

Journal of Statistics Applications & Probability

An International Journal

@ 2013 NSPNatural Sciences Publishing Cor.

A Characterization of Distributions based on Conditional Expectations of Generalized Order Statistics

A.H. Khan, Ziaul Haque and M. Faizan

Department of Statistics and Operations Research, Aligarh Muslim University, Aligarh-202002, India Email Address: ahamidkhan@rediffmail.com

Received: 22 Mar. 2012, Revised: 19 Jun. 2012, Accepted:11 Jul. 2012

Published online: 1 Mar. 2013

Abstract: A general form of continuous distributions has been characterized by considering two conditional expectations of generalized order statistics (*gos*) conditioned on a non-adjacent *gos*. Further, some of its deductions are also discussed.

Keywords: Characterization of distributions, conditional expectation, probability distribution, generalized order statistics, order statistics and record statistics.

1 Introduction

The concept of generalized order statistics (gos) was introduced and extensively studied by [1].

Let $n \ge 2$ be a given integer and $\widetilde{m} = (m_1, m_2, ..., m_{n-1}) \in \Re^{n-1}$, $k \ge 1$ be the parameters such that

$$\gamma_i = k + n - i + \sum_{j=i}^{n-1} m_j > 0 \text{ for } 1 \le i \le n - 1.$$

Then $X(1,n,\tilde{m},k), X(2,n,\tilde{m},k), \ldots, X(n,n,\tilde{m},k)$ are called generalized order statistics from a continuous population with the distribution function (df) F(x) and the probability density function (pdf) f(x) if their joint pdf has the form

$$k \left(\prod_{j=1}^{n-1} \gamma_j \right) \prod_{i=1}^{n-1} [1 - F(x_i)]^{m_i} f(x_i) [1 - F(x_n)]^{k-1} f(x_n)$$
(1.1)

on the cone $F^{-1}(0+) < x_1 \le x_2 \le ... \le x_n < F^{-1}(1)$ of \Re^n .

The model of generalized order statistics contains special cases such as ordinary order statistics $(\gamma_i = n - i + 1; i = 1, 2, ..., n \text{ i.e. } m_1 = m_2 = ... = m_{n-1} = 0, k = 1),$ $k^{th} - \text{record}$ values $(\gamma_i = k \text{ i.e. } m_1 = m_2 = ... = m_{n-1} = -1, k \in N),$ sequential order statistics $(\gamma_i = (n - i + 1)\alpha_i; \alpha_1, \alpha_2, ..., \alpha_n > 0),$ order statistics with non-integral sample size

 $(\gamma_i = \alpha - i + 1; \alpha > 0)$, Pfeifer's record values $(\gamma_i = \beta_i; \beta_1, \beta_2, ..., \beta_n > 0)$ and progressive type II censored order statistics $(m_i \in N, k \in N)$ [1, 2].

Here we consider two cases:

Case I: $m_1 = m_2 = \dots = m_{n-1} = m \ (m - gos).$

Case II: $\gamma_i \neq \gamma_j$, $i \neq j$ for all $i, j \in (1, \dots, n)$.

For Case I, the pdf of X(r, n, m, k), the r^{th} m - gos is given by [1]

$$f_{X(r,n,m,k)}(x) = \frac{c_{r-1}}{(r-1)!} [\overline{F}(x)]^{\gamma_r - 1} f(x) [g_m(F(x))]^{r-1}, \tag{1.2}$$

and the joint pdf of X(r, n, m, k) and X(s, n, m, k), $1 \le r < s \le n$, is given by

$$f_{X(r,n,m,k),X(s,n,m,k)}(x,y) = \frac{c_{s-1}}{(r-1)!(s-r-1)!} \left[\overline{F}(x) \right]^m g_m^{r-1} [F(x)]$$

$$\times [h_m(F(y)) - h_m(F(x))]^{s-r-1} [\overline{F}(y)]^{\gamma_s - 1} f(x) f(y)$$
(1.3)

where

$$\overline{F}(x) = 1 - F(x)$$
,

$$c_{s-1} = \prod_{i=1}^{s} \gamma_i ,$$

$$h_m(x) = \begin{cases} -\frac{(1-x)^{m+1}}{m+1}, & m \neq -1\\ \log \frac{1}{(1-x)}, & m = -1 \end{cases}, x \in (0, 1),$$

and

$$g_m(x) = h_m(x) - h_m(0) = \int_0^x (1-t)^m dt$$
.

For Case II, the *pdf* of $X(r, n, \tilde{m}, k)$ is given by [2]

$$f_{X(r,n,m,k)}(x) = c_{r-1} f(x) \sum_{i=1}^{r} a_i(r) [\overline{F}(x)]^{\gamma_i - 1}$$
(1.4)

and the joint pdf of $X(r, n, \tilde{m}, k)$ and $X(s, n, \tilde{m}, k)$, $1 \le r < s \le n$ is given by [2]

$$f_{X(r,n,\,\tilde{m},\,k),X(s,\,n,\,\tilde{m},\,k)}(x,y) = c_{s-1} \left(\sum_{i=r+1}^{s} a_i^{(r)}(s) \left[\frac{1-F(y)}{1-F(x)} \right]^{\gamma_i} \right) \times \left(\sum_{i=1}^{r} a_i(r) \left[1-F(x) \right]^{\gamma_i} \right) \frac{f(x)}{\left[1-F(x) \right]} \frac{f(y)}{\left[1-F(y) \right]}$$

$$(1.5)$$

where

$$a_i = a_i(r) = \prod_{\substack{j=1\\j \neq i}}^r \frac{1}{(\gamma_j - \gamma_i)} \quad , \qquad \gamma_j \neq \gamma_i \,, \quad 1 \le i \le r \le n$$
 (1.6)

and

$$a_i^{(r)}(s) = \prod_{\substack{j=r+1\\j\neq i}}^s \frac{1}{(\gamma_j - \gamma_i)} , \quad \gamma_j \neq \gamma_i, \quad r+1 \leq i \leq s \leq n$$

$$(1.7)$$

2 Characterizations of distributions when $m_1 = m_2 = \cdots = m_{n-1} = m$

The conditional *pdf* of X(s, n, m, k) given X(r, n, m, k) = x, $1 \le r < s \le n$ is

$$f_{X(s,n,m,k)|X(r,n,m,k)}(y|x)$$

$$= \frac{c_{s-1}}{(s-r-1)!} \frac{[h_m(F(y)) - h_m(F(x))]^{s-r-1} [1 - F(y)]^{\gamma_s - 1} f(y)}{[1 - F(x)]^{\gamma_{r+1}}}$$
(2.1)

Theorem 2.1: Let X be an absolutely continuous random variable with the df F(x) and the pdf f(x) in the interval (α, β) , where α and β may be finite or infinite, then for $1 \le r < s < t \le n$,

$$E[h\{X(t,n,m,k)\} | X(r,n,m,k) = x]$$

$$= a_{t|s}^* E[h\{X(s, n, m, k)\} | X(r, n, m, k) = x] + b_{t|s}^*$$
(2.2)

if and only if

$$F(x) = 1 - [ah(x) + b]^{c}$$
(2.3)

Where h(x) is monotonic and differentiable function and a, b, c are constant such that (2.3) is a df,

$$a_{t|s}^* = \prod_{j=s+1}^t \frac{c\gamma_j}{(1+c\gamma_j)}$$
 and $b_{t|s}^* = -\frac{b}{a}(1-a_{t|s}^*)$

Proof: In view of Khan and Alzaid (2004), it is easy to prove the necessary part.

For the sufficiency part, we have

$$\frac{c_{t-1}}{(t-r-1)!} \frac{c_{t-1}}{c_{t-1}(m+1)^{t-r-1}} \int_{x}^{\beta} h(y) [(\overline{F}(x))^{m+1} - (\overline{F}(y))^{m+1}]^{t-r-1} \times [1-F(y)]^{\gamma_t - 1} f(y) \, dy = a_{t|s}^* \frac{c_{s-1}}{(s-r-1)!} \frac{c_{s-1}}{c_{s-1}(m+1)^{s-r-1}}$$

$$\times \int_{x}^{\beta} h(y) [(\overline{F}(x))^{m+1} - (\overline{F}(y))^{m+1}]^{s-r-1}$$

$$\times [1 - F(y)]^{\gamma_{s} - 1} f(y) dy + b_{t|s}^{*} [1 - F(x)]^{\gamma_{r+1}}$$
(2.4)

Differentiating (s-r) times both the sides of (2.4), w.r.t. x, we get

$$\frac{c_{t-1}}{(t-s-1)!} \int_{x}^{\beta} h(y) \frac{[(\overline{F}(x))^{m+1} - (\overline{F}(y))^{m+1}]^{t-s-1}}{[1-F(x)]^{\gamma_{s+1}}} \times [1-F(y)]^{\gamma_t-1} f(y) dy = a_{t|s}^* h(x) + b_{t|s}^* \tag{2.5}$$

or,

$$g_{t|s}(x) = E[h\{X(t, n, m, k)\} | X(s, n, m, k) = x] = a_{t|s}^* h(x) + b_{t|s}^*$$

Using the result of Khan et al. (2006), we have

$$\frac{f(x)}{\overline{F}(x)} = -\frac{a c h'(x)}{[a h(x) + b]}$$

Thus

$$\overline{F}(x) = [a h(x) + b]^c$$

and hence the theorem.

3 Characterizations of distributions when $\ \gamma_i \neq \gamma_j \ , \ i \neq j$

The conditional pdf of $X(s, n, \widetilde{m}, k)$ given $X(r, n, \widetilde{m}, k) = x$, $1 \le r < s \le n$ is

$$f_{X(s,n,\widetilde{m},k)|X(r,n,\widetilde{m},k)}(y|x)$$

$$= \frac{c_{s-1}}{c_{r-1}} \sum_{i=r+1}^{s} a_i^{(r)}(s) \left[\frac{1 - F(y)}{1 - F(x)} \right]^{\gamma_i} \frac{f(y)}{[1 - F(y)]}, \ x \le y$$
(3.1)

Theorem 3.1: Under the conditions as given in the Theorem 2.1 and for $1 \le r < s < t \le n$,

$$E[h\{X(t, n, \tilde{m}, k)\} | X(r, n, \tilde{m}, k) = x]$$

$$= a_{t|s}^* E[h\{X(s, n, \tilde{m}, k)\} | X(r, n, \tilde{m}, k) = x] + b_{t|s}^*$$
(3.2)

if and only if

$$F(x) = 1 - [ah(x) + b]^{c}$$
(3.3)

where

$$a_{t|s}^* = \prod_{i=s+1}^t \frac{c\gamma_j}{1+c\gamma_j}$$
 and $b_{t|s}^* = -\frac{b}{a}(1-a_{t|s}^*)$

Proof: It is easy to prove the necessary part in view of Khan and Alzaid (2004) and the Theorem 2.1.

For the sufficiency part, we have

$$\frac{c_{t-1}}{c_{r-1}} \sum_{i=r+1}^{t} a_i^{(r)}(t) \int_x^{\beta} h(y) \left[\frac{1 - F(y)}{1 - F(x)} \right]^{\gamma_i} \frac{f(y)}{[1 - F(y)]} dy$$

$$= a_{t|s}^* \frac{c_{s-1}}{c_{r-1}} \sum_{i=r+1}^{s} a_i^{(r)}(s) \int_x^{\beta} h(y) \left[\frac{1 - F(y)}{1 - F(x)} \right]^{\gamma_i} \frac{f(y)}{[1 - F(y)]} dy + b_{t|s}^* \tag{3.4}$$

Differentiating (3.4) w.r.t. x, we have

$$\frac{c_{t-1}}{c_{r-1}} \sum_{i=r+1}^{t} a_{i}^{(r)}(t) \left[-\frac{h(x)[\overline{F}(x)]^{\gamma_{i}-1} f(x)}{[\overline{F}(x)]^{\gamma_{i}}} + \gamma_{i} \int_{x}^{\beta} \frac{h(y)[\overline{F}(y)]^{\gamma_{i}-1}}{[\overline{F}(x)]^{\gamma_{i}+1}} f(x) f(y) dy \right] \\
= a_{t|s}^{*} \frac{c_{s-1}}{c_{r-1}} \sum_{i=r+1}^{s} a_{i}^{(r)}(s) \left[-\frac{h(x)[\overline{F}(x)]^{\gamma_{i}-1} f(x)}{[\overline{F}(x)]^{\gamma_{i}}} + \gamma_{i} \int_{x}^{\beta} \frac{h(y)[\overline{F}(y)]^{\gamma_{i}-1}}{[\overline{F}(x)]^{\gamma_{i}+1}} f(x) f(y) dy \right] \\
+ \gamma_{i} \int_{x}^{\beta} \frac{h(y)[\overline{F}(y)]^{\gamma_{i}-1}}{[\overline{F}(x)]^{\gamma_{i}+1}} f(x) f(y) dy$$

or,

$$-\frac{f(x)}{[1-F(x)]} \frac{c_{t-1}}{c_{r-1}} \sum_{i=r+1}^{t} a_{i}^{(r)}(t) h(x) + \frac{f(x)}{[1-F(x)]} \frac{c_{t-1}}{c_{r-1}}$$

$$\times \sum_{i=r+1}^{t} \gamma_{i} a_{i}^{(r)}(t) \int_{x}^{\beta} \frac{h(y)[1-F(y)]^{\gamma_{i}-1} f(y)}{[1-F(x)]^{\gamma_{i}}} dy$$

$$= -a_{t|s}^{*} \frac{f(x)}{[1-F(x)]} \frac{c_{s-1}}{c_{r-1}} \sum_{i=r+1}^{s} a_{i}^{(r)}(s) h(x)$$

$$+ a_{t|s}^{*} \frac{f(x)}{[1-F(x)]} \frac{c_{s-1}}{c_{r-1}} \sum_{i=r+1}^{s} \gamma_{i} a_{i}^{(r)}(s) \int_{x}^{\beta} \frac{h(y)[1-F(y)]^{\gamma_{i}-1} f(y)}{[1-F(x)]^{\gamma_{i}}} dy$$

After noting that $\sum_{i=r+1}^{s} a_i^{(r)}(s) = 0$, $c_r = \gamma_{r+1} c_{r-1}$ and $a_i^{(r+1)}(t) = (\gamma_{r+1} - \gamma_i) a_i^{(r)}(t)$, we get

$$\frac{f(x)}{[1-F(x)]}\gamma_{r+1}[g_{t|r}(x)-g_{t|r+1}(x)] = a_{t|s}^* \frac{f(x)}{[1-F(x)]}\gamma_{r+1}[g_{s|r}(x)-g_{s|r+1}(x)]$$

where

$$g_{s|r}(x) = E[h\{X(s, n, \widetilde{m}, k)\} | X(r, n, \widetilde{m}, k) = x]$$

or,

$$g_{t|r}(x) - a_{t|s}^* g_{s|r}(x) = g_{t|r+1}(x) - a_{t|s}^* g_{s|r+1}(x)$$

$$= \dots = g_{t|s}(x) - a_{t|s}^* g_{s|s}(x) = b_{t|s}^*$$
(3.5)

Noting that $g_{s|s}(x) = h(x)$, we have

$$g_{t|s}(x) = a_{t|s}^* h(x) + b_{t|s}^*$$

i.e.

$$E[h\{X(t,n,\tilde{m},k)\} | X(s,n,\tilde{m},k) = x] = a_{t|s}^* h(x) + b_{t|s}^*$$
(3.6)

Using the result (Khan et al., 2006)

$$E[h\{X(t,n,\widetilde{m},k)\} | X(s,n,\widetilde{m},k) = x] = g_{t|s}(x),$$

we get,

$$\overline{F}(x) = [a h(x) + b]^c$$

and hence the theorem.

Remark 3.1: It may be seen that when $\gamma_i \neq \gamma_j$ but at $m_i = m_j = m$, $i, j = 1, \dots, n-1$, then [Khan *et al.* 2006]

$$a_i^{(r)}(s) = \frac{1}{(m+1)^{s-r-1}} (-1)^{s-i} \frac{1}{(i-r-1)!(s-i)!}$$

$$a_i(r) = \frac{1}{(m+1)^{r-1}} (-1)^{r-i} \frac{1}{(i-1)! (r-i)!}$$

and consequently the conditional pdf given in (3.1) will reduce to the conditional pdf given in (2.1). Thus the Theorem 3.1 will reduce to the Theorem 2.1 with $\gamma_j = k + (n-j)(m+1)$.

Remark 3.2: At s = r, result reduces to as obtained by Khan and Alzaid (2004).

Table 3.1: Examples based on the *df* $F(x) = 1 - [ah(x) + b]^c$

Distribution	F(x)	а	b	c	h(x)
Power function	$a^{-p}x^p$, $0 < x \le a$	$-a^{-p}$	1	1	x^p
Pareto	$1-a^px^{-p}$, $a \le x < \infty$	a^{-q}	0	-p/q	$x^q, q \neq 0$
Beta of the first kind	$1 - (1 - x)^p$, $0 \le x \le 1$	1	0	p/q	$(1-x)^q$, $q \neq 0$
		-1	1	p	x
Weibull	$1-e^{-\theta x^p}$, $0 \le x < \infty$	1	0	θ/q	$e^{-qx^p}, q \neq 0$
					$x^p, c \to 0$
		$-\theta/c$	1	c	
Inverse Weibull	$e^{-\theta x^{-p}}, 0 \le x < \infty$	-1	1	1	$e^{-\theta x^{-p}}$
Burr type II	$[1+e^{-x}]^{-k}$, $-\infty < x < \infty$	-1	1	1	$(1+e^{-x})^{-k}$

Burr type III	$(1+x^{-c})^{-k}$, $0 \le x < \infty$	-1	1	1	$(1+x^{-c})^{-k}$
Burr type IV	$\left[1 + \left(\frac{c - x}{x}\right)^{1/c}\right]^{-k},$	-1	1	1	$\left[1 + \left(\frac{c - x}{x}\right)^{1/c}\right]^{-k}$
Burr type V	$0 \le x \le c$ $[1 + ce^{-\tan x}]^{-k},$ $-\pi/2 \le x \le \pi/2$	-1	1	1	$[1+ce^{-\tan x}]^{-k}$
Burr type VI	$[1+ce^{-k\sinh x}]^{-k},$ $-\infty < x < \infty$	-1	1	1	$[1+ce^{-k\sinh x}]^{-k}$
Burr type VII	$2^{-k} (1 + \tanh x)^k,$ $-\infty < x < \infty$	-2^{-k}	1	1	$[1 + \tanh x]^k$
Burr type VIII	$\left(\frac{2}{\pi}\tan^{-1}e^x\right)^k,$	$-\left(\frac{2}{\pi}\right)^k$	1	1	$(\tan^{-1}e^x)^k$
Burr type IX	$1 - \frac{2}{c[(1 + e^x)^k - 1] + 2},$	<u>c</u> 2	$1-\frac{c}{2}$	-1	$(1+e^x)^{-k}$
Burr type X	$\frac{-\infty < x < \infty}{(1 - e^{-x^2})^k}, 0 < x < \infty$	-1	1	1	$(1-e^{-x^2})^k$
Burr type XI	$\left(x - \frac{1}{2\pi}\sin 2\pi x\right)^k,$ $0 \le x \le 1$				$(x - \frac{1}{2\pi}\sin 2\pi x)^k$
Burr type XII	$1 - (1 + \theta x^p)^{-m},$ $0 \le x < \infty$	θ	1	-m	<i>x</i> ^{<i>p</i>}
Cauchy	$\frac{1}{2} + \frac{1}{\pi} \tan^{-1} x$	$-\frac{1}{\pi}$	$\frac{1}{2}$	1	$\tan^{-1} x$
	$-\infty < x < \infty$				

Acknowledgments

The authors are thankful to the referees and editor for their careful reading and suggestions.

References

- [1] Kamps, U. A concept of generalized order statistics. B.G. Teubner Stuttgart, (1995).
- [2] Kamps, U. and Cramer, E. On distribution of generalized order statistics. Statistics, 35, (2001), 269-280.
- [3] Khan, A.H. and Alzaid, A.A. Characterization of distributions through linear regression of non-adjacent generalized order statistics. *J. Appl. Statist. Sci.*, 13, (2004), 123-136.

[4] Khan, A.H., Khan, R.U. and Yaqub, M. Characterization of continuous distributions through conditional expectation of functions of generalized order statistics. *J. Appl. Probab. Statist.*, **1**, (2006), 115-131.