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Abstract: In this paper, Numerical solution of Differential-Algelzaequations (DAEs) with index-3 is considered by Pade
approximation. We applied this method to two examplest Bifferential-algebraic equations (DAES) with index-3t@een converted
to power series by one-dimensional differential transfation, Then the numerical solution of equation was put irgdePseries form.
Thus we obtained numerical solution of differential-algeb equations (DAES) with index-3.
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1 Introduction semi-explicit DAE or an ODE with constraints,

. _ . _ . X = f(t,x,2), (1.2a)
Differential-Algebraic Equations (DAES) can be found in
a wide variety of scientific and engineering applications,
including circuit analysis, computer-aided design and 0=g(t,x,2). (1.2b)
real-time simulation of mechanical (multibody) systems,
power systems, chemical process simulation, and optimathis is a special case of (1.1). The index is Pg/dzis
control. Many important mathematical models can benonsingular, because then one differentiation of (1.2b)
expressed in terms of Differential-Algebraic Equationsyields Z in principle. For the semi-explicit index-1 DAE
(DAEs). Many physical problems are most easily initially we can distinguish between differential variabkés and
modeled as a system of differential-algebraic equationsilgebraic variableg(t) [4]. The algebraic variables may
(DAEs) [4]. Some numerical methods have beenbe less smooth than the differential variables by one
developed, using both backward differential formuled] derivative. In the general case, each componentmfy
4,5] and implicit Runge-Kutta methods2[4], Pade contain a mix of differential and algebraic components,
Approximations method§,9]. These methods are only which makes the numerical solution of such high-index
directly suitable for low index problems and often require problems much harder and riskier. The semi-explicit form
that the problem to have special structure. Although manyis decoupled in this sense. The Pade approximation
important applications can be solved by these methodsnethod used to accelerate the convergence of the power
there is a need for more general approaches. The mosferies solution.Thus we obtained numerical solution of
general form of a DAE is given by Differential-Algebraic equations(DAESs) with index-3.

F(t,x,X) =0, (1.1)
2 Special Differential-Algebraic
whered f /0x’ may be singular. The rank and structure of Equations(DAES) Forms
this jacobian matrix may depend, in general, on the
solutionx(t), and for simplicity we will always assume Most of the higher-index problems encountered in
that it is independent df The important special case of a practice can be expressed as a combination of more
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restrictive structures of ODEs coupled with constraims. | 3 One-Dimensional Differential Transform
such systems the Algebraic and differential variables are

explicitly identified for higher-index DAEs as well, and pifferential transform of functiony(x) is defined as
the algebraic variables may all be eliminated using thesg|iows:

same number of differentiations. These are called

Hessenberg forms of the DAE and are given belong. In 1 [dky(x)

this article, the Pade approximation method has proposed Y(k) = K [ dxk } 5
for solving differential-algebraic equations with ind8x- ' x
The presented solutions are performed using MAPLE
computer algebra system§ [

(2.1)

In equation (2.1)y(x) is the original function and (k) is
the transformed function, which is called the T-function.
Differential inverse transform of (k) is defined as

2.1 Hessenberg I ndex-1 -
y(x) = ;X Y (k), (2.2)
k=
X=1(tx2), (2.1a) from equation (2.1) and (2.2), we obtain
_ o X [dYy(x)
0=g(t,x2). (2.1b) =2 [ v ]xo’ (2.3)

Here the Jacobian matrix functiagy is assumed to be
nonsingular for allt. This is also often referred to as a
semi-explicit index-1 system. Semiexplicit index-1 DAEs
are very closely related to implicit ODEs.

Equation (2.3) implies that the concept of differential
transform is derived from Taylor series expansion, but the
method does not evaluate the derivatives symbolically.
However, relative derivatives are calculated by an iteeati
way which are described by the transformed equations of
the original functions. In this study we use the lower case
2.2 Hessenberg | ndex-2 letter to represent the original function and upper case

letter represent the transformed function. From the

definitions of equations (2.1) and (2.2), it is easily proven

X = f(t,%,2), (2.2a) that the transformed functions comply with the basic

mathematics operations shown in Table 1. In actual
applications, the functiory(x) is expressed by a finite

0=g(t,x). (2.2b) series and equation (2.2) can be written as

k
X) =Y XYk 2.4
Here the product of Jacobiagsf; is nonsingular for alt. Y kZO k), (2:4)

Note the absence of the algebraic varial#esom the

constraints (2.2b). This is a pure index-2 DAE, and all

algebraic variables play the role of index-2 variables. Equation (2.3) implies thaty(x) = z‘;:mlxky(k) is
negligibly small. In factmis decided by the convergence
of natural frequency in this study.

2.3 Hessenberg I ndex-3 o _
Definition 2.1. Let @ denote convolution

X = f(t,xy,2), (2.3a) y(X) = u()Vv(x),u(x) = D~ [U (K)],v(x) = D[V (K)]
Yy =q(t,x,y), (2.3b) SO we have
k
0=h(t,y). (2.3c) D)) =DuX)v(x)] =U (k) V(K = ;U (NV(k=r)

Here the product of three matrix functionggyf; is
nonsingular. The index of a Hessenberg DAE is found, as
in the general case, by differentiation. However, here only
algebraic constraints must be differentiatéf [
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Table 1 The fundamental operations of one-dimensional [L,/M] Pade apprOXImatlon which agress wigtt ;ax

differential transform method through orderx-*M. if M < L < M +2, whereM andL
Original function | Transformed function are the degree of numerator and denominator in Pade
y0X) = u(X) +v(x) | Y(K) =U(K) +V(K) series, respectively, then Pade series gives an A-stable
y(X) = ow(x) Y(K) = cW(K) formula for an ordinary differential equation.
Y00 = g Y(K) = (k4 DW(k+1)
y() = i Y(k) = (k+1)(k+2) (k+ PW(k+]) L
Y09 W) Y9 = TEg0 V(= 5 Applications
. 1, k=]j
y(x) = Yk =0(k=1)=1, k£ j Example 1.We first considered the following differential-
: algebraic equations with index-3
PR 100 X; 1 1 x X1
4 Pade Approximation (0 1 0) y (X'z) n (ex X1 0) y (XZ) 4.1)
: 7 2
Suppose that we are given a power serjg8,aix, 000 "3 0 x 0 %
representing a functiof(x), so that 2X
X2+ X+ 2 [0, 0]
=Y ax, (3.1)
2

with initial conditions
A Pade approximation is a rational fraction

R OR

[L/M] =

)

which has a Maclaurin expansion which agress with (3.1)The exact solutions arg (x) = € %, x2(X) =X, X3(Xx) = 1.

as for as possible, Notice that in (3.2) there are 1 By using the basic properties of differential transform
numerator coefficients andM + 1 denominator method and taking the transform of differential-algebraic
coefficients. There is a more or less irrelevant commonequations given (4.1), we obtained

factor between them, and for definitenees we tgke: 1.

This choice turns out to be an essential part of the precise )

definition and (3.2) is our conventional notation with this

choice forgp. So there ard+ 1 independent numerator (K+1)Xa(k+1) 4 Xa (k) + Xa (k) + ;50 —DXs(k—r)
coefficients andVl independent numerator coefficients, = 4.2)
making L + M + 1 unknown coefficients in all. This '
number suggest that normally thie /M) ought to fit the ~ =20(k—1),

power series (3.1) through the ordersc¥?, ..., x-*M in

the notation of formal power series.

Po -+ PyX+ ... +p Xt (32) x(0) = (
Qg+ gpX+ ... + QXM '

k 1 k
Z)a ot PXt £ RX | uiminy (33 (+ DXalkt D+ 5 SXalk=r)+ 5 3(F = D¥elk—1)
Qo + g1 X+ ... + QX = e

(4.3)
Multiply the both side of (3.3) by the denominator of right v 1y — 5k _ 2 k— 1)+ 25(k
side in (3.3) and compare the coefficients of both sides (3.3Jr 2(k) = o )+l ) +20(k),
), we have
k
M
O(r—2)Xa(k—r)=0(k—3 4.4
a+ S axk=p, (1=0,.,M), (3.4) r; (r—2)Xp(k—r1) =8(k—3), (4.4)
=]
Equations (4.2) and (4.3) can be simplified as
L
a + a—klk = P, (I :M+157M+L) (35) 1
Zl Xi(k+1) = m[Z(S(k— 1) — Xi(k) — Xo(k)  (4.5)
Solve the linear equation in (3.5), we have k
Ok, (k = 1,...,L). And substitutegy into (3.4), we have - Zoé(rfl)X3(kfr)],
p,(L = 0,...,M). Therefore, we have constructed a r=
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1
Xo(k+1) = m[é(k— 2)+0(k—1)+25(k) (4.6)  Table 2 Numerical solution ok; (X)

k 1 k X x1(X) X1 () [x1.(X) —Xx3* ()]
Z}—|x1 —r)— Zoé(r —DXa(k—r) — Xa(K)], 0.0 | 1.0000000000| 10000000000 0
= = 0.1 | 0.9048374180| 0.9048374182] 2x10 1©

0.2 | 0.8187307531] 0.8187307533] 2x10 1©
k 0.3 | 0.7408182207| 0.7408182204] 3x10 1©
;5“ —2)Xe(k—r) =8(k—-3), (4.7) 0.4 | 0.6703200460] 0.6703200456] 4 x 10~ 10
= 0.5 | 0.6065306597| 0.6065306602] 5x 10 1©
The initial conditions can be transformedxgt= 0, as 0.6 | 0.5488116361| 0.5488116359 2% 10 10
0.7 | 0.4965853038| 0.4965853040] 2x 10 1©
X1(0) =1, X2(0) =0, X3(0) =1, 0.8 | 0.4493289641| 0.4493289639] 2x10 1
- 0.9 | 0.4065696597| 0.4065696595] 2 x 10 1©
Fork=0,12,..., Xi(k),X2(k), Xs(k) coefficients can be 10 | 0.3678794412| 0.3678794404] 8x 10 1°
calculated from equations (4.5)-(4.7)
1 1 1
X1(1) = -1, X1(2) = 50 X ()= & X1(4) = 24
1 1 1
X1(5) = — =, X1(6) = ==, X4(7) = ————
1(5) 120 1(6) = 755 %17 = 5020 1000
1 [
X1(8) = N=———"- X(1)=1
1(8) 40320 *(9) = ~ 352880 2V =1 200
X2(2) =0, X2(3) =0, X2(4) =0, X2(5) =0,
X3(1) =0,X3(2) =0, X3(3) =0, X3(4) =0, 600
X3(5) =0, ...

By substituting the values of1(k), Xa(k), X3(k),...into
equation (4.3), the solutions can be written as

X (X) =1— x+2x ——x3+ %—mﬁ

c il Loy Oxg— L oy
736" ~ 5040° * 20320 ~ 362880 T
X3 (X) = X,

x3(x) = 1.

Power serie; (x) can be transformed into Pade series

x1"(x) = P[5,4]
= (1—0.5555555558+ 0.138888888%°
—0.0198412698#% + 0.1653439153 10~ 2¢*
+0.6613756614 107%°) /(14 0.444444444%
+0.0833333333% 4 0.7936507936¢ 102
+0.330687830% 10~3¢)

Example 2.

40

(=]

200

(=]

+H+++ xR

x (x)

-6 4

2 ox 2

with initial conditions

x1(0) 0
Xz(O) =| -1
X3(0) 1

The exact solutions are

4 [+

Fig. 1 values ofx;(x) and itsx;*(x) Pade approximant

x1(X) = € —1, xa(X) = 2x— €, x1(X) = (1+x)e* — 2%,
010 X 100 X1 1
OX1| x| X |+[{020|x|x|=]2x € [0,],By using the basic properties of differential transform
000 X5 0x1 X3 e method and taking the transform of differential-algebraic
(4.8) equations given (4.8) it is obtained that
@© 2013 NSP
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SRV SIS TS VSN S-S S
. X (X) =X+ 5X +6x3+24x4+120x5+720x
Xo(k+1) = —=[3(k) — X1 (K)], (4.9) 1 7 1 8 1
k1
+ *5040° " 20320° " 362880’
1
Xa(k+1) = ——[28(k— 1) — 2Xa(K) 1, 1, 1 1 . 1
SX) = —14X— =X X3 —xr —xv
) kit X0 = X X e o T 120" 7200
1 1 1
S S(r—1)(k—r+1)Xo(k—r +1)], B 7 B 9
r;a 504" * 20328° ~ 362880 °
k 1 Ko — 12,23 54,1
B(r — 1)%o(K—1) + Xa(k) = . X5(X) = 14 2x SX 43¢+ 24x4+ 20)@
= k! 7 1

1 1
R - BT A 9
+ 736 + 630 + 2a80" * 36288

The initial conditions can be transformedxgt= 0, as Power series; (x), x5(x) andx;(x) can be transformed

into Pade series

X]_(O) - O; XZ(O) = 717 X3(O) = 15
X" (x) = P1[574]
= (—x+ 0.555555555&% — 0.0277777777€
+0.001322751328' — 0.6613756614 10~ %)
Fork = O, 1, 2, ey X]_(k),XZ(k), Xg(k) coefficients can be /(1+ 0.4444444440%+ 0083333333332
calculated from equations (4.9)
+0.007936507936 + 0.330687830% 10’3X4),

1 1 1
X1(1) =1, %(2) =3, X1@8) = 5, X1(4) = 5, X5 (X) = P, [5,/4)]
= (—1+1.44444444% — 1.027777778°
1 1
X1(5) = 130 X2(0) = -1, Xo(1) = 1, X(2) = -5 +0.1468253968° - 0.01752645508"
+0.595238095% 10~3) /(1 — 0.4444444444
1 1 1 +0.083333333%% - 0.7936507936¢ 10~ 3¢
Xo(3) = =2, Xo(4) = —=— ==
23) = =5 Xe®) = =53 %) =155 +0.330687830% 10 %),
2
X3(0) =1, Xs(1) =2.%5(2) = — 5, %(3) = 3, .
x5"(X) = P3[5,74]
. L = (141.613112138— 1.214826536°

X3(4) = 0 X3(5) = 20 +0.974073086%° — 0.0868683848¢"
+0.0108056694%°) (1 — 0.3868878668
+0.0589491978% — 0.3935909473 103

i _ +0.699442180% 1044,
By substituting the values oK;(k),Xz(k),X3(k) into

equation (4.3), the solutions can be written as
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Fig. 2 Values ofx; (x) and itsx;* (x) Pade approximant
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Fig. 3 Values ofxx(x) and itsx;* (x) Pade approximant
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Fig. 4 Values ofxz(x) and itsx5*(x) Pade approximant

Table 3 Numerical solution ok (X)

X X1 ) () — X ()]
0.0 0.0000000000 0.0000000000 0

0.1 | —0.0951625820| —0.09516258200 0

0.2 | —0.1812692469| —0.1812692470 1x10 10
0.3 | —0.2591817793| —0.2591817792 1x10 10
0.4 | —0.3296799540| —0.3296799537 3x1010
0.5 | —0.3934693403| —0.3934693406 3x1010
0.6 | —0.4511883639| —0.4511883638 1x10 10
0.7 | —0.5034146962| —0.5034146965 3x1010
0.8 | —0.5506710359| —0.5506710359 0

0.9 | —0.5934303403| —0.5934303408 5x 10 10
1.0 | —0.6321205588| —0.6321205600 12x10°

Table 4 Numerical solution ok (X)

X X2 X% (0 e — X ()]
0.0 —1.000000000 | —1.000000000 0

0.1 | —0.9051709180| —0.9051709180 0

0.2 —0.821402758 | —0.8214027581 1x 1010
0.3 —0.749858808 | —0.7498588076 4%x10 10
0.4 | —0.691824698 | —0.6918246976 4x10 10
0.5 —0.648721271 | —0.6487212706 4x10 10
0.6 —0.622118800 | —0.6221188006 6x 1010
0.7 —0.613752707 | —0.6137527076 6x 1010
0.8 —0.625540928 | —0.6255409276 4%x10 10
0.9 —0.659603111 | —0.6596031094 16x10°°
1.0 —0.718281828 | —0.7182818240 4%x10°°

Table 5 Numerical solution ok3z(x)

X xs(x) X5 () a0 = x5 (¥
0.0 | 1.00000000 | 1.0000000000 0

0.1 | 1.195688010| 1.195688010 0

0.2 | 1.385683310| 1.385683312 2x10°°
0.3 | 1.574816450| 1.574816450 0

0.4 | 1.768554577| 1.768554576 1x10°9
0.5 | 1.973081906| 1.973081907 1x10°9
0.6 | 2.195390080| 2.195390081 1x107°
0.7 | 2.443379602| 2.443379605 3x10°9
0.8 | 2.725973670| 2725973679 9x 1079
0.9 | 3.053245911| 3.053245941 3x10°8
1.0 | 3.436563656| 3.436563744| 8.8x10°8

6 Conclusion

The method has proposed for solving differential -
algebraic equations with index-3. Results show the
advantages of the method. Table 2, Table 3, Table 4, Table
5 and Fig.1, Fig.2, Fig.3 and Fig.4 shows that the
numerical solution approximates the exact solution very
well in accordance with above method. The Pade
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approximation method used to accelerate the convergence
of the power series solution.The presented solutions in
this article are performed using MAPLE computer
algebra systemdT].
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