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Abstract: In this paper we consider generalized Pareto distribution.Exact expressions and some recurrence relations for singleand
product moments of upper record values are derived. Furthera characterization of this distribution based on conditional and recurrence
relation of single moments of record values is presented.
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1 Introduction

A random variableX is said to have generalized Pareto distribution (Hall and Wellner [9]) if its probability density function
(pd f ) is of the form

f (x) =
β (1+α)

(αx+β )2

( β
αx+β

)1/α
, x > 0, α,β > 0 (1.1)

and the corresponding survival function is

F̄(x) =
( β

αx+β

)1+(1/α)
, x > 0, α,β > 0 (1.2)

WhereF̄(x) = 1−F(x), α >−1, β > 0, thenF is said to be member of generalized Pareto distribution. It should be
noted that forα > 0 and−1< α < 0 this model is, respectively, a Pareto distribution and a Power distribution. Moreover
the survival function (1.2) tends to the exponential survival function asα tends to zero. This model is a flexible one due
to its properties, i.e. it has a linear mean residual life function its coefficient of variation of the residual life is constant
and its hazard rate is the reciprocal of linear function.
For more details and some applications of this distributionone may refer to Hall and Wellner [9] and Johnsonet al. [11].
Record values are found in many situations of daily life as well as in many statistical applications. Often we are
interested in observing new records and in recording them: for example, Olympic records or world records in sport.
Record values are used in reliability theory. Moreover, these statistics are closely connected with the occurrences times
of some corresponding non homogeneous Poisson process usedin shock models. The statistical study of record values
started with Chandler [6], he formulated the theory of record values as a model for successive extremes in a sequence of
independently and identically random variables. Feller [8] gave some examples of record values with respect to gambling
problems. Resnick [22] discussed the asymptotic theory of records. Theory of record values and its distributional
properties have been extensively studied in the literature, for example, see, Ahsanullah [1], Arnold et al. [2,3], Nevzorov
[18] and Kamps [12] for reviews on various developments in the area of records.
We shall now consider the situations in which the record values (e.g. successive largest insurance claims in non-life
insurance, highest water-levels or highest temperatures)themselves are viewed as ”outliers” and hence the second or
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third largest values are of special interest. Insurance claims in some non life insurance can be used as one of the
examples. Observing successivek largest values in a sequence, Dziubdziela and Kopocinski [7] proposed the following
model ofk record values, wherek is some positive integer.
Let {Xn,n ≥ 1} be a sequence of identically independently distributed(i.i.d) random variables withpd f f (x) and
distribution function(d f ) F(x). The j−th order statistics of a sample(X1,X2, . . . ,Xn) is denoted byX j:n. For a fixk ≥ 1

we define the sequence{U (k)
n ,n ≥ 1} of k upper record times of{Xn,n ≥ 1} as follows

U (k)
1 = 1,

U (k)
n+1 = min{ j >U (k)

n : X j : j+ k+1> X
U(k)

n :U(k)
n +k−1

}.

The sequence{Y (k)
n ,n ≥ 1} with Y (k)

n = X
U
(k)
n :U(k)

n +k−1
,n = 1,2, . . . are called the sequences ofk upper record values of

{Xn,n ≥ 1}.

For k = 1 andn = 1,2, . . . we writeU (1)
1 =Un. Then{Un,n ≥ 1} is the sequence of record times of{Xn,n ≥ 1}. The

sequence{Y (k)
n ,n ≥ 1}, where Y (k)

n = X
U(k)

n
is called the sequence ofk upper record values of{Xn,n ≥ 1}. For

convenience, we shall also takeY (k)
0 = 0. Note thatk = 1 we haveY (1)

n = XUn ,n ≥ 1, which are record value of

{Xn,n ≥ 1}. MoreoverY (k)
1 = min{X1,X2, . . . ,Xk = X1:k}.

Let {X (k)
n ,n ≥ 1} be the sequence ofk upper record values then from (1.3). Then thepd f of X (k)

n , n ≥ 1 is given by

f
X
(k)
n
(x) =

kn

(n−1)!
[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x) (1.3)

and the jointpd f of X (k)
m andX (k)

n , 1≤ m < n, n > 2 is given by

f
X(k)

m ,X(k)
n
(x,y) =

kn

(m−1)!(n−m−1)!
[−ln(F̄(x))]m−1

×[−lnF̄(y)+ lnF̄(x)]n−m−1[F̄(y)]k−1 f (x)
F̄(x)

f (y), x < y. (1.4)

We shall denote
µ (r)

n:k = E((X (k)
U(n))

r), 1,2, . . . ,

µ (r,s)
m,n:k = E((X (k)

U(m))
r,(X (k)

U(n))
s), 1≤ m ≤ n−1 and r,s = 1,2, . . . ,

µ (r,0)
m,n:k = E((X (k)

U(m)
)r) = µ (r)

m:k, 1≤ m ≤ n−1 and r = 1,2, . . . ,

µ (0,s)
m,n:k = E((X (k)

U(n))
s) = µ (s)

n:k, 1≤ m ≤ n−1 and s = 1,2, . . . ,

Recurrence relations are interesting in their own right. They are useful in reducing the number of operations necessaryto
obtain a general form for the function under consideration.Furthermore, they are used in characterizing the distributions,
which in important area, permitting the identification of population distribution from the properties of the sample.
Recurrence relations and identities have attained importance reduces the amount of direct computation and hence
reduces the time and labour. They express the higher order moments in terms of order moments and hence make the
evaluation of higher order moments easy and provide some simple checks to test the accuracy of computation of
moments of order statistics.
Recurrence relations for single and product moments ofk record values from Weibull, Pareto, generalized Pareto, Burr,
exponential and Gumble distribution are derived by Pawalasand Szynal [19,20,21]. Sultan [24], Saran and Singh [23],
Kumar [16], Kumar and Khan [17] are established recurrence relations for moments ofk record values from modified
Weibull, linear exponential, exponentiated log-logisticand generalized beta II distributions respectively. Balakrishnan
and Ahsanullah [4,5] have proved recurrence relations for single and product moments of record values from generalized
Pareto, Lomax and exponential distributions respectively. Recurrence relations for single and product moment of
generalized exponential distribution are derived by Khanet al. [14] and Khan et al. [15] are characterized the
distributions based on generalized order statistics. Kamps [13] investigated the importance of recurrence relations of
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order statistics in characterization. In this paper, we established some explicit expressions and recurrence relations
satisfied by the single and product moments ofk upper record values from the generalized Pareto distribution. A
characterization of this distribution based on conditional expectation and recurrence relations of single moments of
record values.

2 Relations for Single moment

First of all, we may note that for the generalized Pareto distribution in (1.1)

F̄(x) =
αx+β
(1+α)

f (x). (2.1)

The relation in (2.1) will be exploited in this paper to derive recurrence relations for the moments of record values from
the generalized Pareto distribution.

We shall first establish the explicit expression for single momentk record valuesE((X (k)
n )r). Using (1.3), we have

µ (r)
n:k =

kn

(n−1)!

∫ ∞

0
xr[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x). (2.2)

By settingt = [F̄(x)]α/(1+α) in (2.2), we get

µ (r)
n:k =

(1+α)β rkn

αr+1(n−1)!

r

∑
p=0

(−1)p
(

r
p

)

∫ 1

0
t
(k+1)(1+α)+1

α +p−r[−lnt(1+α)/α ]n−1dt.

Again by putting,w =−lnt(1+α)/α , we obtain

µ (r)
n:k = [(1+α)k]n

(β
α

)r r

∑
p=0

(−1)p
(

r
p

)

1
[(1+α)k+α(p− r)]n

. (2.3)

Remark 2.1: For k = 1 in (2.3) we deduce the explicit expression for single moments of upper record values from
the generalized Pareto distribution.
Recurrence relations for single moments ofk upper record values fromd f (1.2) can be derived in the following theorem.
Theorem 2.1: For a positive integerk ≥ 1 and forn ≥ 1 andr = 0,1,2, . . .,

(

1−
αr

(1+α)k

)

µ (r)
n:k = µ (r)

n−1:k +
β r

(1+α)k
µ (r−1)

n:k . (2.4)

Proof We have from equations (1.3)

µ (r)
n:k =

kn

(n−1)!

∫ ∞

0
xr[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx. (2.5)

Integrating by parts treating[F̄(x)]k−1 f (x) for integration and the rest of the integrand for differentiation, we get

µ (r)
n:k = µ (r)

n−1:k +
rkn

k(n−1)!

∫ ∞

0
xr−1[−ln(F̄(x))]n−1[F̄(x)]kdx

the constant of integration vanishes since the integral considered in (2.5) is a definite integral. On using (2.1), we obtain

µ (r)
n:k = µ (r)

n−1:k +
rkn

(1+α)k(n−1)!

{

α
∫ ∞

0
xr[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx

+β
∫ ∞

0
xr−1[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx

}

and hence the result given in (2.4).
Remark 2.2 Settingk = 1 in (2.4) we deduce the recurrence relation for single moments of upper record values from
the generalized Pareto distribution.
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3 Relations for Product moment

On using (1.4), the explicit expression for the product moments ofk record valuesµ (r,s)
m,n:k can be obtained

µ (r,s)
m,n:k =

kn

(m−1)!(n−m−1)!

∫ ∞

0
xr[−ln(F̄(x))]m−1 f (x)

[F̄(x)]
G(x)dx, (3.1)

where
G(x) =

∫ ∞

x
ys[−ln(F̄(y))+ ln(F̄(x))]n−m−1[F̄(x)]k−1 f (y)dy. (3.2)

By settingw = ln(F̄(x))− ln(F̄(y)) in (3.2), we obtain

G(x) = (1+α)n−m
(β

α

)s s

∑
p=0

(−1)p
(

s
p

)

[F̄(x)]k+(p−s)α/(1+α)Γ (n−m)

[(1+α)k+α(p− s)]n−m .

On substituting the above expression ofG(x) in (3.1) and simplifying the resulting equation, we obtain

µ (r,s)
m,n:k = [(1+α)k]n−m

(β
α

)r+s s

∑
p=0

r

∑
q=0

(−1)p+q
(

s
p

) (

r
q

)

×
1

[(1+α)k+α(p− s)]n−m[(1+α)k+α(p+ q− r− s)]m
.

(3.3)
Remark 3.1 Settingk = 1 in (3.3) we deduce the explicit expression for product moments of record values from the

generalized Pareto distribution.
Making use of (2.1), we can drive recurrence relations for product moments ofk upper record values

Theorem 3.1: For 1≤ m ≤ n−2 andr,s = 1,2, . . . ,
(

1−
αs

(1+α)k

)

µ (r,s)
m,n:k = µ (r,s)

m,n−1:k +
β s

(1+α)k
µ (r,s−1)

m,n:k . (3.4)

Proof: From equation (1.4) for 1≤ m ≤ n−2 andr,s = 0,1,2, . . . ,

µ (r,s)
m,n:k =

kn

(m−1)!(n−m−1)!

∫ ∞

0
xr[−ln(F̄(x))]m−1 f (x)

[F̄(x)]
I(x)dx, (3.5)

where
I(x) =

∫ ∞

x
ys[−ln(F̄(y))+ ln(F̄(x))]n−m−1[F̄(x)]k−1 f (y)dy.

IntegratingI(x) by parts treating[F̄(x)]k−1 f (y) for integration and the rest of the integrand for differentiation, and
substituting the resulting expression in (3.5), we get

µ (r,s)
m,n:k = µ (r,s)

m,n−1:k +
skn

k(m−1)!(n−m−1)!

∫ ∞

0

∫ ∞

x
xrys−1[−ln(F̄(x))]m−1

×[−ln(F̄(y))+ ln(F̄(x))]n−m−1[F̄(x)]k
f (x)
[F̄(x)]

f (y)dydx,

the constant of integration vanishes since the integral inI(x) is a definite integral. On using the relation (2.1), we obtain

µ (r,s)
m,n:k = µ (r,s)

m,n−1:k +
skn

k(1+α)(m−1)!(n−m−1)!

{

α
∫ ∞

0

∫ ∞

x
xrys[−ln(F̄(x))]m−1

×[−ln(F̄(y))+ ln(F̄(x))]n−m−1[F̄(x)]k−1 f (x)
[F̄(x)]

f (y)dydx+β
∫ ∞

0

∫ ∞

x
xrys−α

×[−ln(F̄(x))]m−1[−ln(F̄(y))+ ln(F̄(x))]n−m−1[F̄(x)]k−1 f (x)
[F̄(x)]

f (y)dydx
}

and hence the result given in (3.4).
Remark 3.2 Settingk = 1 in (3.4) we deduce the recurrence relation for product moments of upper record values from
the generalized Pareto distribution.
One can also note that Theorem 2.1 can be deduced from Theorem3.1 by puttings = 0.
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4 Characterization

Let {Xn,n ≥ 1} be a sequence ofi.i.d continuous random variables withd f F(x) and pd f f (x). Let XU(n) be then−th
upper record values, then the conditionalpd f of XU(n) givenXU(m) = x, 1≤ m < n in view of (1.3) and (1.4), is

f (XU(n)|XU(m) = x) =
1

(n−m−1)!
[−lnF̄(y)+ lnF̄(x)]n−m−1 f (y)

F̄(x)
, x > y. (4.1)

Theorem 4.1: Let X be an absolutely continuous random variable withd f F(x) andpd f f (x) on the support(0,∞), then
for m < n,

E[XU(n)|XU(m) = x] =
[(αx+β )(1+α)n−m−β ]

α
(4.2)

if and only if

F̄(x) =
( β

αx+β

)1+(1/α)
, x > 0, α,β > 0.

Proof: From (4.1), we have

E[XU(n)|XU(m) = x] =
1

(n−m−1)!

∫ ∞

x
y
[

ln
( F̄(x)

F̄(y)

)]n−m−1 f (y)
F̄(x)

dy (4.3)

By settingt = ln
(

F̄(x)
F̄(y)

)

= ln
(

αy+β
αx+β

)(1+α)/α
from (1.2) in (4.3), we obtain

E[XU(n)|XU(m) = x] =
1

α(n−m−1)!

∫ ∞

0
[(αx+β )eαt/(1+α)−β ]tn−m−1e−tdt

=
(αx+β )

α(n−m−1)!

∫ ∞

0
e−[1−α/(1+α)]ttn−m−1dt −

β
α(n−m−1)!

∫ ∞

0
e−ttn−m−1dt

Simplifying the above expression, we derive the relation given in (4.2).
To prove sufficient part, we have from (4.1) and (4.2)

1
(n−m−1)!

∫ ∞

x
y[−lnF̄(y)+ lnF̄(x)]n−m−1 f (y)dy = F̄(x)Hr(x), (4.4)

where

Hr(x) =
[(αx+β )(1+α)n−m−β ]

α
.

Differentiating (4.4) both sides with respect tox, we get

−
1

(n−m−2)!

∫ ∞

x
y[−lnF̄(y)+ lnF̄(x)]n−m−2 f (x)

F̄(x)
f (y)dy =− f (x)Hr(x)+ F̄(x)H ′

r(x)

f (x)
F(x)

=
H ′

r(x)
[Hr+1(x)−Hr(x)]

=
(1+α)

(αx+β )

which proves that

F̄(x) =
( β

αx+β

)1+(1/α)
, x > 0, α,β > 0.

Theorem 4.2: Let k ≥ 1 is a fix positive integer,r be a non- negative integer andX be an absolutely continuous
random variable withpd f f (x) andcd f F(x) on the support(0,∞) , then

(

1−
αr

(1+α)k

)

µ (r)
n:k = µ (r)

n−1:k +
β r

(1+α)k
µ (r−1)

n:k . (4.5)

if and only if

F̄(x) =
( β

αx+β

)1+(1/α)
, x > 0, α,β > 0.
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Proof: The necessary part follows immediately from equation (2.4). On the other hand if the recurrence relation in
equation (4.5) is satisfied, then on using equation (1.3), we have

kn

(n−1)!

∫ ∞

0
xr[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx

=
kn

(n−2)!

∫ ∞

0
xr[−ln(F̄(x))]n−2[F̄(x)]k−1 f (x)dx

+
αrkn

(1+α)(n−1)!

∫ ∞

0
xr[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx

+
β rkn

(1+α)(n−1)!

∫ ∞

0
xr−1[−ln(F̄(x))]n−1[F̄(x)]k−1 f (x)dx. (4.6)

Integrating the first integral on the right hand side of equation (4.6), by parts and simplifying the resulting expression,
we find that

rkn

k(n−1)!

∫ ∞

0
xr−1[−ln(F̄(x))]n−1[F̄(x)]k−1

×
{

F̄(x)−
( αx

1+α
+

β
1+α

)

f (x)
}

dx = 0 (4.7)

Now applying a generalization of the Müntz-Szász Theorem(Hwang and Lin, [10] to equation (4.7), we get

f (x)
F̄(x)

=
1+α

αx+β

which proves that

F̄(x) =
( β

αx+β

)1+(1/α)
, x > 0, α,β > 0.

5 Applications

The results established in this paper can be used to determine the mean, variance and coefficients of skewness and kurtosis.
The moments can also be used for finding best linear unbiased estimator (BLUE) for parameter and conditional moments.
Some of the results are then used to characterize the distribution.

6 Conclusion

In this study some exact expressions and recurrence relations for single and product moments of record values from the
generalized Pareto distribution have been established. Further, conditional expectation and recurrence relation ofsingle
moments of record values has been utilized to obtain a characterization of the generalized Pareto.
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