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Abstract: In this paper, we introduce the new notion qﬁ-proximal mapping for a nonconvex, lower semicontinuoys,

subdifferentiable, proper (may not be convex) functiomaBanach spaces. The existence and Lipschitz continuit;ﬂquoximal
mapping are prove. By applying this notion, we study a vemietl-like inclusion problem in reflexive Banach spaceslwing n-
cocoercive mappings and propose a proximal point algoriiinfinding the approximate solutions of a variational-likelusion
problem. The convergence criteria of the iterative seqe®igenerated by the proposed algorithm is also discuss. Sxanegples are
given.
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1 Introduction [29, (A n)-accretive B5), H(-,-)-accretive §2]. Very
recently Ahmad et alq,6] introduced and studied

In recent past, variational inequality theory has appeared (,-)-cocoercive and (-, -)-n-cocoercive operators and
as an elegant and fascinating branch of applicable@Pplied them to solve some variational inclusion
mathematics. This theory provides us effective andProblems. . .
powerful tools for studying a wide class of nonlinear In this paper, we introduce the new notion of
problems arising in many diverse fields of pure andJy-Proximal mapping for a lower semicontinuous,
applied sciences, such as mathematical programming]-subdifferentiable, proper (may not be convex)
optimization theory, engineering, elasticity theory, and functional in Banach spacesl.ﬂ’-prOXImal mapping
equilibrium theory of mathematical economy and gameincludesJ-proximal mapping 25], J7-proximal mapping
theory etc., for example, sed, ,3,8,9,10,11,12,13,15  [4]: M-proximal mapping 34] as special cases. The
16,17,18,19,20,21,22,23,24,30,31,32,36,37,38,39,41].  existence and Lipschitz continuity of}}-proximal

In 1994, Hassouni and MoudafB(] introduced a mapping are prove under suitable conditions in reflexive
perturbed method for solving a new class of variationa/Banach spaces and we propose a proximal point
inequalities, known as variational inclusions. A useful &lgorithm for finding the approximate solutions of a
and important generalization of variational inclusion is variational-like inclusion problem. The convergence of
called variational-like inclusion studied by several the iterative sequences generated by algorithm is discuss.
authors. A considerable interest has been shown irPOMe examples are given.
developing various extensions and generalizations of
variational inequalities related to multi-valued operato
nonconvex optimization, nonmonotone operators and2 Preliminaries
structural analysis.

In order to study various variational inequalities and Let E be a real Banach space with the dual sgaceu, x)
variational inclusions, many authors investigated manybe the dual pairing betweenc E* andx € E andCB(E*)
generalized operators such akl-monotone 26, be the family of all nonempty closed bounded subsets of
H-accretive R7], (H,n)-accretive B8], (H,n)-monotone  E*. Let %(-,-) be the Hausdorff metric o8B(E*) defined
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by (if) Ais said to bex-expansive, if there exists a constant
a > 0 such that
2(A,B) =max supd(u,B), supd(A,v) }, VA BeCB(E"),

ueA veB IAC) =AW = allx=yll, ¥xy € E.
whered(u, B) = inf d(u,v) andd(A,v) = inf d(u,V) 1. [(iii)] N is said to be Lipschitz continuous with respect
’ veB ’ ueA 7 to the first argument, if there exists a constagqt > 0
Letn :EXE — Eand@: E — RU{+®}. A vector such that

w* € E* is calledn-subgradient ofp atx € domgp if
[IN(uz,-) = N(u2, ) [| < Any [Jun — U2,

(W' n(y;:x)) < oy) — 9(x), vy € E. Vx1,% € E and for somey; € T(xq),Up € T(Xp).
Each @ can be associated with the following Similarly we can define the Lipschitz continuity df in
n-subdifferential ma@), ¢ defined by the second argument.
Lemma 2.1[4(]. Let E be a real Banach space agd :
{w € E* - (W, n(y,X)) < o(y) — @(x)}, E — 2F" be the normalized duality mapping. Then for any
Vy € E,x € domg, x,yeE

I e(x) =

0 x ¢ domp. X+ VI < X2+ 200, §(x+3), ¥ (+Y) € Fx-+).

Definition 2.3. A functional f : E x E — RU{+} is said
Example 2.1.let E =R? andp : R> - RU{+»} be a  to be 0-diagonally quasi-concave (in short 0-DQCVYin

proper functional defined by if for any finite subse{xl,xz, ..... Xn} C E and for any
y= ZAlx.wnhA. >0andz Ai=1,
@ (x1.y1) = /X +YE
min f(x,y) <

1<i<n

Definition 2.4.LetJ:E —E*;n,H:EXE — E andAB:
n(xy) — (x—y), wherex= (x1,y1),y = (X2,y2) € R?, E — E be the mappings. Then
(i) J is said to bep-cocoercive with respect td (A, -) if

thendy ¢(x) = {v € R?/q(y) > ¢(x) +V(y - x), Vy € R?} there exists a constapt> 0 such that
is a maximalp-monotone set-valued mapping.

We recall the following definitions and results which (I(H(AX,-)) = I(H(AY, ), n(x,y)) > H||Ax— Ay||%,
are needed in the sequel.

Let n : R? x R? — R? be defined by

X,y € E.
Definition 2.1. A mappingg : E — E is said to be (i) J is said to be relaxed-cocoercive with respect to
(i) Lipschitz continuous, if there exists a constagt> 0 H(-,B) if there exists a constagt> 0 such that
such that (JI(H(-,BX)) = I(H(-,By)),n(xy)) > (—y)|Bx—By]|[?,
1900 =gl < Agllx—yll, ¥xy € E. o VXyeE o : :
(iii) J is said to be Lipschitz continuous with respect to

(i) k-strongly accretivek € (0,1)), if for any x,y € E, H(A,-) if there exists a constaity, > 0 such that

there existg(x— X—Y) such that

x=y) € Fx=y) [9(H (A%, ) — I(H (A )| < Ay X~y ¥xy € E.
(9(x) —g(y), j(x—y)) > K|x—y|, Similarly we can define the Lipschitz continuity dfwith

. respect (-, B).
where .7 : E — 2% is the normalized duality mapping | emma 2.714]. Let D be a nonempty convex subset of
defined by a topological vector space arfd D x D — RU {+o} be

Fo{teE (1) = It =[x} vxeE  Suon
= {F B (1) = I = lixil}, vx € B (i) foreachx e D,y — f(x,y) is lower semicontinuous on
Some examples and properties of the mappihgan be each compact subset of D,
found in [7]. (ii) for each finite se(xl,XZ, xn} € D and for eacly =
Definition 2.2.Letn :ExE - E;A:E - E, T:E* — z Aix with Aj > 0 and z Ai=1, mln f(x,y) <0,

CB(E") andN : E* x E* — E* be the mappings, then (iu) there exists a nonempty compact convex subgetf
(i) n is said to be Lipschitz continuous, if there exists a D and a nonempty compact sub&eof D such that for

constantr > 0 such that eachy € D\ K, there is arx € Co(Do U {y}) satisfying
f(x,y) > 0.
[N < T|Ix=Y|, VX y € E. Then there existg € D such thatf (x,y) <0, ¥x € D.
@© 2013 NSP
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3 J/-Proximal mapping

First, we define the notion Qﬂ—ProximaI mapping.

Definition 3.1.Let E be a real Banach space with the dual
spaceE*. LetH,n : EXE — E;A/B: E — E be the
single-valued mappings ang : E — RU {4~} be the
lower semicontinuous (may not be convex), proper,
n-subdifferentiable functional. Letl : E — E* be a
mapping and if for any giver* € E* andp > 0, thereis a
unique pointx € E satisfying

(J(H(AX,Bx)) —x*,n (¥, X)) +P@(y) — pp(x) >0, Vy € E.

The mapping<* — x denoted byJZ’Z;p(x*) is said to be
J{],—proximal mapping of ¢@. Clearly, we have

x*—J(H(A,B)(x)) € pdy @(x), it follows that

J2(x) = IH(AB) +pdhe) *(x). (1)

Remark 3.1.

(i) If ¢: E — RU{+} is lower semicontinuous, proper,
subdifferentiablen (y,x) = y—xandJ(H(A,B)) = J,
then definition 2.2 coincides with the definition &f
proximal mapping of Ding and Xig2p).

(i) If J(H(A,B)) = J, then definition 2.2 coincides with
the definition ofJ7-proximal mapping of Ahmad et al.
[4].

(iii) If @ : E — RU{+} is lower semicontinuous,
proper, subdifferentiable,n(y,x) = y — x and
J(H(A,B)) = H(A,B), then definition 2.2 reduces to
the definition ofM-proximal mapping of Kazmi et al.

[34].

Now we give some sufficient conditions which guarantee

the existence and Lipschitz continuity dﬂ-proximal
mapping.

Theorem 3.1.Let E be a reflexive Banach space with the
dual spaceE* and ¢ : E — RU {4~} be a lower
semicontinuous,n-subdifferentiable, proper functional
which may not be convex. LeH,n : E x E — E;
A,B: E — E be the single-valued mappings such thas
T-Lipschitz continuous,A is a-expansive andB is
B-Lipschitz continuous. Lef : E — E* be n-cocoercive
with respect toH (A, -) with constantu > 0 and relaxed
n-cocoercive with respect td (-, B) with constanty > 0.
Let n(x,y) = —n(y,x) for all x,y € E and for anyx € E,
the function h(y,x) (x* — J(H(AX,Bx)),n(y,x)) is
0-DQCV iny. Then for anyp > 0 and for anyx* € E*,
there exists a uniquec E such that

(J(H (A%, Bx)) =X, n (¥, X)) +p@(y) — p@(x) = O, Vx,y(ez)E-
Thatisx = JZ’?;”(X*) and so the),}-proximal mapping ofp
is well defined.

Proof. ForanyJ:E - E*H.n:ExXxE —-E;AB:E —
E,p > 0 andx" € E*, define a functionaf : E x E —+ RU

{+co} by
f(y,x) = (X

" —J(H(AX,BX)),n (¥, X)) +pp(X) — pp(y),

X,y € E.
Since J,n are continuous mappings ang is lower
semicontinuous, we have that for ang E,x — f(y,Xx) is
lower semicontinuous oB. We claim thatf (y,x) satisfies
condition (ii) of Lemma 2.2. If it is false, then there exists
a finite subsefys,yo,.....ym} € E and

m m
Xo=) Aiyi withA; >0,y Aj=1
i; i;

such that

(X0 — I(H(A%0,Bx0)), 11 (¥i-X0)) + PP(X0) — p@(¥i) > O,
vVi=12,...m

Since @ is n-subdifferentiable akp, there exists a point
fy, € E* such that

Po(yi) — p@(x0) > p(fy, N (Yi, X)), Vi =1,2,....m.

It follows that

<X* - H(AX07 BXO) 7pfxi)an(ylaxo)> > 05 Vi= 1727"'5?’;)

On the other hand, by assumptior(y,x)

(X* — J(H(Ax,Bxo)) — pfg,nN(Vi;%0)) is 0-DQCV iny,
we have

(Xx=J(H(Ax0,Bx0)) — Py, N (Vi X0)) <0,

1<i<m

which contradicts the inequalit@). Hencef (y, x) satisfies
the condition (i) of Lemma 2.2. Now we take a fixgd
domp. Sinceg is n-subdifferentiable ay, there exists a
point f; € E* such that

@(x) — oly) > (fy,n(x,y)), VX € E.
Hence we have

f(y,x) =
>

X = J(H (A%, BX)), n(¥;x)) + po(x) — po(y)
J(H (A, By)) — I(H (A%, BX)), n(y;x))

+( = J(H(AY, BY)),n(y,%)) +p(fy,n(x.y))
(J(H(Ay,By)) — I(H (A%, BY)),n(¥,%))
+(J(H (A% By)) — I(H (A%, BX)), n (¥, X))
+(X" = J(H(AY,BY)),n(¥,X)

+p(fg n(xy))-

o~ o~

(4)

Since J is n-cocoercive with respect téd(A,-) with
constantpy and relaxedn-cocoercive with respect to
H(-,B) with constanty, n is 1-Lipschitz continuousA is
a-expansive and is B-Lipschitz continuous, therefore
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(4) becomes
F(¥:%) > pl| Ay —Ax|? - yvi|By— Bx]*
—T(IX[[ + 19 (H(AY, BY) [ + Pl gDy = X]
> pa®|ly—x|* - yB?y—x|?
—T([X[[ + 19 (H(AY, BY) [+ pl gD [y — X
= (na®—yB?)|ly—x|I?
—T(IX[[ + 19 (H(AY, BY) [+ pl 51D [y = X]
= |Iy=x|[(na?® - yB?)[[y—x|
—T([X[[ + 19(H(AY, BY) [ + Pl fy1])]-
pTUX [+ 13(H (A, BY)) || + ol f7l] and

_ 1
Letr = HaZ—yp?

K={x€eE:|y—x| <r}. LetDg = {y} andK are both
weakly compact convex subsets & and for each
x € E\Kthere exists ay € Cyo(Dg U {y}) such that

f(y,x) > 0. Hence all the conditions of the Lemma 2.2 are

satisfied. By Lemma 2.2, there existsag E such that
f(y,x) <0, forally € E, that is for any givex* € E*,
(J(H(AX,BX)) =x",n(¥,X)) + pp(y) — pp(X) > 0, Vy € E.

Now we show thak is a unique solution of problei
Suppose thaty, X, € E are two arbitrary solutions of
problem2. Then we have

(J(H(AXq,Bx1)) =X, n(Y,X1)) + P@(y) — p@(x1) > O,

vy eE, )
( J(H(Ax2,Bx2)) — X", N (y,X2)) + p@(y) — p@(X2) > O,
vy eE. (6)

Takingy = x2 in (5) andy = x; in (6) and adding these
inequalities, we have
< 'J(H (AX].? BXl)) - X*a n (X27Xl)> + <'J(H (AX27 BXZ)) - X*7

n(xi,%2)) >0, )
sincen (x,y) = —n(y,x), we have
(I(H(Axg, Bxy)) — I(H (Axz, Bx1)), 1 (X1, X2))
+(J(H(Ax2,Bx1)) — J(H(AX2,Bx2)), N (X1,X2)) < 0.

It follows that
(Ha? — yB?)|xs — X2 < O,

and hence we must haxge= x; asy > yanda > 3. This
completes the proof.

Example 3.1.LetE =R andn : R xR — R be defined by
(x—y), iyl <3,
nxy) =4 byl(x=y), if 3 <yl <3,

2(X7 y)a
Then it is easy to see that:

if 3 < [xyl.

(i) n is 2-Lipschitz continuous.
(”) ’7(X7Y) = —r](y,X).
letJ:R—>RH:RxR — RAB:R — R be the
mappings such that
J(H (Ax,BX)) = Ax+ B,
whereAx = 3,Bx = (1—x), forall x e R. Then
(I(H (Ax,u) — I(H (Ay,u)), n(x,Y)) > 4] Ax— Ay||?

and
(J(H(u,Bx)) —I(H(u,By)),n(xy)) = —%I\Bxf By|®

that is,J is 4-n-cocoercive with respect td (A, ) and%—
n-relaxed cocoercive with respecthty-, B).

Further, we will show that for any € R, the function
h(y,u) = (x—J(H(Au,Bu)),n(y,u)) is 0-DQCV iny. If
it is false, then there exists a finite gt y»....... yn} and

n n
Up = %Aiyi with A; > 0 and%)\i = 1 such that for each

i=12,....n
(X+% —1)(¥i— o), if yio| < 3,
0 <h(yi,Uo) = q ¥ilo|(¥i — Uo), if 1< |yiuo| < 3,

It follows that (x+ @ — 1)(yi — Up) > O for each
i=1,2,....nand hence, we have

0< i/\i(X-i-%_l)(yi_UO): (XJr%_l)(“O_uo):O’

which is not possible. Hend#y, u) is 0-DQCYV iny. Thus
n andJ satisfies all assumption in Theorem 3.1.

Theorem 3.2.Let E be a reflexive Banach space with the
dual spaceE* and ¢ : E — RU {+»} be a lower
semicontinuous,n-subdifferentiable, proper functional
which may not be convex. LeH,n : E x E — E;
A,B: E — E be the single-valued mappings such thas
1-Lipschitz continuous,A is a-expansive andB is
B-Lipschitz continuous. Led : E — E* be n-cocoercive
with respect toH (A, -) with constantu > 0 and relaxed
n-cocoercive with respect td (-, B) with constanty > 0.
Let n(x,y) = —n(y,x) for all x,y € E and for anyx € E,
the function h(y,x) = (x* — J(H(AX,BXx)),n(y,x)) is
0-DQCV iny. Then for anyp > 0, the Jﬂ-proximal
mappinge is Wiyﬁz)-upschitz continuous.

Proof. By Theorem 3.1, we know that th#}-proximal
mapping ofg is well defined. For any giver*,y* € E*,

let x = JZ’?SD(X*),y = Jz’f;”(y*), thenx* — J(H(Ax,Bx)) €

@© 2013 NSP
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PO @(X), Y — I(H(AY,BY)) € pon@(y).
Hence

(X" = I(H (A% Bx)), n(u pp(u), Vu€E,

(8)

(y" = JI(H(Ay,By)),n(u,y)) > pe(y) — pg(u), Yu € E(g)

Takeu =y in (8 andu = x in (9) and adding these
inequalities, we have

<X**J(H(AXBX)) n(y,x) +

X)) > PO(X) —

(y* = J(H(Ay,By)),

n(xy)) >0,
sincen (x,y) = —n(y,x), it follows that
(J(H(Ay,By)) —I(H (A%, BX)),n (¥, X)) < (N (¥,X),y* _(ﬁj

As J is n-cocoercive with respect td (A, -) with constant
u and relaxedy-cocoercive with respect tbl (-, B) with
constanty andn is t-Lipschitz continuous, it follows from
(10) that

(a? = yB?)lly x| < Tly—xl[ly" = x|,

which implies that]Z’Z;f ie. theJﬂ-proximaI mapping ofp

. T . .
Is gz g2 -Lipschitz continuous.

4 Formulation, iterative algorithm and
existence result

Let T,G: E — CB(E*) be set-valued mappings. Let
N:E*xXE* -E*,n:ExXxE — E andg: E — E be the
single-valued mappings. Lep : E —+ RU {+»} be a
lower semicontinuousy-subdifferentiable function ok
(may not be convex) satisfying(E) N dom(d, @) # ¢,
where dy, ¢ is the subdifferential ofp at x. We consider
the following variational-like inclusion problem.

Find x € E,u € T(x),v € G(x) such thatg(x) €
dom(d, ) and

(N(u,v),n(y,9(x))) > @(g(x) —a(y)), Vy € E.

If E =X, is a Hilbert spacen(y,x) = y—Xx, Vxy €
X,N(u,v) = f(u) —P(v), Vu,v € X, wheref,P: X — X
are single-valued mappings, then probleit) (reduces to
the following problem.

Findx € X,u e T(x),v € G(x) such that

(f(u) = P(v),y—g(x) = @(9(x)) — @(y)), ¥y € X. (12)
Problem (2) is introduced and studied by Huarg].

(11)

Theorem 4.1.The (x,u,Vv) is a solution of problem1() if
and only if(x,u,v) satisfies the following relation:

g(0) = IS I(H(AGX), BG09)) — PN(UV)}, (13)

wherex € E, ue T(x), ve G(x),p >0 ande,‘?;)p =
(J(H(A,B)) +pdy o) tis theJ,’l-proximaI mapping ofp.
Proof. Assume thak € E,u € T(x) andv € G(x) satisfies
relation (L3), i.e.,

g(x) = JPE{IH(AQX)), BG(X))) — PN(U W)},

since J,ﬂ’?:,o = (J(H(AB)) + popp)~L, the above
inequality holds if and only if
J(H(AG(x)),B(9(x)))) — PN(u,V)
€ J(H(A(9(x)), (9( )))) + P @(g(X))-

By the definition of n-subdifferential of¢, the above
relation holds if and only if

@(y) — @(9(x)) > (N(u,

Hence we have

(N(u,v),n(y,9(x))) > @(g(x)) —

i.e., (x,u,v) is a solution of problem). Similarly the
converse part follows.

Based on 11), we suggest the following proximal
point algorithm.

Algorithm 4.1. For any givernxg € E,up € T(xg) andvp €
G(xp), compute the sequencés,}, {un} and{vyn} by the
iterative schemes.

v),n(y,9(x)))-

o(y), VY€ E,

9(Xn+1) = JH"(p{J( (A(9(%n)),B(9(%n)))) — PN(Un,Vn) };
(14)

Un € T(Xn), (U1 — Unll < Z(T (Xa12), T (%)), (15)

Vn € G(Xn), [[Vn+1 = Vnll < Z(G(%n+1),G(%n)),  (16)

n=0,12,....

wherep > 0 is a constant.

Theorem 4.2.let X be a reflexive Banach space with its
dual X* and let T,G : E — CB(E*) be Lipschitz
continuous mappings with constantdt and Ag,
respectively. Letg : E — E be Lipschitz continuous
mapping with constantg and (g — 1) is k-strongly
accretive (k € (0,1)) satisfying (g —1)(E) = E. Let

For appropriate and suitable choices of mappings involved) : E x E — E be Lipschitz continuous mapping with

in the formulation of problem1(1), one can obtain many
variational inequalities (inclusions) studied previguisy
different authors.

We first transfer problem1() into a fixed point
problem.

constantt > 0 such thatn(x,y) = —n(y,x), for all
x,y € E and for each givenx € E, the function
h(y.x) = (x* = J(H(A(X), B(x))),n (y.X)) is 0-DQCV iny.
LetH: E xE — E,A,B: E — E be the mappings such
thatAis a-expansive an® is B-Lipchitz continuous. Let

@© 2013 NSP
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N:E* x E* — E* beAy,-Lipschitz continuous in the first
argument andAn,-Lipchitz continuous in the second
argument. Let @ : E — RU {4~} be a lower
semicontinuous,n-subdifferentiable, proper functional
(may not be convex) satisfying(x) € dom(d,¢). Let
J: E — E* be n-cocoercive with respect tbl (A, -) with

§||9(Xn+1) — g(Xn)

12

Since||x+y]||? < 2(]|x||>+ |ly||?) and by Theorem 3.2, we

constantu > 0 and relaxedi-cocoercive with respect to < ||Ja”‘p[ J(H(A(g(%n)),B(g(xn))))
H(-,B) with constanty > O; Lipschitz continuous with
respect toH(A,-) with constantAp, and Lipschitz —PpN(un,Vn)] — ||J'9"(p[ J(H(A(g(xn)),
continuous with respect tél(-,B) with constantAn,. 5
Suppose that there exists a consfant 0 such that for all B(9(X1-1)))) — PN(Un, Va-1)]||
E andx* € E*, the followi dition i isfied.
X,y € E andx* € E*, the following condition is satisfie +|\Ja”¢[ IH(AG)).B(Gn1))))
AZAR, +A%) + PPARAF+2(,A8) ;
(1+2k)(pa® —yB?)? —pN(tn,Vn-1)] = [ 35 B(H (A[G(%-1)),
< > , a7) 5
4t B(9(%n-1)))) — PN(Un-1,Va-1)]]|
u>y,a>p. 2
Then the iterative sequence$x,},{un} and {vn} < W”‘](H(A(g(x"))’B(g(X”))))
generated by Algorithm 4.1 converge stronglyxto and
v, respectively andx, u,v) is a solution of variational-like —PN(Un,Vn) — (J(H(A(9(%n)), B(9(Xn-1))))
inclusion problem11). *PN(Umanl))”z
Proof. We can write 2
X1 = Xal|? = [19(%+1) — 90) — 9(Xn+1) + 9(%n) +aaz—yp PH(AEe),
Hhass =l B(g(1-1)))) — PNt vn1)
ByLemma 2.1, we have ~ ((H(AQ(n-1)). B(g-1))))
X1 =%l < [1900+1) — 90n) [1Z(9(Xn+1) — G(¥n) —pN(Un_1,Vn_1))||?
—Xn+1+ X0, J(Xn+1— Xn)) 2
_ Hg(XnJrl)*g(Xn)Hzfz«g*I)(XnJrl*Xn)v = (“aziyﬁz)z||\](H(A(g(xn))7B(g(Xn))))
(X1 — %) (18) —I(H(A(G0%)), B(9(%n-1)))) — PN (Un, Vo)
By Algorithm 4.1, we have —N(Un,anl)]Hz
9(Xn+1) = Jﬂ”,;” [J(H(A(9(Xn)), B(9(Xn)))) — PN(Un, Vn)]. +(HC¥2T—72VBZ)2 [3(H(AG(Xn)), B(g(Xn-1))))
Hence we have —J(H(A(g(n1)). B9l 1))
190:2) — 901 = 1957919 <H<A(g(xn>>,B<g<Xn>>>> ~PN(Un,Vi1) ~ PIN(Un-1, V1]
—PN(un, V)] = 35 FI(H(A(G(xn 1)), < (azzirzﬁz)z||J(H(A(g(xn)),B(g(xn))))
0 1) PNt 132 . (H(A(V B
- Xn)), Xn_
— 1912 13(H(Agxn)) Bl x)))) B
o b 2P NG Vo) — N(tin. Vo 1) 2
=PN(tn, vn)] = Iy [I(H(A(G(xn)), (HaZ—yp2)? ’ ’
B(9(%n-1)))) — PN(Un,Vn-1)] 271'2
o +aaz— 22 [I(H(A(9(xn)), B(9(xn-1))))
+3BH(AG06)), B9 1) ,
—J(H(A(9(Xn-1)),B(9(Xa-1)))) |
,pN(un,anl)] 2‘[2p2
I (AG 1), Bgn 1)) T laaz— ypaye | N(Un-vo-1)
—pN(Un-1,Vn-1)]||? ~N(Un-1,V0-1)]> (19)
@© 2013 NSP
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By the Lipschitz continuity of] with respect toH (A, -)
andH -, B) with constants\y, andAn;, respectively, and
g with constanfg, we have

[N(H(A(G(n)), B(g(xn)))) — I(H(A(G(xn)), B(9(xn-1))))l
< Ang [900) — 9(%a-1) |

[3(H(A(9(xn)), B((xn-1)))) — I(H(A(G(Xn-1)),
B(g(xn-2))))l

< Aallgxn) —9(xn-1) |

< AraAglXn — X1l (21)

By the Lipschitz continuity of N(-,-) in both the
arguments with constantdy, and An,, respectively,
Lipschitz continuity of T and G with constantsAt and
Ag, respectively and Algorithm 4.1, we have

[IN(Un, Vi) = N(Un,Vn-1) ]| < AN, [[Vn — Vn-a]|
< M, Z(G(%n),G(Xn-1))

< ApAc][Xn — Xn—1| (22)

Un—1|
S Ang(T (Xn)7T(anl))
< ANAT X0 — X0 (23)

IN(Un,Va—1) = N(Un—1,Vn—1)|| < An,|lUn—

By (19-23), we obtain

l9(Xn11 — g(Xn)Hz
472

< (uaz - yprp¥elebo -

2
Xn—
( 2 n lH

412%p?

g NP ol

(“az AGHXn

472

+7yﬁz)2/\HA 3% — Xn-1]|?

(Ha?
412p?
_1’_7

(naZ Aﬁlf\TzHXn—anle
41%p? 2
= (a2 yp2 e’

+FAGAS + PPAG AR %0 — X 1?

§ +PPAGAS
(24)
Since(g—1) is k-strongly accretive, by24), we have
X0 = X011 < 1|g(xn+1) — G(xn) |2

= 2((g—1) (%1 —*n-1), ] (X —Xn-1))

< 61]xn = Xn-11* = 2K[|Xn 1 — X%

It follows that

Xnl|2 < 1% — Xn—1]|®

6,
(X1 — 11 2k

or
X1 — Xal|% < B]|%0 — Xn-1]1%, (25)

wheref = lflzk and

01 = gz WA +PPAGAZ+ AN +PPAG M)

Condition (L7) implies that 0< 8 < 1, so it follows from
(25 that{xn} is a Cauchy sequence Erand letx, — X.
Since the mappings andG are Lipschitz continuous, it
follows from (15) and (6) that {un} and {v,} are also
Cauchy sequences, we can assume that> u and
Vh — V. Using the continuity ofl, H,A,B,g,N,n and by
Algorithm 4.1, we have

9(x) = JE[I(H(A(G(X), B(g(X))) — PN(U,V)).

Now we will prove thatu € T(x) andv € G(x). Infact,
sinceup € T(X,) and

d(un, T(x)) < max{d(un, T(x)), sup d(T(%n),y)}
YET)(X)

< maxX supd(z T(x)), supd(T (X1),y)}
z€TXn yeTx
(%))

=2(T (), T
We have
d(u, T(x)) < [lu—Un[[ +d(un, T (x))
< Ju=Unll+2(T (%), T(x))
< fu=Unll+A1[X0 = X[ = O, (X o0),

which implies thatd(u, T (x)) = 0. SinceT (x) € CB(E),
it follows thatu € T (x). Similarly, we can prove that €
G(x). By Theorem 4.1(x,u,V) is a solution of problem
(11). This completes the proof.
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