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Abstract: In some adaptive sampling designs, expectations need to be calculated as sampling progresses. For situations when these
calculations need to be done in the field where there is no access to computers, or for very complicated and computer intensive
calculations, we introduce an approximation method. The method to approximate the expectation is based on conditioning on small set
of points. An application of the approximation method is described for a sample design with a complicated estimator.
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1 Introduction

In most statistical applications the true underlying population is assumed unknown. A sample is taken and inference used
to estimate the population model. In situations where the population’s model is known the parameters of the population
are considered known and further statistical methods are not required. For example, when the probability function of
a discrete variable is known the expectation of any functioncan be calculated easily. However, sometimes, in practice,
when there are a large number of data points and the expectation form cannot be simplified or calculated easily, the exact
value of the expectation cannot be found. In such cases, Monte Carlo simulation methods can be used to estimate the
expectations. These methods typically require considerable computational work.

In this paper we introduce an approximation method that doesnot require a lot of computational work for complicated
expectations. This method can be useful in field surveys where the researcher needs to calculate an expectation, for
example, for decisions to be made to terminate sampling. In adaptive sampling [7] the process of sampling is dependent
on the sequence of observed sample values. In sequential sampling, for example, selection of sample units continue until
the variance of the estimator is smaller than a predetermined value. In general, in adaptive sampling, expectations are
calculated when a new unit is selected. Calculation methodsfor these expectations should be fast and easy for field-based
sampling e.g., in ecological studies, environmental studies, geographic studies, and biological studies.

The approximation method is introduced for discrete variables, but it can also be used for a complicated expectation of
a continuous variable. With continuous variables an expectation is calculated from an integral which can be approximated
by numerical integration techniques like Riemann Integration. Usually in numerical integration algorithms, the integral
value is approximated by calculating a summation over a function in a finite set of points. While summation over a finite
set of points may be simpler than calculating a complicated integral, the summation itself may need to be simplified by
other approximation methods.
In this paper an approximation method is used to calculate expectations by conditioning on a small number of points.
We use the example of a complicated sampling design with unequal selection probabilities without replacement and a
Rao-Blackwell estimator. Rao-Blackwellization is a powerful method to improve the efficiency of trivial estimators. This
estimator is given by calculating expectation of a trivial estimator and it is used frequently in different fields ([2], [3], and
[5]).

∗ Corresponding author e-mail:moradi m@razi.ac.ir.

c© 2013 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/jsap/020209


166 M. Moradi, J. Brown: An approximation method to calculate complicated expectations

2 Select a subset from all values of a discrete variable

Let X be a discrete variable with valuesx1,x2, ...,xN and probability functionp(x). The expectation of each function onX
as f (X) is defined as following,

E( f (X)) =
N

∑
i=1

f (xi)p(xi) (1)

For a largeN and a complicatedp(x), calculatingE( f (X)) is difficult or computationally expensive.
A Monte Carlo simulation method could be used. Firstly, the random set of numbersx1,x2, ...,xn is generated from the

distributionp(x). Then the sample mean of generatedf (x) values defined as following is calculated.

f̄ (x) =
n

∑
i=1

f (xi)/n, (2)

Using the law of large numbers, ifn is large, thenf̄ (x) converges toE( f (X)).
Although the Monte Carlo simulation method has some desirable properties and calculating the estimator generally is
not difficult, generating the random numbers from the distribution p(x) is not straightforward. Generating such random
numbers, especially for a complicated form ofp(x), requires sophisticated methods, e.g., as Markov Chain Monte Carlo
(MCMC), and access to computers for numerical processing.

In our approximation method we do not need to generate randomnumbers, and instead, only some numbers are
selected by the researcher from the range ofx values. We should note that the numbers can be selected randomly or
non-randomly. The method is described as follows.

In order to approximateE( f (X)), firstly a few points are selected from allN points such that the distribution shape
of selected points is as similar as possible to the distribution shape of allN points as judged by symmetry, skewness and
kurtosis of both histograms, or bar plots. For example, whenX ∼ B(N, p) the representative set can be a systematic set
selected from 0,1, ...,N, where the first value can be selected non-randomly. In orderto select a systematic set of size
n from 0,1, ...,N, firstly the range of points are divided inton equal intervals. Next, the first point is selected from the
first interval 0,1, ...,(N +1)/n. Each of remaindern−1 points can be selected systematically by addingn to the previous
selected point, sequentially. Selecting the mid interval point as the first selected point helps to select a set with mostsimilar
distribution shape to the allN points one.

When sortingX values is more difficult than sortingp(x) values, we can select the representative set from the list of
X values ordered corresponding to the ascending, or descending, p(x) values. This can be used for example, in sorting
multivariateX values where sorting the related singlep(X) numbers will be easier.

Let x1,x2, ...,xn be selected fromx1,x2, ...,xN . The approximated expectation off (X) shown byAE( f (X)) is obtained
by calculating the expectation off (X) conditioned on the selected points, as following:

AE( f (X)) =
∑n

i=1 f (xi)p(xi)

∑n
i=1 p(xi)

(3)

Example: AssumeX ∼ B(20, p), it is clear E(X) = np = 20p. To examine the precision of the approximation
method, we calculate the difference of the approximated expectations with the exact expectationsE(X) and
E(Log(X +1)), respectively, forp = .1, .3, .5 and set points{3,10,17} and{1,4,7,10,13,16,19}. The difference and
relative difference of approximated expectations and exact expectations ofX andLog(X +1) are given as following:

di f (X) = AE(X)−E(X) =
ns

∑
i=1

xiP(xi|x1, ...,xns)− np =
∑ns

i=1 xiP(xi)

∑ns
i=1 P(xi)

− np, (4)

di f (Log(X +1)) = AE(Log(X +1))−E(Log(X +1)) = ∑ns
i=1 Log(xi +1)P(xi|x1, ...,xns)−∑n

x=0 Log(x+1)P(x)

=
∑ns

i=1 Log(xi +1)P(xi)

∑ns
i=1 P(xi)

−
n

∑
x=0

Log(x+1)P(x). (5)

Relative difference is defined asrdi f ( f (X)) = di f ( f (X))/E( f (X)). The results of relative difference for all combinations
of ns = 3, 7 andp = .1, .3, .5 are summarized in Table (1).

In this small example, the approximated expectations for sample set size, 7, were very close to the exact
approximations, and relative differences in expectationswere very small with largerp values. The relative differences in
the skewed distribution were larger than non-skewed distribution.

c© 2013 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.2, No. 2, 165-170 (2013) /www.naturalspublishing.com/Journals.asp 167

3 Applying approximated expectation in a complicated survey sampling

Here we illustrate the approximation method for a more complicated sampling design where an auxiliary variable has
been used. The auxiliary variable is correlated with the response variable, an approach used to increase the efficiency
of an estimator for a given sample size. Auxiliary variablescan be used to improve both the sampling design and the
estimator. Stratified sampling is an example of the use of an auxiliary variable in the sample design when it is used to
partition the population. Sampling with unequal selectionprobabilities which are proportional to an auxiliary variable, is
another example of the use of an auxiliary variables to improve the sampling design so that the efficiency of the estimator
is increased. Ratio estimators, regression estimators, the Hansen-Hurwitz estimator and the Horvitz-Thompson estimator
are examples of estimators which use auxiliary variables intheir formula [6].
In general, if a correlated variable with the response variable is available, sampling with unequal selection probabilities
is preferable to equal selection probabilities. Further, sampling without replacements generally ensures a more precise
estimator than sampling with replacement.
With unequal probability sampling, one drawback is that calculating an efficient estimator is computationally difficult and
time consuming. The Rao-Blackwell estimator has a complicated calculation, for instance. As an alternative method, we
illustrate an approximate expectation method for the the Rao-Blackwell estimator, for sampling with unequal selection
probabilities.

Assume a sample of sizem is selected from a finite populationU = {1,2, ..,N} corresponding to unequal selection
probabilitiesp1, p2, ..., pN and without replacement. LetSo = (i1, ..., im) be the selected units which the order units inSo
is corresponding to the order of selection. In the selected units setS = {i1, ..., im}, the order is not important.

In finite populations the ordered sample set is sufficient andthe set of distinct sample units is minimally sufficient for
each sampling design [1].

Some estimators like Raj’s estimator [4] are functions defined on the ordered sample. The efficiency of such estimators
can be increased by calculating the Rao-Blackwell estimator. Let the estimator̂θ be a function of the ordered setSo =
(i1, ..., im), and the set of unordered units beS = {i1, ..., im}. For simplicity, we will eliminate subscripti from So andS. If
p1, p2, ..., pm are the probabilities of selecting units 1,2, ...,m, respectively, the probabilities of obtainingp(So) andp(S)
are given as:

p(So) = p1
p2

1−p1
... pm

1−p1−...−pm−1
,

p(S) =
m!

∑
g=1

p1g

p2g

1− p1g

...
pmg

1− p1g − ...− pm−1g

. (6)

Where subscriptg determines the number of each permutation. The Rao-Blackwell estimator ofθ̂ is shown byθ̂R and
is calculated as:

θ̂R = E(θ̂ |S) =
1

p(S)

m!

∑
g=1

θ̂g p1g

p2g

1− p1g

...
pmg

1− p1g − ...− pm−1g

(7)

Variance and estimate of variance forθ̂ are given as:
V (θ̂R) =V (θ̂ )−E(V(θ̂ |S))
V̂ (θ̂R) = V̂ (θ̂ )−V(θ̂ |S)

= V̂ (θ̂ )−
1

p(S)

m!

∑
g=1

(θ̂g − θ̂R)
2p1g

p2g

1− p1g

...
pmg

1− p1g − ...− pm−1g

(8)

Table 1: Relative difference
ns p rdi f (X) rdi f (Log(X +1))
3 0.1 0.5 0.4
3 0.3 -0.15 -0.11
3 0.5 0 0.01
7 0.1 -0.11 -0.06
7 0.3 -0.00 0.00
7 0.5 0 0.00
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It is clear that calculatingE(θ̂ |S) for m > 4 is too difficult without a computer on hand, and form > 180 it is near
impossible.
In order to calculateAE(θ̂ |S), firstly, a small number of allm! possible permutations are selected. ThenAE(θ̂ |S) and
ÂV (θ̂R) are given by conditioning the expectations on the selected permutations. Let a subset of sizens < m! be selected
from all m! possible permutations. ThenAE(θ̂ |S) andÂV (θ̂R) are given as:

AE(θ̂ |S) =
1

p(S⋆)

ns

∑
g=1

θ̂g p1g

p2g

1− p1g

...
pmg

1− p1g − ...− pm−1g

, (9)

and
ÂV (θ̂R) = V̂ (θ̂ )−AV(θ̂ |S)

= V̂ (θ̂ )−
1

p(S⋆)

ns

∑
g=1

(θ̂g − θ̂R)
2p1g

p2g

1− p1g

...
pmg

1− p1g − ...− pm−1g

(10)

wherep(S⋆) = ∑ns
g=1 p(Sog).

The permutations are vectors withm elements and sorting all of them will be more difficult than sorting thex values
in a binomial distribution. As an alternative method a set ofpermutations can be selected such that their probability values
cover the range of possiblep(So) values. Although sorting allp(So) values and selecting a systematic set from them is
not straightforward we can arrange some of the permutationssuch that their probability values are distinct and cover the
range ofp(So) values homogenously. Before introducing this method, the following Theorem is proved.

Theorem 1 If in a given permutation, say
Sog = (1g, ...,k−1g,kg,k+1g, ..., l −1g, lg, l +1g, ...,mg), two elements like kg and lg be replaced together and the new
permutation
Sog′ = (1g, ...,k−1g, lg,k+1g, ..., l −1g,kg, l +1g, ...,mg) be formed, the following results are given:

pkg < plg ⇔ P(Sog)< P(Sog′)

pkg ≥ plg ⇔ P(Sog)≥ P(Sog′) (11)

Proof. The first inequality is proved, and the second one can be proved similarly. Let pk < pl , the subscriptg is deleted
for simplicity, probabilityP(Sog) can be written as:

P(Sog) = p1
p2

1−p1
... pm

1−p1−...−pm−1
=

∏m
i=1 pi

∏m−1
a=1 (1−∑a

j=1 p j)

=
∏m

i=1 pi

∏k−1
a=1(1−∑a

j=1 p j)∏l−1
a=k(1−∑a

j=1 p j)∏m−1
a=l (1−∑a

j=1 p j)

=
A

B∏l−1
a=k(1−∑a

j=1 p j)C
(12)

Also, P(Sog′) can be written as:

P(Sog′) =
∏m

i=1 pi

∏k−1
a=1(1−∑a

j=1 p j)∏a=l,k+1,...,l−1(1−∑a
j=1 p j)∏a=k,l+1,...,m−1(1−∑a

j=1 p j)

=
A

B∏a=l,k+1,...,l−1(1−∑a
j=1 p j)C

(13)

It is clear thatA,B andC in P(Sog) are equal to their corresponding terms inP(Sog′). Now, in order to compareP(Sog)

with P(Sog′), we just need to compare∏l−1
a=k(1−∑a

j=1 p j) and∏a=l,k+1,...,l−1(1−∑a
j=1 p j). For a givena in the first

production, we have:

1−
a

∑
j=1

p j = 1−
a

∑
k 6= j=1

p j − pk (14)
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And for the samea in the second one:

1−
a

∑
j=1

p j = 1−
a

∑
l 6= j=1

p j − pl (15)

We knowpk < pl then for a givena the value of 1−∑a
j=1 p j in theP(Sog) is greater than similar one inP(Sog′), therefore

∏l−1
a=k(1−∑a

j=1 p j)> ∏a=l,k+1,...,l−1(1−∑a
j=1 p j) and finally we concludeP(Sog)< P(Sog′).

Let the orderedp values in the sample be as follows:

p(1) < p(2) < ... < p(m) (16)

Using Theorem (1), the smallest and largest values ofp(So) are given as:

pMin(So) = p(1)
p(2)

1−p(1)
...

p(m)

1−p(1)−...−,p(m−1)
,

pMax(So) = p(m)

p(m−1)

1− p(m)
...

p(1)
1− p(m)− ...−, p(2)

, (17)

which are correspond to the ascending arrangement(1),(2), ...(m) and the descending arrangement(m),(m−1), ...,(1),
respectively. An arrangement of some permutations which covers the interval(pMin(So), pMax(So)) homogenously, can be
introduced as follows:

Ar1 = (1),(2),(3), ...,(m−2),(m−1),(m)
Ar2 = (m),(2),(3), ...,(m−2),(m−1),(1)
Ar3 = (m),(m−1),(3), ...,(m−2),(2),(1)
Ar4 = (m),(m−1),(m−2), ...,(3),(2),(1)

.
Arns = (m),(m−1),(m−2), ...,(3),(2),(1)

where, in this method,ns = [m/2]+1, andPMin(So) = P(Ar1)< P(Ar2)< ... < P(Arns) = PMax(So).
Another method yielding a largerns is carried out as follows, such that in each arrangement two neighborhood elements
of the previous arrangement are replaced together.

Ar1 = (1),(2),(3), ...,(m−2),(m−1),(m)
Ar2 = (2),(1),(3), ...,(m−2),(m−1),(m)
Ar3 = (2),(3),(1), ...,(m−2),(m−1),(m)

.
Arm = (2),(3),(4), ...,(m−1),(m),(1)

Arm+1 = (3),(2),(4), ...,(m−1),(m),(1)
Arm+2 = (3),(4),(2), ...,(m−1),(m),(1)

.
Ar2m−2 = (3),(4),(5), ...,(m),(2),(1)
Ar2m−1 = (4),(3),(5), ...,(m),(2),(1)

.
Arns = (m),(m−1),(m−2), ...,(3),(2),(1)

wherens = m(m−1)/2+1, andPMin(So) = P(Ar1)< P(Ar2)< ... < P(Arns) = PMax(So).
Other arrangements can be constructed similarly to get different values ofns. The smallest arrangement set consisting of
two or three permutations can be constructed as follows:

Ar1 = (1),(2),(3), ...,(m−2),(m−1),(m) (18)

Ar2 = (m),(m−1),(m−2), ...,(3),(2),(1) (19)

If the observedSo is different from the two first arrangements, then the AE is calculated based on three points. Such an
arrangement set can be useful in adaptive sampling designs which the value of Rao-Blackwell estimator is used to decide
on when to terminate sequential sample selection. The final Rao-Blackwell estimator can be calculated based on a larger
arrangement set.
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[5] M. M. Salehi, Rao-Blackwell version of the Hurvitz-Thompson and Hansen-Hurwitz in adaptive cluster sampling,Environmental

and Ecological Statistics, 6, 185-195 (1999).
[6] C. E. Särndal, B. Swensson, and J. Wretman, ,Model assisted survey sampling, New York; Springer-Verlag 1992.
[7] S. K. Thompson, G. A. F. and Seber, .Adaptive Sampling, New York, Wiley, 1996.

Mohammad Moradi received the PhD degree in Statistics at Isfahan Universityof Technology. His research interests
are in the areas of applied statistics like Sampling, Multivariate Analysis and Simulation. He has published research
articles in some international journals of statistics and environmental sciences. He is referee of statistical journals.

Jennifer Brown is Professor of Statistics at University of Canterbury. Herresearch interests are in environmental
statistics, survey sampling and data modelling. She is currently Head of the Department of Mathematics and Statistics and
immediate past president of the New Zealand Statistical Association.

c© 2013 NSP
Natural Sciences Publishing Cor.


	Introduction
	Select a subset from all values of a discrete variable
	Applying approximated expectation in a complicated survey sampling

