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We obtain an explicit formula for the Euler polynomials of higher order in terms of
the Gaussian hypergeometric function. The corresponding new formulas of the Euler
polynimials and numbers are also deduced. Finally, we also remark some possible
applications of these results in the number theory and information science fields.
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1 Introduction

The classical Bernoulli polynomials Bn (x) and Euler polynomials En (x) together
with their familiar generalizations B

(α)
n (x) and E

(α)
n (x) of (real or complex) order α, are

usually defined by means of the following generating functions (see, for details, [1, 3, 8]):
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(|z| < 2π; 1α := 1) , (1.1)

and (
2

ez + 1

)α

exz =
∞∑

n=0

E(α)
n (x)

zn

n!
(|z| < π; 1α := 1) , (1.2)

respectively. The classical Bernoulli and Euler polynomials are respectively found from
(1.1) and (1.2) as follows:

Bn (x) := B(1)
n (x) and En (x) := E(1)

n (x) (n ∈ N0) . (1.3)
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Further the classical Bernoulli numbers Bn and Euler numbers En with their forms of
higher order are

Bn := Bn (0) and En := 2nEn

(
1
2

)
,

B(α)
n := B(α)

n (0) and E(α)
n := 2nE(α)

n

(α

2

)
,

(1.4)

respectively.
Recently, Luo et al. [6] gave certain new recursive formulas for the Euler numbers and

polynomials of higher order; Luo [7] further obtained several formulas involving the Stir-
ling numbers of the second kind. Srivastava and Todorov [9] gave some elegant formulas
for the Bernoulli numbers and polynomials of higher order as follows
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and

B(α)
n (x) =

n∑

k=0
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× 2F1

[
k − n, k − α; 2k + 1;

j
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]
.

(1.6)

Here 2F1[a, b; c; z] denotes the Gaussian hypergeometric function defined by (see [1,
15.1.1])

2F1[a, b; c; z] =
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (1.7)

where (λ)0 = 1, (λ)n = λ(λ + 1) · · · (λ + n− 1) = Γ(λ + n)/Γ(λ) (n ≥ 1).

2 An Explicit Formula of E(α)
n (x) in Terms of the Gaussian Hyperge-

ometric Function

In the present section, we will prove an explicit formula for the Euler polynomials of
higher order which is an analogue of the formula (1.6). We need the following lemmas
before proving main result.

Lemma 2.1. For n = 0, 1, . . . , x ∈ R, α ∈ C, the following formulas are true
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E(α)
n (x) = (−1)nE(α)

n (α− x),

E(α)
n
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)
=
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Proof. From (1.2), we can readily obtain above formulas.

Clearly, by Lemma 2.1 we have
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n (0),
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(2.1)

Theorem 2.1. For n = 0, 1, . . . , x ∈ R, α ∈ C, the following formula in terms of the
Gaussian hypergeometric function is true
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(2.2)

Proof. By Taylor’s expansion and Leibniz’s rule, the generating relation (1.2) yields

E(α)
n (x) =

n∑
s=0
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Since

(1 + w)−α =
∞∑

k=0
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k

)
(−w)k (|w| < 1),

setting 1 + w = (ez + 1)/2 and applying the binomial theorem, we find from (2.3) that
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Now we make use of the well-know formula (see [1, 24.1.4])

(ez − 1)k =
∞∑

r=k
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r!
∆k0r, S(r, k) =

1
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∆k0r, (2.5)

where S(r, k) denotes the Stirling number of the second kind defined by
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For convenience we write
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where ∆ is the difference operator defined by (see [1, pp. 822, III])

∆f(x) = f(x + 1)− f(x).

So, in general (see [1, pp. 823, 24.1.1]),

∆kf(x) =
k∑

j=0

(−1)k−j

(
k

j

)
f(x + j).

From (2.5) we find that

Ds
z{(ez − 1)k}|z=0 = ∆k0s = k!S(s, k). (2.7)

Substituting this value into (2.4) yields
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or
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If we rearrange the resulting duple series (2.9), we have
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Further substituting for ∆k0s+k from the definition (2.6) with a = 0 into (2.10), we get
that
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Finally, we apply the known transformation [1, 15.3.4]

2F1[a, b; c; z] = (1− z)−a
2F1

[
a, c− b; c;

z

z − 1

]

and (2.11) leads immediately to the desired (2.2).

3 Further Remarks

Remark 3.1. Taking α = 1 in (2.2), we obtain the following new formula for the Euler
polynomials
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Remark 3.2. By [1, 15.1.20], we have

2F1[a, b; c; 1] =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(c 6= 0,−1,−2, . . . , <(c− a− b) > 0),

which (for a = k − n, b = k, and c = k + 1) readily yields

2F1[k − n, k; k + 1; 1] =
(

n

k

)−1

, (0 ≤ k ≤ n). (3.1)

In view of (3.1) and the special case when x = 0 in formula (2.2), we get that
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or equivalently,
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Moreover, we note that, with E
(α)
n := 2nE

(α)
n (α/2) and (2.1), the Euler numbers of higher

order can be written as
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Further, setting α = 1 in formula (3.4), we deduce easily the following formula for the
Euler numbers
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)
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