polynomials at a = −1, so we need the following
notations:

Imagine that p be a fixed odd prime number.
Throughout this paper, we use the following notations. By
Zp, we denote the ring ofp-adic rational integers,Q
denotes the field of rational numbers,Qp denotes the field
of p-adic rational numbers, andCp denotes the
completion of algebraic closure ofQp. LetN be the set of
natural numbers andN∗ = N∪{0}.

The normalizedp-adic absolute value is defined by

|p|p =
1
p

.

Let q be an indeterminate with|q−1|p < 1.
Let UD(Zp) be the space of uniformly differentiable

functions onZp. For a positive integerd with (d, p) = 1,
let

X = Xd = lim
←−n

Z/dpnZ=
dp−1
∪

a=0
(a+dpZp)

with

a+dpnZp = {x∈ X | x≡ a(moddpn)}

wherea ∈ Z satisfies the condition 0≤ a < dpn and let
σ : X→Zp be the transformation introduced by the inverse
limit of the natural transformation

Z/dpnZ 7→ Z/pnZ.

If f is a function onZp, then we will utilize the same
notation to indicate the functionf ◦σ .

For a continuous functionf : X → Cp, the p-adic
fermionic integral onZp is defined by T. Kim in [2] and
[3], as follows:

I−1( f ) =
∫

X f (υ)dµ−1(υ) =
∫

Zp
f (υ)dµ−1(υ) = limn→∞ ∑pn−1

υ=0 (−1)υ f (υ) .

(29)
By (29), it is well-known that

I−1 ( f1)+ I−1( f ) = 2 f (0) (30)
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where f1 (υ) := f (υ +1) . Substitutingf (υ) = b2υt into
(30), we get the following:

∫

X
e2tυ lnbdµ−1 (υ) =

2
b2t +1

=
∞

∑
n=0

An (−1,b)
tn

n!
. (31)

By (31) and using Taylor expansion ofe2tυ lnb, we
obtain Witt’s formula for our polynomials ata = −1, as
follows:

Theorem 11.The following holds true:

An(−1,b) = (lnb)n2n
∫

X
υndµ−1 (υ) . (32)

Equation (32) seems to be interesting for our further
works in the concept ofp-adic integrals.
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