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Abstract: In this paper, we introduce the new notion ofJη
H -proximal mapping for a nonconvex, lower semicontinuous,η-

subdifferentiable, proper (may not be convex) functional in Banach spaces. The existence and Lipschitz continuity ofJη
H -proximal

mapping are prove. By applying this notion, we study a variational-like inclusion problem in reflexive Banach spaces involving η-
cocoercive mappings and propose a proximal point algorithmfor finding the approximate solutions of a variational-likeinclusion
problem. The convergence criteria of the iterative sequences generated by the proposed algorithm is also discuss. Someexamples are
given.
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1 Introduction

In recent past, variational inequality theory has appeared
as an elegant and fascinating branch of applicable
mathematics. This theory provides us effective and
powerful tools for studying a wide class of nonlinear
problems arising in many diverse fields of pure and
applied sciences, such as mathematical programming,
optimization theory, engineering, elasticity theory, and
equilibrium theory of mathematical economy and game
theory etc., for example, see, [1,2,3,8,9,10,11,12,13,15,
16,17,18,19,20,21,22,23,24,30,31,32,36,37,38,39,41].

In 1994, Hassouni and Moudafi [30] introduced a
perturbed method for solving a new class of variational
inequalities, known as variational inclusions. A useful
and important generalization of variational inclusion is
called variational-like inclusion studied by several
authors. A considerable interest has been shown in
developing various extensions and generalizations of
variational inequalities related to multi-valued operators,
nonconvex optimization, nonmonotone operators and
structural analysis.

In order to study various variational inequalities and
variational inclusions, many authors investigated many
generalized operators such asH-monotone [26],
H-accretive [27], (H,η)-accretive [28], (H,η)-monotone

[29], (A,η)-accretive [35], H(·, ·)-accretive [42]. Very
recently Ahmad et al.[5,6] introduced and studied
H(·, ·)-cocoercive andH(·, ·)-η-cocoercive operators and
applied them to solve some variational inclusion
problems.

In this paper, we introduce the new notion of
Jη

H-proximal mapping for a lower semicontinuous,
η-subdifferentiable, proper (may not be convex)
functional in Banach spaces.Jη

H -proximal mapping
includesJ-proximal mapping [25], Jη -proximal mapping
[4], M-proximal mapping [34] as special cases. The
existence and Lipschitz continuity ofJη

H-proximal
mapping are prove under suitable conditions in reflexive
Banach spaces and we propose a proximal point
algorithm for finding the approximate solutions of a
variational-like inclusion problem. The convergence of
the iterative sequences generated by algorithm is discuss.
Some examples are given.

2 Preliminaries

Let E be a real Banach space with the dual spaceE∗, 〈u,x〉
be the dual pairing betweenu ∈ E∗ andx ∈ E andCB(E∗)
be the family of all nonempty closed bounded subsets of
E∗. LetD(·, ·) be the Hausdorff metric onCB(E∗) defined
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by

D(A,B)=max{ sup
u∈A

d(u,B), sup
v∈B

d(A,v) }, ∀A,B∈CB(E∗),

whered(u,B) = inf
v∈B

d(u,v) andd(A,v) = inf
u∈A

d(u,v).

Let η : E ×E → E andφ : E → R∪{+∞}. A vector
w∗ ∈ E∗ is calledη-subgradient ofφ at x ∈ domφ if

〈w∗,η(y,x)〉 ≤ φ(y)−φ(x), ∀y ∈ E.

Each φ can be associated with the following
η-subdifferential map∂η φ defined by

∂ηφ(x) =











{w∗ ∈ E∗ : 〈w∗,η(y,x)〉 ≤ φ(y)−φ(x)},
∀y ∈ E,x ∈ domφ ,

φ , x /∈ domφ .

Example 2.1. let E = R
2 andφ : R2 → R∪ {+∞} be a

proper functional defined by

φ : (x1,y1)→
√

x2
1+ y2

1.

Let η : R2×R
2 → R

2 be defined by

η(x,y)→ (x− y), wherex = (x1,y1),y = (x2,y2) ∈ R
2,

then∂ηφ(x) = {v ∈R
2/φ(y)≥ φ(x)+ v(y− x), ∀y ∈ R

2}
is a maximalη-monotone set-valued mapping.

We recall the following definitions and results which
are needed in the sequel.

Definition 2.1.A mappingg : E → E is said to be

(i) Lipschitz continuous, if there exists a constantλg > 0
such that

‖g(x)− g(y)‖ ≤ λg‖x− y‖, ∀x,y ∈ E.

(ii) k-strongly accretive(k ∈ (0,1)), if for any x,y ∈ E,
there existsj(x− y) ∈ F (x− y) such that

〈g(x)− g(y), j(x− y)〉 ≥ k‖x− y‖2,

whereF : E → 2E∗
is the normalized duality mapping

defined by

F = { f ∈ E∗ : 〈 f ,x〉 = ‖x‖‖ f‖,‖ f‖= ‖x‖}, ∀x ∈ E.

Some examples and properties of the mappingF can be
found in [7].

Definition 2.2. Let η : E ×E → E;A : E → E,T : E∗ →
CB(E∗) andN : E∗×E∗ → E∗ be the mappings, then

(i) η is said to be Lipschitz continuous, if there exists a
constantτ > 0 such that

‖η(x,y)‖ ≤ τ‖x− y‖, ∀x,y ∈ E.

(ii) A is said to beα-expansive, if there exists a constant
α > 0 such that

‖A(x)−A(y)‖ ≥ α‖x− y‖, ∀x,y ∈ E.

1. [(iii)] N is said to be Lipschitz continuous with respect
to the first argument, if there exists a constantλN1 > 0
such that

‖N(u1, ·)−N(u2, ·)‖ ≤ λN1‖u1− u2‖,

∀x1,x2 ∈ E and for someu1 ∈ T (x1),u2 ∈ T (x2).

Similarly we can define the Lipschitz continuity ofN in
the second argument.
Lemma 2.1[40]. Let E be a real Banach space andF :
E → 2E∗

be the normalized duality mapping. Then for any
x,y ∈ E

‖x+ y‖2 ≤ ‖x‖2+2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ F (x+ y).

Definition 2.3.A functional f : E×E → R∪{+∞} is said
to be 0-diagonally quasi-concave (in short 0-DQCV) iny,
if for any finite subset{x1,x2, .....xn} ⊂ E and for any

y =
n
∑

i=1
λixi with λi ≥ 0 and

n
∑

i=1
λi = 1,

min
1≤i≤n

f (xi,y)≤ 0.

Definition 2.4.Let J : E → E∗;η ,H : E×E →E andA,B :
E → E be the mappings. Then

(i) J is said to beη-cocoercive with respect toH(A, ·) if
there exists a constantµ > 0 such that

〈J(H(Ax, ·))− J(H(Ay, ·)),η(x,y)〉 ≥ µ‖Ax−Ay‖2,

∀x,y ∈ E.
(ii) J is said to be relaxedη-cocoercive with respect to

H(·,B) if there exists a constantγ > 0 such that

〈J(H(·,Bx))−J(H(·,By)),η(x,y)〉≥ (−γ)‖Bx−By‖2,

∀x,y ∈ E.
(iii) J is said to be Lipschitz continuous with respect to

H(A, ·) if there exists a constantλHA > 0 such that

‖J(H(Ax, ·))− J(H(Ay, ·))‖ ≤ λHA‖x− y‖, ∀x,y ∈ E.

Similarly we can define the Lipschitz continuity ofJ with
respectH(·,B).
Lemma 2.2[14]. Let D be a nonempty convex subset of
a topological vector space andf : D×D → R∪{±∞} be
such that

(i) for eachx ∈D,y → f (x,y) is lower semicontinuous on
each compact subset of D,

(ii) for each finite set{x1,x2, ....xn} ∈ D and for eachy =
m
∑

i=1
λixi with λi ≥ 0 and

m
∑

i=1
λi = 1, min

1≤i≤m
f (xi,y)≤ 0,

(iii) there exists a nonempty compact convex subsetD0 of
D and a nonempty compact subsetK of D such that for
eachy ∈ D\K, there is anx ∈C0(D0∪{y}) satisfying
f (x,y) > 0.
Then there exists ˆy ∈ D such thatf (x, ŷ)≤ 0,∀x ∈ D.
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3 Jη
H-Proximal mapping

First, we define the notion ofJη
H -Proximal mapping.

Definition 3.1.Let E be a real Banach space with the dual
spaceE∗. Let H,η : E × E → E;A,B : E → E be the
single-valued mappings andφ : E → R ∪ {+∞} be the
lower semicontinuous (may not be convex), proper,
η-subdifferentiable functional. LetJ : E → E∗ be a
mapping and if for any givenx∗ ∈ E∗ andρ > 0, there is a
unique pointx ∈ E satisfying

〈J(H(Ax,Bx))−x∗,η(y,x)〉+ρφ(y)−ρφ(x)≥ 0, ∀y∈ E.

The mappingx∗ → x denoted byJ
∂η φ
H,ρ (x

∗) is said to be

Jη
H -proximal mapping of φ . Clearly, we have

x∗− J(H(A,B)(x)) ∈ ρ∂ηφ(x), it follows that

J
∂η φ
H,ρ (x

∗) = (J(H(A,B))+ρ∂ηφ)−1(x∗). (1)

Remark 3.1.
(i) If φ : E → R∪{+∞} is lower semicontinuous, proper,

subdifferentiable,η(y,x) = y− x andJ(H(A,B)) = J,
then definition 2.2 coincides with the definition ofJ-
proximal mapping of Ding and Xia [25].

(ii) If J(H(A,B)) = J, then definition 2.2 coincides with
the definition ofJη -proximal mapping of Ahmad et al.
[4].

(iii) If φ : E → R ∪ {+∞} is lower semicontinuous,
proper, subdifferentiable,η(y,x) = y − x and
J(H(A,B)) = H(A,B), then definition 2.2 reduces to
the definition ofM-proximal mapping of Kazmi et al.
[34].

Now we give some sufficient conditions which guarantee
the existence and Lipschitz continuity ofJη

H-proximal
mapping.
Theorem 3.1.Let E be a reflexive Banach space with the
dual spaceE∗ and φ : E → R ∪ {+∞} be a lower
semicontinuous,η-subdifferentiable, proper functional
which may not be convex. LetH,η : E × E → E;
A,B : E → E be the single-valued mappings such thatη is
τ-Lipschitz continuous,A is α-expansive andB is
β -Lipschitz continuous. LetJ : E → E∗ be η-cocoercive
with respect toH(A, ·) with constantµ > 0 and relaxed
η-cocoercive with respect toH(·,B) with constantγ > 0.
Let η(x,y) = −η(y,x) for all x,y ∈ E and for anyx ∈ E,
the function h(y,x) = 〈x∗ − J(H(Ax,Bx)),η(y,x)〉 is
0-DQCV in y. Then for anyρ > 0 and for anyx∗ ∈ E∗,
there exists a uniquex ∈ E such that

〈J(H(Ax,Bx))−x∗,η(y,x)〉+ρφ(y)−ρφ(x)≥ 0, ∀x,y∈E.
(2)

That isx = J
∂η φ
H,ρ (x

∗) and so theJη
H-proximal mapping ofφ

is well defined.
Proof. For anyJ : E → E∗;H,η : E ×E → E;A,B : E →
E,ρ > 0 andx∗ ∈ E∗, define a functionalf : E ×E → R∪
{+∞} by

f (y,x) = 〈x∗− J(H(Ax,Bx)),η(y,x)〉+ρφ(x)−ρφ(y),

∀x,y ∈ E.
Since J,η are continuous mappings andφ is lower
semicontinuous, we have that for anyy ∈ E,x → f (y,x) is
lower semicontinuous onE. We claim thatf (y,x) satisfies
condition (ii) of Lemma 2.2. If it is false, then there exists
a finite subset{y1,y2, .....ym} ∈ E and

x0 =
m

∑
i=1

λiyi with λi ≥ 0,
m

∑
i=1

λi = 1

such that

〈x0 − J(H(Ax0,Bx0)),η(yi,x0)〉+ ρφ(x0)− ρφ(yi) > 0,
∀i = 1,2, ...,m.

Sinceφ is η-subdifferentiable atx0, there exists a point
f ∗x0

∈ E∗ such that

ρφ(yi)−ρφ(x0)≥ ρ〈 f ∗x0
,η(yi,x0)〉, ∀i = 1,2, ...,m.

It follows that

〈x∗−H(Ax0,Bx0)−ρ f ∗x0
,η(yi,x0)〉> 0, ∀i = 1,2, ...,m.

(3)
On the other hand, by assumptionh(y,x) =
〈x∗ − J(H(Ax0,Bx0))− ρ f ∗x0

,η(yi,x0)〉 is 0-DQCV in y,
we have

∑
1≤i≤m

〈x− J(H(Ax0,Bx0))−ρ f ∗x0
,η(yi,x0)〉 ≤ 0,

which contradicts the inequality (3). Hencef (y,x) satisfies
the condition (ii) of Lemma 2.2. Now we take a fixed ¯y ∈
domφ . Sinceφ is η-subdifferentiable at ¯y, there exists a
point f ∗ȳ ∈ E∗ such that

φ(x)−φ(ȳ)≥ 〈 f ∗ȳ ,η(x, ȳ)〉, ∀x ∈ E.

Hence we have

f (ȳ,x) = 〈x∗− J(H(Ax,Bx)),η(ȳ,x)〉+ρφ(x)−ρφ(ȳ)

≥ 〈J(H(Aȳ,Bȳ))− J(H(Ax,Bx)),η(ȳ,x)〉

+〈x∗− J(H(Aȳ,Bȳ)),η(ȳ,x)〉+ρ〈 f ∗ȳ ,η(x, ȳ)〉

= 〈J(H(Aȳ,Bȳ))− J(H(Ax,Bȳ)),η(ȳ,x)〉

+〈J(H(Ax,Bȳ))− J(H(Ax,Bx)),η(ȳ,x)〉

+〈x∗− J(H(Aȳ,Bȳ)),η(ȳ,x)〉

+ρ〈 f ∗ȳ ,η(x, ȳ)〉. (4)

Since J is η-cocoercive with respect toH(A, ·) with
constant µ and relaxedη-cocoercive with respect to
H(·,B) with constantγ, η is τ-Lipschitz continuous,A is
α-expansive andB is β -Lipschitz continuous, therefore
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(4) becomes
f (ȳ,x) ≥ µ‖Aȳ−Ax‖2− γ‖Bȳ−Bx‖2

−τ(‖x∗‖+ ‖J(H(Aȳ,Bȳ))‖+ρ‖ f ∗ȳ ‖)‖ȳ− x‖

≥ µα2‖ȳ− x‖2− γβ 2‖ȳ− x‖2

−τ(‖x∗‖+ ‖J(H(Aȳ,Bȳ))‖+ρ‖ f ∗ȳ ‖)‖ȳ− x‖

= (µα2− γβ 2)‖ȳ− x‖2

−τ(‖x∗‖+ ‖J(H(Aȳ,Bȳ))‖+ρ‖ f ∗ȳ ‖)‖ȳ− x‖

= ‖ȳ− x‖[(µα2− γβ 2)‖ȳ− x‖

−τ(‖x∗‖+ ‖J(H(Aȳ,Bȳ))‖+ρ‖ f ∗ȳ ‖)].

Let r = 1
(µα2−γβ 2)

τ[‖x∗‖+ ‖J(H(Aȳ,Bȳ))‖+ ρ‖ f ∗ȳ ‖] and

K = {x ∈ E : ‖ȳ− x‖ ≤ r}. Let D0 = {ȳ} andK are both
weakly compact convex subsets ofE and for each
x ∈ E \K,there exists a ¯y ∈ C0(D0 ∪ {ȳ}) such that
f (ȳ,x)> 0. Hence all the conditions of the Lemma 2.2 are
satisfied. By Lemma 2.2, there exists an ¯x ∈ E such that
f (y, x̄)≤ 0, for all y ∈ E, that is for any givenx∗ ∈ E∗,

〈J(H(Ax̄,Bx̄))−x∗,η(y, x̄)〉+ρφ(y)−ρφ(x̄)≥ 0, ∀y∈ E.

Now we show that ¯x is a unique solution of problem2.
Suppose thatx1,x2 ∈ E are two arbitrary solutions of

problem2. Then we have
〈 J(H(Ax1,Bx1))− x∗,η(y,x1)〉+ρφ(y)−ρφ(x1)≥ 0,

∀y ∈ E, (5)

〈 J(H(Ax2,Bx2))− x∗,η(y,x2)〉+ρφ(y)−ρφ(x2)≥ 0,

∀y ∈ E. (6)
Taking y = x2 in (5) andy = x1 in (6) and adding these
inequalities, we have
〈 J(H(Ax1,Bx1))− x∗,η(x2,x1)〉+ 〈J(H(Ax2,Bx2))− x∗,

η(x1,x2)〉 ≥ 0, (7)
sinceη(x,y) =−η(y,x), we have

〈 J(H(Ax1,Bx1))− J(H(Ax2,Bx1)),η(x1,x2)〉

+〈J(H(Ax2,Bx1))− J(H(Ax2,Bx2)),η(x1,x2)〉 ≤ 0.

It follows that

(µα2− γβ 2)‖x1− x2‖
2 ≤ 0,

and hence we must havex1 = x2 asµ > γ andα > β . This
completes the proof.
Example 3.1.Let E =R andη : R×R→R be defined by

η(x,y) =























(x− y), if |xy|< 1
3,

|xy|(x− y), if 1
3 ≤ |xy|< 1

2,

2(x− y), if 1
2 ≤ |xy|.

Then it is easy to see that:

(i) η is 2-Lipschitz continuous.
(ii) η(x,y) =−η(y,x).

Let J : R → R,H : R× R → R,A,B : R → R be the
mappings such that

J(H(Ax,Bx)) = Ax+Bx,

whereAx = x
2,Bx = (1− x), for all x ∈ R. Then

〈J(H(Ax,u))− J(H(Ay,u)),η(x,y)〉 ≥ 4‖Ax−Ay‖2

and

〈J(H(u,Bx))− J(H(u,By)),η(x,y)〉 ≥ −
1
2
‖Bx−By‖2

that is,J is 4-η-cocoercive with respect toH(A, ·) and 1
2-

η-relaxed cocoercive with respect toH(·,B).
Further, we will show that for anyx ∈ R, the function

h(y,u) = 〈x − J(H(Au,Bu)),η(y,u)〉 is 0-DQCV in y. If
it is false, then there exists a finite set{y1,y2.......yn} and

u0 =
n
∑
1

λiyi with λi ≥ 0 and
n
∑
1

λi = 1 such that for each

i = 1,2, .....n

0< h(yi,u0)=























(x+ u0
2 −1)(yi− u0), if |yiu0|<

1
3,

|yiu0|(yi − u0), if 1
3 ≤ |yiu0|<

1
2,

2(yi − u0), if 1
2 ≤ |yiu0|.

It follows that (x + u0
2 − 1)(yi − u0) > 0 for each

i = 1,2, .....n and hence, we have

0<
n

∑
1

λi(x+
u0

2
−1)(yi−u0) = (x+

u0

2
−1)(u0−u0) = 0,

which is not possible. Henceh(y,u) is 0-DQCV iny. Thus
η andJ satisfies all assumption in Theorem 3.1.

Theorem 3.2.Let E be a reflexive Banach space with the
dual spaceE∗ and φ : E → R ∪ {+∞} be a lower
semicontinuous,η-subdifferentiable, proper functional
which may not be convex. LetH,η : E × E → E;
A,B : E → E be the single-valued mappings such thatη is
τ-Lipschitz continuous,A is α-expansive andB is
β -Lipschitz continuous. LetJ : E → E∗ be η-cocoercive
with respect toH(A, ·) with constantµ > 0 and relaxed
η-cocoercive with respect toH(·,B) with constantγ > 0.
Let η(x,y) = −η(y,x) for all x,y ∈ E and for anyx ∈ E,
the function h(y,x) = 〈x∗ − J(H(Ax,Bx)),η(y,x)〉 is
0-DQCV in y. Then for anyρ > 0, the Jη

H-proximal
mappingφ is τ

(µα2−γβ 2)
-Lipschitz continuous.

Proof. By Theorem 3.1, we know that theJη
H-proximal

mapping ofφ is well defined. For any givenx∗,y∗ ∈ E∗,

let x = J
∂η φ
H,ρ (x

∗),y = J
∂η φ
H,ρ (y

∗), thenx∗ − J(H(Ax,Bx)) ∈

c© 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. Lett.1, No. 2, 39-46 (2013) /www.naturalspublishing.com/Journals.asp 43

ρ∂ηφ(x), y∗− J(H(Ay,By)) ∈ ρ∂ηφ(y).
Hence

〈x∗− J(H(Ax,Bx)),η(u,x)〉 ≥ ρφ(x)−ρφ(u), ∀u ∈ E,
(8)

〈y∗− J(H(Ay,By)),η(u,y)〉 ≥ ρφ(y)−ρφ(u), ∀u ∈ E.
(9)

Take u = y in (8) and u = x in (9) and adding these
inequalities, we have

〈 x∗− J(H(Ax,Bx)),η(y,x)〉+ 〈y∗− J(H(Ay,By)),

η(x,y)〉 ≥ 0,

sinceη(x,y) =−η(y,x), it follows that

〈J(H(Ay,By))−J(H(Ax,Bx)),η(y,x)〉≤ 〈η(y,x),y∗−x∗〉.
(10)

As J is η-cocoercive with respect toH(A, ·) with constant
µ and relaxedη-cocoercive with respect toH(·,B) with
constantγ andη is τ-Lipschitz continuous, it follows from
(10) that

(µα2− γβ 2)‖y− x‖2 ≤ τ‖y− x‖‖y∗− x∗‖,

which implies thatJ
∂η φ
H,ρ i.e. theJη

H-proximal mapping ofφ
is τ

(µα2−γβ 2)
-Lipschitz continuous.

4 Formulation, iterative algorithm and
existence result

Let T,G : E → CB(E∗) be set-valued mappings. Let
N : E∗×E∗ → E∗,η : E ×E → E andg : E → E be the
single-valued mappings. Letφ : E → R ∪ {+∞} be a
lower semicontinuous,η-subdifferentiable function onE
(may not be convex) satisfyingg(E) ∩ dom(∂η φ) 6= φ ,
where∂η φ is the subdifferential ofφ at x. We consider
the following variational-like inclusion problem.

Find x ∈ E,u ∈ T (x),v ∈ G(x) such that g(x) ∈
dom(∂ηφ) and

〈N(u,v),η(y,g(x))〉 ≥ φ(g(x)− g(y)), ∀y ∈ E. (11)

If E = X , is a Hilbert space,η(y,x) = y − x, ∀x,y ∈
X ,N(u,v) = f (u)−P(v), ∀u,v ∈ X , where f ,P : X → X
are single-valued mappings, then problem (11) reduces to
the following problem.

Find x ∈ X ,u ∈ T (x),v ∈ G(x) such that

〈 f (u)−P(v),y− g(x)〉 ≥ φ(g(x))−φ(y)), ∀y ∈ X . (12)

Problem (12) is introduced and studied by Huang [33].
For appropriate and suitable choices of mappings involved
in the formulation of problem (11), one can obtain many
variational inequalities (inclusions) studied previously by
different authors.

We first transfer problem (11) into a fixed point
problem.

Theorem 4.1.The(x,u,v) is a solution of problem (11) if
and only if(x,u,v) satisfies the following relation:

g(x) = J
∂η φ
H,ρ {J(H(A(g(x)),B(g(x))))−ρN(u,v)}, (13)

where x ∈ E, u ∈ T (x), v ∈ G(x),ρ > 0 and J
∂η φ
H,ρ =

(J(H(A,B))+ρ∂ηφ)−1 is theJη
H -proximal mapping ofφ .

Proof. Assume thatx ∈ E,u ∈ T (x) andv ∈ G(x) satisfies
relation (13), i.e.,

g(x) = J
∂η φ
H,ρ {J(H(A(g(x)),B(g(x))))−ρN(u,v)},

since J
∂η φ
H,ρ = (J(H(A,B)) + ρ∂ηφ)−1, the above

inequality holds if and only if

J(H(A(g(x)),B(g(x))))−ρN(u,v)
∈ J(H(A(g(x)),B(g(x))))+ρ∂ηφ(g(x)).

By the definition of η-subdifferential ofφ , the above
relation holds if and only if

φ(y)−φ(g(x))≥ 〈N(u,v),η(y,g(x))〉.

Hence we have

〈N(u,v),η(y,g(x))〉 ≥ φ(g(x))−φ(y), ∀y ∈ E,

i.e., (x,u,v) is a solution of problem (11). Similarly the
converse part follows.

Based on (11), we suggest the following proximal
point algorithm.

Algorithm 4.1. For any givenx0 ∈ E,u0 ∈ T (x0) andv0 ∈
G(x0), compute the sequences{xn},{un} and{vn} by the
iterative schemes.

g(xn+1) = J
∂η φ
H,ρ {J(H(A(g(xn)),B(g(xn))))−ρN(un,vn)};

(14)

un ∈ T (xn),‖un+1− un‖ ≤ D(T (xn+1),T (xn)), (15)

vn ∈ G(xn),‖vn+1− vn‖ ≤ D(G(xn+1),G(xn)), (16)

n = 0,1,2, . . . .
whereρ > 0 is a constant.

Theorem 4.2.let X be a reflexive Banach space with its
dual X∗ and let T,G : E → CB(E∗) be Lipschitz
continuous mappings with constantsλT and λG,
respectively. Letg : E → E be Lipschitz continuous
mapping with constantλg and (g − I) is k-strongly
accretive (k ∈ (0,1)) satisfying (g − I)(E) = E. Let
η : E × E → E be Lipschitz continuous mapping with
constant τ > 0 such thatη(x,y) = −η(y,x), for all
x,y ∈ E and for each givenx ∈ E, the function
h(y,x) = 〈x∗− J(H(A(x),B(x))),η(y,x)〉 is 0-DQCV iny.
Let H : E ×E → E,A,B : E → E be the mappings such
thatA is α-expansive andB is β -Lipchitz continuous. Let
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N : E∗×E∗ → E∗ beλN1-Lipschitz continuous in the first
argument andλN2-Lipchitz continuous in the second
argument. Let φ : E → R ∪ {+∞} be a lower
semicontinuous,η-subdifferentiable, proper functional
(may not be convex) satisfyingg(x) ∈ dom(∂ηφ). Let
J : E → E∗ be η-cocoercive with respect toH(A, ·) with
constantµ > 0 and relaxed-η-cocoercive with respect to
H(·,B) with constantγ > 0; Lipschitz continuous with
respect to H(A, ·) with constant λHA and Lipschitz
continuous with respect toH(·,B) with constantλHB .
Suppose that there exists a constantρ > 0 such that for all
x,y ∈ E andx∗ ∈ E∗, the following condition is satisfied.

λ 2
g (λ

2
HA

+λ 2
HB
) + ρ2(λ 2

N1
λ 2

T +λ 2
N2

λ 2
G)

<
(1+2k)(µα2− γβ 2)2

4τ2 , (17)

µ > γ,α > β .

Then the iterative sequences{xn},{un} and {vn}
generated by Algorithm 4.1 converge strongly tox,u and
v, respectively and(x,u,v) is a solution of variational-like
inclusion problem (11).

Proof. We can write

‖xn+1− xn‖
2 = ‖g(xn+1)− g(xn)− g(xn+1)+ g(xn)

+xn+1− xn‖
2

By Lemma 2.1, we have

‖xn+1− xn‖
2 ≤ ‖g(xn+1)− g(xn)‖

2〈g(xn+1)− g(xn)

−xn+1+ xn, j(xn+1− xn)〉

= ‖g(xn+1)− g(xn)‖
2−2〈(g− I)(xn+1− xn),

j(xn+1− xn)〉. (18)

By Algorithm 4.1, we have

g(xn+1) = J
∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn))))−ρN(un,vn)].

Hence we have

‖g(xn+1)− g(xn)‖
2 = ‖J

∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn))))

−ρN(un,vn)]− J
∂η φ
H,ρ [J(H(A(g(xn−1)),

B(g(xn−1))))−ρN(un−1,vn−1)]‖

= ‖J
∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn))))

−ρN(un,vn)]− J
∂η φ
H,ρ [J(H(A(g(xn)),

B(g(xn−1))))−ρN(un,vn−1)]

+J
∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn−1))))

−ρN(un,vn−1)]

−J
∂η φ
H,ρ [J(H(A(g(xn−1)),B(g(xn−1))))

−ρN(un−1,vn−1)]‖
2

Since‖x+ y‖2 ≤ 2(‖x‖2+ ‖y‖2) and by Theorem 3.2, we
have

1
2
‖g(xn+1) − g(xn)‖

2

≤ ‖J
∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn))))

−ρN(un,vn)]−‖J
∂η φ
H,ρ [J(H(A(g(xn)),

B(g(xn−1))))−ρN(un,vn−1)]‖
2

+‖J
∂η φ
H,ρ [J(H(A(g(xn)),B(g(xn−1))))

−ρN(un,vn−1)]−‖J
∂η φ
H,ρ [J(H(A(g(xn−1)),

B(g(xn−1))))−ρN(un−1,vn−1)]‖
2

≤
τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),B(g(xn))))

−ρN(un,vn)− (J(H(A(g(xn)),B(g(xn−1))))

−ρN(un,vn−1))‖
2

+
τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),

B(g(xn−1))))−ρN(un,vn−1)

−(J(H(A(g(xn−1)),B(g(xn−1))))

−ρN(un−1,vn−1))‖
2

=
τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),B(g(xn))))

−J(H(A(g(xn)),B(g(xn−1))))−ρ [N(un,vn)

−N(un,vn−1)]‖
2

+
τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),B(g(xn−1))))

−J(H(A(g(xn−1)),B(g(xn−1))))

−ρN(un,vn−1)−ρ [N(un−1,vn−1)]‖
2

≤
2τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),B(g(xn))))

−J(H(A(g(xn)),B(g(xn−1))))‖
2

+
2τ2ρ2

(µα2− γβ 2)2‖N(un,vn)−N(un,vn−1)‖
2

+
2τ2

(µα2− γβ 2)2‖J(H(A(g(xn)),B(g(xn−1))))

−J(H(A(g(xn−1)),B(g(xn−1))))‖
2

+
2τ2ρ2

(µα2− γβ 2)2‖N(un,vn−1)

−N(un−1,vn−1)‖
2 (19)
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By the Lipschitz continuity ofJ with respect toH(A, ·)
andH(·,B) with constantsλHA andλHB , respectively, and
g with constantλg, we have

‖J(H(A(g(xn)),B(g(xn)))) − J(H(A(g(xn)),B(g(xn−1))))‖

≤ λHB‖g(xn)− g(xn−1)‖

≤ λHB λg‖xn − xn−1‖. (20)

‖J(H(A(g(xn)),B(g(xn−1)))) − J(H(A(g(xn−1)),

B(g(xn−1))))‖

≤ λHA‖g(xn)− g(xn−1)‖

≤ λHA λg‖xn − xn−1‖. (21)

By the Lipschitz continuity of N(·, ·) in both the
arguments with constantsλN1 and λN2, respectively,
Lipschitz continuity ofT and G with constantsλT and
λG, respectively and Algorithm 4.1, we have

‖N(un,vn)−N(un,vn−1)‖ ≤ λN2‖vn − vn−1‖

≤ λN2D(G(xn),G(xn−1))

≤ λN2λG‖xn − xn−1‖ (22)

‖N(un,vn−1)−N(un−1,vn−1)‖ ≤ λN1‖un − un−1‖

≤ λN1D(T (xn),T (xn−1))

≤ λN1λT‖xn − xn−1‖ (23)

By (19-23), we obtain

|g(xn+1 − g(xn)‖
2

≤
4τ2

(µα2− γβ 2)2 λ 2
HB

λ 2
g ‖xn − xn−1‖

2

+
4τ2ρ2

(µα2− γβ 2)2 λ 2
N2

λ 2
G‖xn − xn−1‖

2

+
4τ2

(µα2− γβ 2)2 λ 2
HA

λ 2
g ‖xn − xn−1‖

2

+
4τ2ρ2

(µα2− γβ 2)2 λ 2
N1

λ 2
T‖xn − xn−1‖

2

=
4τ2ρ2

(µα2− γβ 2)2 [λ
2
HB

λ 2
g +ρ2λ 2

N2
λ 2

G

+λ 2
HA

λ 2
g +ρ2λ 2

N1
λ 2

T ]‖xn − xn−1‖
2 (24)

Since(g− I) is k-strongly accretive, by (24), we have

‖xn − xn−1‖
2 ≤ ‖g(xn+1)− g(xn)‖

2

− 2〈(g− I)(xn− xn−1), j(xn − xn−1)〉

≤ θ1‖xn − xn−1‖
2−2k‖xn+1− xn‖

2.

It follows that

‖xn+1− xn‖
2 ≤

θ1

1+2k
‖xn − xn−1‖

2

or
‖xn+1− xn‖

2 ≤ θ‖xn − xn−1‖
2, (25)

whereθ =
√

θ1
1+2k and

θ1 =
4τ2

(µα2−γβ 2)2
[λ 2

HB
λ 2

g +ρ2λ 2
N2

λ 2
G +λ 2

HA
λ 2

g +ρ2λ 2
N1

λ 2
T ].

Condition (17) implies that 0< θ < 1, so it follows from
(25) that{xn} is a Cauchy sequence inE and letxn → x.
Since the mappingsT andG are Lipschitz continuous, it
follows from (15) and (16) that {un} and {vn} are also
Cauchy sequences, we can assume thatun → u and
vn → v. Using the continuity ofJ,H,A,B,g,N,η and by
Algorithm 4.1, we have

g(x) = J
∂η φ
H,ρ [J(H(A(g(x)),B(g(x))))−ρN(u,v)].

Now we will prove thatu ∈ T (x) and v ∈ G(x). Infact,
sinceun ∈ T (xn) and

d(un,T (x)) ≤ max{d(un,T (x)), sup
y∈T )(x)

d(T (xn),y)}

≤ max{ sup
z∈Txn

d(z,T (x)), sup
y∈T x

d(T (xn),y)}

= D(T (xn),T (x)).

We have

d(u,T (x)) ≤ ‖u− un‖+ d(un,T (x))

≤ ‖u− un‖+D(T(xn),T (x))

≤ ‖u− un‖+λT‖xn − x‖→ 0, (x → ∞),

which implies thatd(u,T (x)) = 0. SinceT (x) ∈ CB(E),
it follows thatu ∈ T (x). Similarly, we can prove thatv ∈
G(x). By Theorem 4.1,(x,u,v) is a solution of problem
(11). This completes the proof.
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