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Abstract: In this paper, Numerical solution of Differential-Algebraic equations (DAEs) with index-3 is considered by Pade
approximation. We applied this method to two examples. First differential-algebraic equations (DAEs) with index-3 has been converted
to power series by one-dimensional differential transformation, Then the numerical solution of equation was put into Pade series form.
Thus we obtained numerical solution of differential-algebraic equations (DAEs) with index-3.
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1 Introduction

Differential-Algebraic Equations (DAEs) can be found in
a wide variety of scientific and engineering applications,
including circuit analysis, computer-aided design and
real-time simulation of mechanical (multibody) systems,
power systems, chemical process simulation, and optimal
control. Many important mathematical models can be
expressed in terms of Differential-Algebraic Equations
(DAEs). Many physical problems are most easily initially
modeled as a system of differential-algebraic equations
(DAEs) [4]. Some numerical methods have been
developed, using both backward differential formula [1,3,
4,5] and implicit Runge-Kutta methods [2,4], Pade
Approximations method [8,9]. These methods are only
directly suitable for low index problems and often require
that the problem to have special structure. Although many
important applications can be solved by these methods
there is a need for more general approaches. The most
general form of a DAE is given by

F(t,x,x′) = 0, (1.1)

where∂ f/∂x′ may be singular. The rank and structure of
this jacobian matrix may depend, in general, on the
solution x(t), and for simplicity we will always assume
that it is independent oft. The important special case of a

semi-explicit DAE or an ODE with constraints,

x′ = f (t,x,z), (1.2a)

0= g(t,x,z). (1.2b)

This is a special case of (1.1). The index is 1 if∂g/∂ z is
nonsingular, because then one differentiation of (1.2b)
yields z′ in principle. For the semi-explicit index-1 DAE
we can distinguish between differential variablesx(t) and
algebraic variablesz(t) [4]. The algebraic variables may
be less smooth than the differential variables by one
derivative. In the general case, each component ofx may
contain a mix of differential and algebraic components,
which makes the numerical solution of such high-index
problems much harder and riskier. The semi-explicit form
is decoupled in this sense. The Pade approximation
method used to accelerate the convergence of the power
series solution.Thus we obtained numerical solution of
Differential-Algebraic equations(DAEs) with index-3.

2 Special Differential-Algebraic
Equations(DAEs) Forms

Most of the higher-index problems encountered in
practice can be expressed as a combination of more
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restrictive structures of ODEs coupled with constraints. In
such systems the Algebraic and differential variables are
explicitly identified for higher-index DAEs as well, and
the algebraic variables may all be eliminated using the
same number of differentiations. These are called
Hessenberg forms of the DAE and are given belong. In
this article, the Pade approximation method has proposed
for solving differential-algebraic equations with index-3.
The presented solutions are performed using MAPLE
computer algebra systems [7].

2.1 Hessenberg Index-1

x′ = f (t,x,z), (2.1a)

0= g(t,x,z). (2.1b)

Here the Jacobian matrix functiongz is assumed to be
nonsingular for allt. This is also often referred to as a
semi-explicit index-1 system. Semiexplicit index-1 DAEs
are very closely related to implicit ODEs.

2.2 Hessenberg Index-2

x′ = f (t,x,z), (2.2a)

0= g(t,x). (2.2b)

Here the product of Jacobiansgx fz is nonsingular for allt.
Note the absence of the algebraic variablesz from the
constraints (2.2b). This is a pure index-2 DAE, and all
algebraic variables play the role of index-2 variables.

2.3 Hessenberg Index-3

x′ = f (t,x,y,z), (2.3a)

y′ = g(t,x,y), (2.3b)

0= h(t,y). (2.3c)

Here the product of three matrix functionshygx fz is
nonsingular. The index of a Hessenberg DAE is found, as
in the general case, by differentiation. However, here only
algebraic constraints must be differentiated [2].

3 One-Dimensional Differential Transform

Differential transform of functiony(x) is defined as
follows:

Y (k) =
1
k!

[

dky(x)
dxk

]

x=0
, (2.1)

In equation (2.1),y(x) is the original function andY (k) is
the transformed function, which is called the T-function.
Differential inverse transform ofY (k) is defined as

y(x) =
∞

∑
k=0

xkY (k), (2.2)

from equation (2.1) and (2.2), we obtain

y(x) =
∞

∑
k=0

xk

k!

[

dky(x)
dxk

]

x=0
, (2.3)

Equation (2.3) implies that the concept of differential
transform is derived from Taylor series expansion, but the
method does not evaluate the derivatives symbolically.
However, relative derivatives are calculated by an iterative
way which are described by the transformed equations of
the original functions. In this study we use the lower case
letter to represent the original function and upper case
letter represent the transformed function. From the
definitions of equations (2.1) and (2.2), it is easily proven
that the transformed functions comply with the basic
mathematics operations shown in Table 1. In actual
applications, the functiony(x) is expressed by a finite
series and equation (2.2) can be written as

y(x) =
m

∑
k=0

xkY (k), (2.4)

Equation (2.3) implies thaty(x) = ∑∞
k=m+1 xkY (k) is

negligibly small. In fact,m is decided by the convergence
of natural frequency in this study.

Definition 2.1.Let ⊗ denote convolution

y(x) = u(x)v(x),u(x) = D−1 [U(k)] ,v(x) = D−1 [V (k)]

so we have

D [y(x)] = D [u(x)v(x)] =U(k)⊗V(k) =
k

∑
r=0

U(r)V (k− r)
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Table 1 The fundamental operations of one-dimensional
differential transform method

Original function Transformed function
y(x) = u(x)+v(x) Y (k) =U(k)+V (k)
y(x) = cw(x) Y (k) = cW (k)

y(x) = dw(x)
dx Y (k) = (k+1)W (k+1)

y(x) = d jw(x)
dx j Y (k) = (k+1)(k+2)...(k+ j)W (k+ j)

y(x) = u(x)v(x) Y (k) = ∑k
r=0U(r)V (k− r)

y(x) = x j Y (k) = δ (k− j) =

{

1, k = j

0, k 6= j

4 Pade Approximation

Suppose that we are given a power series∑∞
i=0 aixi,

representing a functionf (x), so that

f (x) =
∞

∑
i=0

aix
i, (3.1)

A Pade approximation is a rational fraction

[L�M] =
p0+ p1x+ ...+ pLxL

q0+ q1x+ ...+ qMxM , (3.2)

which has a Maclaurin expansion which agress with (3.1)
as for as possible, Notice that in (3.2) there areL + 1
numerator coefficients and M + 1 denominator
coefficients. There is a more or less irrelevant common
factor between them, and for definitenees we takeq0 = 1.
This choice turns out to be an essential part of the precise
definition and (3.2) is our conventional notation with this
choice forq0. So there areL+ 1 independent numerator
coefficients andM independent numerator coefficients,
making L + M + 1 unknown coefficients in all. This
number suggest that normally the[L�M] ought to fit the
power series (3.1) through the orders 1,x,x2, ...,xL+M in
the notation of formal power series.

∞

∑
i=0

aix
i =

p0+ p1x+ ...+ pLxL

q0+ q1x+ ...+ qMxM +O(xL+M+1). (3.3)

Multiply the both side of (3.3) by the denominator of right
side in (3.3) and compare the coefficients of both sides (3.3
), we have

al +
M

∑
k=1

al−kqk = pl , (l = 0, ...,M), (3.4)

al +
L

∑
k=1

al−kqk = pl , (l = M+1, ...,M+L). (3.5)

Solve the linear equation in (3.5), we have
qk,(k = 1, ...,L). And substituteqk into (3.4), we have
pl ,(L = 0, ...,M). Therefore, we have constructed a

[L�M] Pade approximation, which agress with∑∞
i=0 aixi

through orderxL+M. if M ≤ L ≤ M+2, whereM andL
are the degree of numerator and denominator in Pade
series, respectively, then Pade series gives an A-stable
formula for an ordinary differential equation.

5 Applications

Example 1.We first considered the following differential-
algebraic equations with index-3





1 0 0
0 1 0
0 0 0



×





x′1
x′2
x′3



+





1 1 x
ex x+1 0
0 x2 0



×





x1
x2
x3



 (4.1)

=





2x
x2+ x+2

x3



 ,x ∈ [0,∞] ,

with initial conditions

x(0) =





1
0
1



 ,

The exact solutions arex1(x) = e−x, x2(x) = x, x3(x) = 1.
By using the basic properties of differential transform
method and taking the transform of differential-algebraic
equations given (4.1), we obtained

(k+1)X1(k+1)+X1(k)+X2(k)+
k

∑
r=0

δ (r−1)X3(k− r)

(4.2)

= 2δ (k−1),

(k+1)X2(k+1)+
k

∑
r=0

1
r!

X1(k− r)+
k

∑
r=0

δ (r−1)X2(k− r)

(4.3)

+X2(k) = δ (k−2)+ δ (k−1)+2δ (k),

k

∑
r=0

δ (r−2)X2(k− r) = δ (k−3), (4.4)

Equations (4.2) and (4.3) can be simplified as

X1(k+1) =
1

k+1
[2δ (k−1)−X1(k)−X2(k) (4.5)

−
k

∑
r=0

δ (r−1)X3(k− r)],
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X2(k+1) =
1

k+1
[δ (k−2)+ δ (k−1)+2δ (k) (4.6)

−
k

∑
r=0

1
r!

X1(k− r)−
k

∑
r=0

δ (r−1)X2(k− r)−X2(k)],

k

∑
r=0

δ (r−2)X2(k− r) = δ (k−3), (4.7)

The initial conditions can be transformed atx0 = 0, as

X1(0) = 1, X2(0) = 0, X3(0) = 1,

For k = 0,1,2, ..., X1(k),X2(k),X3(k) coefficients can be
calculated from equations (4.5)-(4.7)

X1(1) =−1, X1(2) =
1
2
, X1(3) =−

1
6
, X1(4) =

1
24

,

X1(5) =−
1

120
, X1(6) =

1
720

, X1(7) =−
1

5040
,

X1(8) =
1

40320
,X1(9) =−

1
362880

, X2(1) = 1,

X2(2) = 0, X2(3) = 0, X2(4) = 0, X2(5) = 0,

X3(1) = 0,X3(2) = 0, X3(3) = 0, X3(4) = 0,

X3(5) = 0, ....

By substituting the values ofX1(k), X2(k), X3(k), ...into
equation (4.3), the solutions can be written as

x∗1(x) = 1− x+
1
2

x2−
1
6

x3+
1
24

x4−
1

120
x5

+
1

720
x6−

1
5040

x7+
1

40320
x8−

1
362880

x9+ ...,

x∗2(x) = x,

x∗3(x) = 1.

Power seriesx∗1(x) can be transformed into Pade series

x∗∗1 (x) = P [5�4]

= (1−0.5555555556x+0.1388888889x2

−0.01984126984x3+0.1653439153×10−2x4

+0.6613756614×10−4x5)�(1+0.4444444444x

+0.08333333333x2+0.7936507936×10−2x3

+0.3306878307×10−3x4)

Example 2.





0 1 0
0 x 1
0 0 0



×





x′1
x′2
x′3



+





1 0 0
0 2 0
0 x 1



×





x1
x2
x3



=





1
2x
ex



 ,x ∈ [0,∞] ,

(4.8)

Table 2 Numerical solution ofx1(x)

x x1(x) x∗∗1 (x) |x1(x)−x∗∗1 (x)|
0.0 1.0000000000 1.0000000000 0
0.1 0.9048374180 0.9048374182 2×10−10

0.2 0.8187307531 0.8187307533 2×10−10

0.3 0.7408182207 0.7408182204 3×10−10

0.4 0.6703200460 0.6703200456 4×10−10

0.5 0.6065306597 0.6065306602 5×10−10

0.6 0.5488116361 0.5488116359 2×10−10

0.7 0.4965853038 0.4965853040 2×10−10

0.8 0.4493289641 0.4493289639 2×10−10

0.9 0.4065696597 0.4065696595 2×10−10

1.0 0.3678794412 0.3678794404 8×10−10

 

 

Fig. 1 values ofx1(x) and itsx∗∗1 (x) Pade approximant

with initial conditions





x1(0)
x2(0)
x3(0)



=





0
−1
1



 ,

The exact solutions are

x1(x) = ex −1, x2(x) = 2x− ex, x1(x) = (1+ x)ex−2x2,

By using the basic properties of differential transform
method and taking the transform of differential-algebraic
equations given (4.8) it is obtained that
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X2(k+1) =
1

k+1
[δ (k)−X1(k)], (4.9)

X3(k+1) =
1

k+1
[2δ (k−1)−2X2(k)

−
k

∑
r=0

δ (r−1)(k− r+1)X2(k− r+1)],

k

∑
r=0

δ (r−1)X2(k− r)+X3(k) =
1
k!
,

The initial conditions can be transformed atx0 = 0, as

X1(0) = 0, X2(0) =−1, X3(0) = 1,

For k = 0,1,2, ..., X1(k),X2(k),X3(k) coefficients can be
calculated from equations (4.9)

X1(1) = 1, X1(2) =
1
2
, X1(3) =

1
6
, X1(4) =

1
24

,

X1(5) =
1

120
, X2(0) =−1, X2(1) = 1, X2(2) =−

1
2
,

X2(3) =−
1
6
, X2(4) =−

1
24

, X2(5) =−
1

120
,

X3(0) = 1, X3(1) = 2,X3(2) =−
1
2
, X3(3) =

2
3
,

X3(4) =
5
24

, X3(5) =
1
20

, ....

By substituting the values ofX1(k),X2(k),X3(k) into
equation (4.3), the solutions can be written as

x∗1(x) = x+
1
2

x2+
1
6

x3+
1
24

x4+
1

120
x5+

1
720

x6

+
1

5040
x7+

1
40320

x8+
1

362880
x9,

x∗2(x) =−1+ x−
1
2

x2−
1
6

x3−
1
24

x4−
1

120
x5−

1
720

x6

−
1

5040
x7+

1
40320

x8−
1

362880
x9,

x∗3(x) = 1+2x−
1
2

x2+
2
3

x3+
5
24

x4+
1
20

x5

+
7

720
x6+

1
630

x7+
1

4480
x8+

1
36288

x9,

Power seriesx∗1(x), x∗2(x) andx∗3(x) can be transformed
into Pade series

x∗∗1 (x) = P1 [5�4]

= (−x+0.5555555556x2−0.02777777778x3

+0.001322751323x4−0.6613756614×10−4x5)

�(1+0.4444444444x+0.08333333333x2

+0.007936507936x3+0.3306878307×10−3x4),

x∗∗2 (x) = P2 [5�4]

= (−1+1.444444444x−1.027777778x2

+0.1468253968x3−0.01752645503x4

+0.5952380952×10−3x5)�(1−0.4444444444x

+0.0833333333x2−0.7936507936×10−2x3

+0.3306878307×10−3x4),

x∗∗3 (x) = P3 [5�4]

= (1+1.613112133x−1.214826536x2

+0.9740730863x3−0.08686838489x4

+0.01080566945x5)�(1−0.3868878669x

+0.05894919782x2−0.3935909473×10−2x3

+0.6994421809×10−4x4),
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Fig. 2 Values ofx1(x) and itsx∗∗1 (x) Pade approximant
 

 

Fig. 3 Values ofx2(x) and itsx∗∗2 (x) Pade approximant
 

 

Fig. 4 Values ofx3(x) and itsx∗∗3 (x) Pade approximant

Table 3 Numerical solution ofx1(x)

x x1(x) x∗∗1 (x) |x1(x)−x∗∗1 (x)|
0.0 0.0000000000 0.0000000000 0
0.1 −0.0951625820 −0.09516258200 0
0.2 −0.1812692469 −0.1812692470 1×10−10

0.3 −0.2591817793 −0.2591817792 1×10−10

0.4 −0.3296799540 −0.3296799537 3×10−10

0.5 −0.3934693403 −0.3934693406 3×10−10

0.6 −0.4511883639 −0.4511883638 1×10−10

0.7 −0.5034146962 −0.5034146965 3×10−10

0.8 −0.5506710359 −0.5506710359 0
0.9 −0.5934303403 −0.5934303408 5×10−10

1.0 −0.6321205588 −0.6321205600 1.2×10−9

Table 4 Numerical solution ofx2(x)

x x2(x) x∗∗2 (x) |x2(x)−x∗∗1 (x)|
0.0 −1.000000000 −1.000000000 0
0.1 −0.9051709180 −0.9051709180 0
0.2 −0.821402758 −0.8214027581 1×10−10

0.3 −0.749858808 −0.7498588076 4×10−10

0.4 −0.691824698 −0.6918246976 4×10−10

0.5 −0.648721271 −0.6487212706 4×10−10

0.6 −0.622118800 −0.6221188006 6×10−10

0.7 −0.613752707 −0.6137527076 6×10−10

0.8 −0.625540928 −0.6255409276 4×10−10

0.9 −0.659603111 −0.6596031094 1.6×10−9

1.0 −0.718281828 −0.7182818240 4×10−9

Table 5 Numerical solution ofx3(x)

x x3(x) x∗∗3 (x) |x3(x)−x∗∗3 (x)|
0.0 1.00000000 1.0000000000 0
0.1 1.195688010 1.195688010 0
0.2 1.385683310 1.385683312 2×10−9

0.3 1.574816450 1.574816450 0
0.4 1.768554577 1.768554576 1×10−9

0.5 1.973081906 1.973081907 1×10−9

0.6 2.195390080 2.195390081 1×10−9

0.7 2.443379602 2.443379605 3×10−9

0.8 2.725973670 2.725973679 9×10−9

0.9 3.053245911 3.053245941 3×10−8

1.0 3.436563656 3.436563744 8.8×10−8

6 Conclusion

The method has proposed for solving differential -
algebraic equations with index-3. Results show the
advantages of the method. Table 2, Table 3, Table 4, Table
5 and Fig.1, Fig.2, Fig.3 and Fig.4 shows that the
numerical solution approximates the exact solution very
well in accordance with above method. The Pade
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approximation method used to accelerate the convergence
of the power series solution.The presented solutions in
this article are performed using MAPLE computer
algebra systems [7].
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