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Abstract: The objective is to estimate the concentration of air pollution, by solving the atmospheric diffusion equation (ADE) using
Adomain decomposition method. The solution depends on eddydiffusivity profile (K) and wind speed at the release point (u). We solve
the ADE numerically in two dimensions using Adomain decomposition method, then, compared our results with observed data.
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1 Introduction

The Adomian decomposition method (ADM) has been
applied in wide class of stochastic and deterministic
problems in many interesting mathematics and physics
areas [1]. Adomain gave a review of the decomposition
method in [2]. The numerical solution of sixth order
boundary value problem by ADM is found by[3]., The
Adomians decomposition and wavelet - Galerkin methods
is used to solve integro- differential equations by [4]. The
Sine -Galerkin and the modified decomposition methods
is used for two - point boundary -value problems by [5].

In this paper, advection diffusion equation was solved
in two dimensional space (x,z) using Adomian
decomposition method to obtain the normalized
crosswind integrated concentration employing numerical
form. Two forms models of the eddy diffusivities as well
as the wind speed at the released point were used in the
solution. Two calculated models were compared with
observed data measured at Copenhagen in Denmark my
using statistical technique.

2 Numerical Method

Time dependent advection - diffusion equation is written
as [6].

∂c
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)+
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where c is the average concentration of air pollution
(µg/m3). u is the wind speed (m/s).Kx, ky andkz are the
eddy diffusivities coefficients alongx,y and z axes
respectively (m2/s).

For steady state, takingdc/dt = 0 and the diffusion in
the x-axis direction is assumed to be zero compared with
the advective in the same directions, hence:

u
∂c
∂x

=
∂
∂y

(Ky
∂c
∂y

)+
∂
∂ z

(Kz
∂c
∂ z

) (2)

Assuming thatky = kz = k(x), integrating the equation2
with respect toy, we obtain the normalized crosswind
integrated concentrationcy(x,z) of contaminant at a point
(x,z) of the atmospheric advection-diffusion equation is
written in the form as [7]:

∂ 2cy(x,z)
∂ z2 =

u∂cy(x,z)
K∂x

(3)

Equation 3 is subjected to the following boundary
condition 1-It is assumed that the pollutants are absorbed
at the ground surface i.e.

k
∂cy(x,z)

∂ z
=−νgcy(x,z) atz = 0 (i)

whereνg is the deposition velocity(m/s).
2-The flux at the top of the mixing layer can be given

by

k
∂cy(x,z)

∂ z
= 0 atz = h (ii)
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3-The mass continuity is written in the form

ucy(x,z) = Qδ (z− h) atx = 0 (iii)

where δ is Dirac delta function,Q is the source
strength and h is mixing height.

4-The concentration of the pollutant tends to zero at
large distance of the source, i.e.

cy(x,z) = 0 atz = ∞ (iv)

In equation3, we takeA = u
k and Equation3 can be

solved using Adomain decompositions method as follows:

Lzzcy(x,z) = ALxcy(x,z)

whereLzz =
∂ 2

∂ z2 ,Lx =
∂
∂x

Multiplying both sides of the above equation byL−1
zz

(inverse), one gets:

cy(x,z) = c0+AL−1
zz Lxcy(x,z)

L−1
zz =

z
∫

0

z
∫

0

(c0+AL−1
zz Lxcy(x,z))dzdz (4)

Assuming that

Co = M(x)+ zN(x) (5)

where M and N are unknown functions which will be
determined from boundary conditions, using equation4 to
get the general solution in the from
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Putn = 0
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Assuming the solution has the form
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∑
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By differentiating the equation8 with respect to z and
multiplying by kz , we obtain that:
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Using the boundary condition (i) atz = 0, we obtain
that
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= KzN(x) = M(x)

∴ N(x) =
−νg
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Using the boundary condition (ii) atz = h, we obtain that
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Integrating the equation11 from 0 tox, we obtain that:-

N(x) = N0(x)e
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Ah(hνg−2K)

]

x

(12)

Using the boundary condition (iii), we get that:-

N0(x) =
Q
u

δ (z− h)

Substituting fromN0(x) in equation12, we get that:-

N(x) =
Q
u

δ (z− h)e

[
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−νg)x
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Substituting from two equations10 and13 in equation5,
we obtain that:-

c0 =
−K
νg

N(x)+ zN(x) =

[

−K
νg

+ z

]

N(x) = (z−B)N(x)

(14)
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whereB = k/νg
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Substituting equations (11) and (17) in equation (7), we
obtain that:
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the general solution:

∂cy(x,z)
Q =

νg
u(hνg−k)e

2(Ah ∂ k
∂ x −νg)x

Ah(hνg−2k)

∑n
0

(

2u(Ah ∂ k
∂ x −νg)x

Ahk(hνg−2x)

)i
(

−kz2i

νg(2!) +
z2i+1

(2!+1)!

)

(20)

3 Results and discussion

We can obtain the wind speed at source height 115m as
follows:

u115= u10

( z
10

)p
(21)

where :
u115 is the wind speed at 115m.
u10 is the wind speed at 115m.
z is the physical hight.
p is parameter estimated by [8], which is related to stability
classes, is given in Table[1]

Table 1 Estimates of the power (p) in urban areas for six
Stability Classes based on information by [8].

Stability Very Moderately Slightly Neutral Slightly Moderately
Classes unstable unstable unstable stable stable

(A) (B) (C) (D) (E) (F)
Urban p 0.19 0.21 0.32 0.30 0.36 0.46

In the present model, we used two methods for the
calculation of the eddy diffusivity depends on the
downwind distance(x). The first method takingk in the
from k1(x) = 0.04ux and the second method are
referenced to [6] wherek takes in the form:

kz(x) = 0.16

(

σ2
w

u

)

x

whereσw is the standard deviation of the vertical velocity.

Table 2 Values of wind speed at 10 m and 115 m and downwind
distance through unstable and neutral stabilities in northern part
of Copenhagen.

Run no. Stability u10(m/s) u115(m/s) distance(x)(m)
1 A 2.1 3.34 1900
1 A 2.1 3.34 3270
2 C 4.9 10.71 2100
2 C 4.9 10.71 4200
3 B 2.4 4.01 1900
3 B 2.4 4.01 3700
3 B 2.4 4.01 5400
5 C 3.1 4.93 2100
5 C 3.1 4.93 4200
5 C 3.1 4.93 6100
6 C 7.2 11.45 2000
6 C 7.2 11.45 4200
6 C 7.2 11.45 5900
7 B 4.1 6.85 2000
7 B 4.1 6.85 4100
7 B 4.1 6.85 5300
8 D 4.2 8.74 1900
8 D 4.2 8.74 3600
8 D 4.2 8.74 5300
9 C 5.1 11.14 2100
9 C 5.1 11.14 4200
9 C 5.1 11.14 6000

The used data set was observed from the atmospheric
diffusion experiments conducted at the northern part of
Copenhagen, Denmark, under unstable conditions [9] and
[10]. The tracer sulfur hexafluoride(SF6).

was released from a tower at a height of 115m without
buoyancy. The values of different parameters such as
stability, wind speed at 10m(U10), wind speed at
115m(U115), and downwind distance during the
experiment are represented in (Table 2).

Table (3); shows the observed, two analytical models,
and two numerical normalized crosswind-integrated
concentrationsCy/Q and downwind distance.

4 Statistical method

Now, the statistical method is presented and comparison
among analytical, statically and observed results will be
offered [11]. The following standard statistical
performance measures that characterize the agreement
between model prediction (Cp = Cpred/Q) and
observation(Co =Cobs/Q):
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Table 3 Comparison between Observed, two numerical models
normalized crosswind-integrated concentrations Cy/Q and
downwind distance.

RUN Stability down distance Cy/Q∗10−4(s/m2)
NO. (m) Numeric. model 1Numeric. model 2Observed

1 A 1900 3.59 2.08 6.48
1 A 3700 4.93 3.79 2.31
2 C 2100 7.36 4.03 5.38
2 C 4200 2.04 1.27 2.95
3 B 1900 1.05 1.32 8.20
3 B 3700 8.94 3.40 6.22
3 B 5400 1.20 6.25 4.30
5 C 2100 1.18 3.55 6.72
5 C 4200 1.69 8.75 5.84
5 C 6100 3.76 1.53 4.97
6 C 2000 2.02 2.82 3.96
6 C 4200 1.44 7.24 2.22
6 C 5900 5.31 1.18 1.83
7 B 2000 1.81 2.63 6.70
7 B 4100 1.46 6.09 3.25
7 B 5300 1.01 8.62 2.23
8 D 1900 5.14 7.11 4.16
8 D 3600 9.14 1.50 2.02
8 D 5300 4.32 2.42 1.52
9 C 2100 5.97 3.50 4.58
9 C 4200 1.05 7.70 3.11
9 C 6000 1.60 1.18 2.59

Fig. 1 Comparison between numerical cross observed
normalized crosswind integrated concentration and downwind
distance.

Normalized Mean Square Error (NMSE)=
((Cp −Co)2)

((CpCo))

Fractional Bias (FB)=
(
−−→
(Co)− (Cp))

[

0.5(Co +Cp)
]

Fig. 2 The variation of the numerical predicted normalized
crosswind concentrations via observed normalized crosswind
concentrations.

Correlation Coefficient (COR)= 1
Nm

Nm

∑
i=1

(Cpi − (Cp ))

×
(Coi−Co)

σpσo

Factor of Two (FAC2)= 0.5≤
Cp

Co
≤ 2.0

Whereσp andσo are the standard deviations ofCp andCo
respectively. Here the over bars indicate the average over
all measurements(Nm). A perfect model would have the
following idealized performance:

NMSE= FB = 0andCOR = FAC2= 1.0

Table 4 Comparison between our different models according to
standard statistical performance measure

Models NMSE FB COR FAC2
Numerical model 1 0.66 0.04 -0.11 1.19
Numerical model 2 0.79 0.19 -0.08 1.09

From the statistical method, we find that the two
models are factors of 2 with observed data. Regarding to
NMSE, numerical model 1 is better than numerical model
2. The numerical model 1 is also the best regarding toFB.
The correlations of numerical model 1 and model 2 are
equal -0.11 and -0.08 respectively.
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5 Conclusion

We have used numerical solution of two- dimensional
atmospheric diffusion equation by Adomain
decomposition method to calculate normalized crosswind
concentrations for continuous emits sulfur hexafluoride
(SF6). In this model the vertical eddy diffusivity depends
on the downwind distance and it is calculated using two
methods k1(x) = 0.04ux and k2(x) = 0.16(σw/u)x.
Graphically, we can observe that numerical models 1 and
two have most points inside a factor of two with the
observed data. From the statistical method, we find that
the two models are factors of 2(FAC2) Regarding to
NMSE, numerical models 1 and two are better with
observed data. Also the numerical models 1 and 2 are the
best regarding toFB. The correlations of numerical
model 1 and model 2 are equal -0.11 and -0.08
respectively.
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