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The propagation of axi-symmetric vibrations in a homogeneous isotropic microstretch
viscoelastic plate subjected to stress free conditions is investigated. The secular equa-
tions for homogeneous isotropic microstretch viscoelastic plate for symmetric and skew
symmetric wave modes propagation are derived. The special cases such as short wave-
length and regions of secular equations are deduced and discussed. The dispersion
curves, amplitudes of displacement components, microrotation and microstretch for
symmetric and skew symmetric modes are computed numerically and presented graph-
ically.
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1 Introduction

A micropolar continuum is a collection of interconnected particles in the form of small
rigid bodies undergoing both translational and rotational motions. Typical examples of
such materials are granular media and multi-molecular bodies whose microstructures act
as an evident part in their macroscopic responses. Rigid chopped fibres, elastic solids with
rigid granular inclusions and other industrial materials such as liquid crystals are examples
of such materials.

Eringen [6] extended his work to include the effect of axial stretch during the rotation
of molecules and developed the theory of micropolar elastic solid with stretch. The ma-
terial points in this continuum possess not only classical translational degree of freedom
represented by the deformation vector field but also intrinsic rotations and an intrinsic axial
stretch. The difference between these solids and micropolar elastic solids stems from the
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presence of scalar microstretch and a vector first moment. Microstretch continuum is a
model for Bravais lattice with basis on the atomic level and two phase dipolar solids with a
core on the macroscopic level. Composite materials reinforced with chopped elastic fibres,
porous media whose pores are filled with gas or inviscid liquid, asphalt or other elastic
inclusions and solid-liquid crystals etc. are examples of microstretch solids.

Liu and Hu [19] investigated the inclusion problem of microstretch. Svanadze [21]
constructed fundamental solution of the system of equations of steady oscillations in the
theory of microstretch elastic solids. De Cicco [2] investigated the stress concentration ef-
fects in microstretch elastic bodies. Kumar et al. [16] discussed the axisymmetric problem
in microstretch. Kumar et al. [17] investigated plane strain problem in microstretch elastic
solid. Kumar and Partap [12] investigated reflection of plane waves in a heat flux dependent
microstretch thermoelastic solid half spaces.

Eringen [5] extended the theory of micropolar elasticity to obtain linear constitutive
theory for micropolar material possessing internal friction. A problem on micropolar vis-
coelastic waves has been discussed by McCarthy and Eringen [20]. Biswas et al. [1] studied
the axisymmetric problems of wave propagation under the influence of gravity in a microp-
olar viscoelastic semi-infinite medium when a time varying axisymmetric loading has been
applied on the surface of the medium. De Cicco and Nappa [3] discussed the problem of
Saint Venant’s principle for micropolar viscoelastic bodies. Kumar and Singh [14] studied
reflection of plane waves at a planar viscoelastic micropolar interface.

Recently EI-Karamany [4] studied uniqueness and reciprocity theorems in a general-
ized linear micropolar thermoviscoelasticity. Kumar et al. [11] studied Lamb’s plane prob-
lem in a micropolar viscoelastic half space with stretch. Kumar [10] discussed wave prop-
agation in micropolar viscoelastic generalized thermoelastic solid. Kumar and Singh [15]
studied elastodynamics of an axisymmetric problem in microstretch viscoelastic solid.
The present investigation is aimed to study the propagation of axi-symmetric vibrations in
an infinite homogeneous, isotropic microstretch viscoelastic plate of thickness 2d.

2 Basic Equations

The equations of motion and the constitutive relations in a microstretch elastic solid
without body forces, body couples and stretch force given by Eringen [7] are

(λ+ 2µ+K)∇(∇ · ~u)− (µ+K)∇×∇× ~u+K∇× ~φ+ λ0∇φ∗ = ρ
∂2~u

∂t2
, (2.1)

(α+ β + γ)∇(∇ · ~φ)− γ∇× (∇× ~φ) +K∇× ~u− 2K~φ = ρj
∂2~φ

∂t2
, (2.2)

α0∇2φ∗ − λ1φ
∗ − λ0∇ · ~u =

1
2
ρj0

∂2φ∗

∂t2
, (2.3)
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tij = (λ0φ
∗ + λur,r)δij + µ(ui,j + uj,i) +K(uj,i − εijrφr), (2.4)

mij = αφr,rδij + βφi,j + γφj,i + b0εmjiφ
∗
,m, (2.5)

λ∗i = α0φ
∗
,i + b0εijmφj,m (2.6)

where λ, µ, α, β, γ,K, α0, λ0, λ1, b0 are material constants, ρ is the density, j is the mi-
croinertia, j0 is the microinertia of microelement, tij components of force stress tensor,
mij components of couple stress tensor, ~u = (ur, uθ, uz) is the displacement vector,
~φ = (φr, φθ, φz) is the microrotation vector, λ∗i is the microstress tensor, φ∗ is the scalar
point microstretch function,δij is Kronecker delta. The comma notation denotes spatial
derivatives.

Assuming that the viscoelastic nature of the material is described by Kumar and
Singh [15] model of linear viscoelasticity, we replace the microstretch elastic constants
λ, µ,K, α, β, γ, α0, λ0, b0, and λ1 by λI , µI ,KI , αI , βI , γI , α0I , λ0I , b0I , and λ1I , where

λI = λ+ λv
∂

∂t
, µI = µ+ µv

∂

∂t
, KI = K +Kv

∂

∂t
, αI = α+ αv

∂

∂t
, βI = β + βv

∂

∂t
,

γI = γ+γv
∂

∂t
, α0I = α0+α0v

∂

∂t
, λ0I = λ0+λ0v

∂

∂t
, λ1I = λ1+λ1v

∂

∂t
, b0I = b0+b0v

∂

∂t
.

Here λv, µv,Kv, αv, βv, γv, α0v, λ0v, λ1v, b0v are viscosity constants in Eqs. (2.1)–(2.6).
We obtain

(λI +2µI +KI)∇(∇·~u)− (µI +KI)∇×∇×~u+KI∇× ~φ+λ0I∇φ∗ = ρ
∂2~u

∂t2
, (2.7)

(αI + βI + γI)∇(∇ · ~φ)− γI∇× (∇× ~φ) +KI∇× ~u− 2KI
~φ = ρj

∂2~φ

∂t2
, (2.8)

α0I∇2φ∗ − λ1Iφ
∗ − λ0I∇ · ~u =

1
2
ρj0

∂2φ∗

∂t2
, (2.9)

tij = (λ0Iφ
∗ + λIur,r)δij + µI(ui,j + uj,i) +KI(uj,i − εijrφr), (2.10)

mij = αIφr,rδij + βIφi,j + γIφj,i + b0Iεmjiφ
∗
,m, (2.11)

λ∗i = α0Iφ
∗
,i + b0Iεijmφj,m. (2.12)

3 Formulation of the Problem

We consider a homogeneous isotropic microstretch viscoelastic plate of thickness 2d.
The plate is axi-symmetric with respect to z-axis as the axis of symmetry. The origin of
the co-ordinate system (r, θ, z) is taken at any point in the middle surface of the plate and
z-axis normal to it along the thickness. We take r–z plane as the plane of incidence.
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For two dimensional problem, we take

~u = (ur, 0, uz) and ~φ = (0, φθ, 0).

We define the non-dimensional quantities

r′ =
ω∗r

c1
, z′ =

ω∗z

c1
, u′r =

ω∗

c1
ur, u

′
z =

ω∗

c1
uz, t

′ = ω∗t, φ′θ =
ω∗

2
j

c21
φθ, φ

∗′
=
ω∗

2
j

c21
φ∗,

ω∗
2

=
KI

ρj
, ω′2 =

ω2

ω∗2
, t′ij =

1
λI
tij , m

′
ij =

ω∗mij

λIc1
, λ∗

′

i =
ω∗λ∗i
c1λI

, p =
KI

ρc21
, δ2 =

c22
c21
,

δ22 =
c21
c24
, δ23 =

λ0I

KI
, δ∗

2
=
KI

ρc24
, δ24 =

λ1Ic
2
1

α0Iω∗
2 , δ

2
5 =

λ0Ij

α0I
, δ26 =

ρc21j0
2α0I

. (3.1)

where
c21 =

λI + 2µI +KI

ρ
, c22 =

µI +KI

ρ
, c24 =

γI

ρj
,

ω∗ is the characteristic frequency of the medium, c1 and c2 are respectively the longitudinal
and shear wave velocity in the medium.

Introducing the velocity potential functions φ and ψ through the relations

ur =
∂φ

∂r
+
∂ψ

∂z
, uz =

∂φ

∂z
− ∂ψ

∂r
− ψ

r
, (3.2)

and using Eqs. (3.1)–(3.2) in Eqs. (2.7)–(2.9) and after suppressing the primes for conve-
nience, we obtain

∇2φ− ∂2φ

∂t2
+ δ23φ

∗ = 0, (3.3)

∇2ψ − ψ

r2
− φθ

δ2
− 1
δ2
∂2ψ

∂t2
= 0, (3.4)

δ∗
2
∇2ψ = δ22

∂2φθ

∂t2
+ 2δ22φθ −∇2φθ, (3.5)

∇2φ∗ − δ24φ
∗ − δ25∇2φ− δ26

∂2φ∗

∂t2
= 0, (3.6)

where

∇2 =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
.

The non-dimensional mechanical boundary conditions at z = ±d are given by

tzz = 0, tzr = 0, mzθ = 0, λ∗z = 0, (3.7)

where

tzz = λ0Iφ
∗ + (λI + 2µI +KI)

∂uz

∂z
+ λI

(∂ur

∂r
+
ur

r

)
,

tzr = µI

(∂ur

∂z
+
∂uz

∂r

)
+KI

(∂ur

∂z
− φθ

)
,

mzθ = γI
∂φθ

∂z
+ b0I

∂φ∗

∂r
,

λ∗z = α0I
∂φ∗

∂z
− b0I

(
∂φθ

∂r
+
φθ

r

)
.
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4 Formal Solution of the Problem

We assume the solutions of Eqs. (3.3)–(3.6) of the form

(φ, ψ, φθ, φ
∗) = [f(z)J0(ξr), g(z)J1(ξr), w(z)J1(ξr), h(z)J0(ξr)]e−ιωt, (4.1)

where ω is the circular frequency, ξ is the wave number and J0(ξr) and J1(ξr) are respec-
tively the Bessel functions of order zero and one.

Using Eq. (4.1) in Eqs. (3.3)–(3.6) and solving the resulting differential equations, the
expressions for φ, ψ, φθ and φ∗ are obtained as

φ = (A cosm1z +B sinm1z + C cosm2z +D sinm2z)J0(ξr)e−ιωt, (4.2)

ψ = (A′ cosm3z +B′ sinm3z + C ′ cosm4z +D′ sinm4z)J1(ξr)e−ιωt, (4.3)

φθ = δ2[(β2 −m2
3)(A

′ cosm3z +B′ sinm3z)

+ (β2 −m2
4)(C

′ cosm4z +D′ sinm4z)]J1(ξr)e−ιωt, (4.4)

φ∗ = − 1
δ23

[(α2 −m2
1)(A cosm1z +B sinm1z)

+ (α2 −m2
2)(C cosm2z +D sinm2z)]J0(ξr)e−ιωt, (4.5)

where

m2
i = ξ2(c2a2

i − 1), i = 1, 2, 3, 4; α2 = ξ2(c2 − 1), β2 = ξ2(
c2

δ2
− 1),

(a2
1, a

2
2) =

1
2

{[
1 + δ26 −

1
ω2

(δ24 − δ23δ
2
5)

]
±

[
{1− δ26 −

1
ω2

(δ24 − δ23δ
2
5)}2

+
4
ω2
{δ24 + δ26(δ24 − δ23δ

2
5)}

] 1
2
}

(a2
3, a

2
4) =

1
2

{[
δ22 +

1
δ2

+
δ∗

2

ω2δ2
(1− 2δ22δ

2

δ∗2
)
]
±

[
{ 1
δ2
− δ22 +

δ∗
2

ω2δ2
(1− 2δ22δ

2

δ∗2
)}2

+
4δ22
ω2δ2

{δ∗
2
− 2(δ2δ22 − 1)}

] 1
2
}
.

The displacement components ur and uz are obtained from Eqs. (3.2), (4.2) and (4.3) as

ur =
[
− ξ(A cosm1z +B sinm1z + C cosm2z +D sinm2z) + (−A′m3 sinm3z

+B′m3 cosm3z − C ′m4 sinm4z +D′m4 cosm4z)
]
J1(ξr)e−ιωt, (4.6)

uz =
[
(−m1A sinm1z +m1B cosm1z −m2C sinm2z +m2D cosm2z)

− ξ(A′ cosm3z +B′ sinm3z + C ′ cosm4z +D′ sinm4z)
]
J0(ξr)e−ιωt. (4.7)
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5 Derivation of the Secular Equations

Invoking the boundary conditions (3.7) on the surfaces z =± d of the plate and using
Eqs. (4.2)–(4.7), we obtain a system of eight simultaneous equations.

P (AC1+Bs1+CC2+Ds2)+Q{m3(A′s3−B′C3)+m4(C ′s4−D′C4)} = 0,
(5.1)

P (AC1 −Bs1+CC2 −Ds2)+Q{m3(−A′s3−B′C3)+m4(−C ′s4−D′C4)} = 0,
(5.2)

Q{(−As1+BC1)m1+(−Cs2 +DC2)m2}+P (A′C3 +B′s3+C ′C4 +D′s4) = 0,
(5.3)

Q{(As1 +BC1)m1+(Cs2+DC2)m2}+P (A′C3−B′s3+C ′C4 −D′s4) = 0,
(5.4)

R[g1C1A+ g1s1B + g2C2C + g2s2D] + S[f3(−A′s3 +B′C3)m3

+ f4(−C ′s4 +D′C4)m4] = 0, (5.5)

R[g1C1A− g1s1B + g2C2C − g2s2D] + S[f3(A′s3 +B′C3)m3

+ f4(C ′s4 +D′C4)m4] = 0, (5.6)

U [g1(−Am1s1 +Bm1C1) + g2(−Cm2s2 +Dm2C2)]

− V [f3C3A
′ + f3s3B

′ + f4C4C
′ + f4s4D

′] = 0, (5.7)

U [g1(Am1s1 +Bm1C1) + g2(Cm2s2 +Dm2C2)]

− V [f3C3A
′ − f3s3B

′ + f4C4C
′ − f4s4D

′] = 0, (5.8)

The system of Eqs. (5.1)–(5.8) has a non-trivial solution if the determinant of the coeffi-
cients of amplitudes [A,B,C,D,A′, B′, C ′, D′]T vanishes. This after lengthy algebraic
reductions and manipulations leads to the secular equations for the plate.{

1 +
QR(m2

1 − α2)
PS(m2

4 − β2)
+
QV (m2

3 − β2)
PU(m2

2 − α2)
+
Q2RV (m2

1 − α2)(m2
3 − β2)

P 2SU(m2
2 − α2)(m2

4 − β2)

}[
tanm1d

tanm3d

]±1

−
{
m1(m2

1−α2)
m2(m2

2−α2)
+
QRm1(m2

1−α2)
PSm2(m2

4−β2)
+
QVm1(m2

3−β2)
PUm2(m2

2−α2)
+
Q2RVm1(m2

3−β2)
P 2SUm2(m2

4−β2)

}
×

[
tanm2d

tanm3d

]±1

−
{
m3(m2

3 − β2)
m4(m2

4 − β2)
+
QRm3(m2

1 − α2)
PSm4(m2

4 − β2)
+
QVm3(m2

3 − β2)
PUm4(m2

2 − α2)

+
Q2RVm3(m2

1 − α2)
P 2SUm4(m2

2 − α2)

}[
tanm1d

tanm4d

]±1

+
{
m1m3(m2

1 − α2)(m2
3 − β2)

m2m4(m2
2 − α2)(m2

4 − β2)

+
QRm1m3(m2

1 − α2)
PSm2m4(m2

4 − β2)
+
QVm1m3(m2

3 − β2)
PUm2m4(m2

2 − α2)
+
Q2RVm1m3

P 2SUm2m4

}[
tanm2d

tanm4d

]±1

− RV (m2
2 −m2

1)(m
2
4 −m2

3)
SUm2m4(m2

4 − β2)(m2
2 − α2)

[
tanm1d tanm2d

tanm3d tanm4d

]±1



Axi-Symmetric Vibrations in a Microstretch Viscoelastic Plate 31

=
−4ξ2[1− p/(2δ2)]2m1m3(m2

2 −m2
1)(m

2
4 −m2

3)
(β2 − ξ2 + pξ2/δ2)2(m2

4 − β2)(m2
2 − α2)

(5.9)

where

P = β2−ξ2+
pξ2

δ2
, Q = −2ξ(1− p

2δ2
), R =

ξb0I

δ23
, S = γIδ

2, U =
α0I

δ23
, V = ξb0Iδ

2,

fi = β2−m2
i , i = 3, 4; gi = α2−m2

i , i = 1, 2; si = sinmid,Ci = cosmid, i = 1, 2, 3, 4.

Here the superscript +1 refers to skew symmetric and −1 refers to symmetric modes. Eq.
(5.9) is the secular equation for the propagation of modified microstretch viscoelastic waves
in the plate. In absence of viscous and stretch effect, the Eq. (5.9) reduces to the equation
in micropolar theory of elasticity which is similar as obtained by Eringen [7] after changing
the dimensionless quantities to the physical quantities.

Further neglecting the micropolar effect from the resulting equations, the equation re-
duces to the equation similar as obtained by Graff [9] for classical theory of elasticity and
is known as Rayleigh-Lamb equation. The nomenclature has also been used in standard
text equation in Ewing et al. [8].

Analogous to this equation of classical theory of elasticity, these equations can be rec-
ognized as Rayleigh-Lamb Equations for symmetric and anti symmetric waves in an in-
finite rectangular plate in microstretch viscoelastic solid. We refer to such waves as mi-
crostretch viscoelastic plate waves rather than Lamb waves whose properties were derived
by Lamb [18] for isotropic elastic solids in elastokinetics. Thus Rayleigh-Lamb type equa-
tion also governs circular crested microstretch elastic waves in a plate. Although the fre-
quency wave number relationship holds whether the waves are straight or circularly crested,
the displacement, microstretch, microrotation and stresses vary according to Bessel func-
tions rather than trigonometric functions as far as the radial coordinate is concerned. For
large value of r, we have

J0(ξr) →
sin ξr + cos ξr√

πξr
, J1(ξr) →

sin ξr − cos ξr√
πξr

.

Thus, far from the origin the motion becomes periodic in r. Actually, “far” occurs rather
rapidly, within four to five zeros of the Bessel function. As r becomes very large, the
straight crested behavior is the limit of the circular crested waves.

Micropolar elastic Plate
In the absence of viscous effect (α0I = λ0I = λ1I = 0) and microstretch effect

(α0 = λ0 = λ1 = b0 = 0) , the secular equation (5.9) reduces to[
tanm1d

tanm3d

]±1

− m3(β2−m2
3)

m4(β2−m2
4)

[
tanm1d

tanm4d

]±1

=
−4ξ2(1−p/(2δ2))2αm3(m2

4−m2
3)

(β2 − ξ2 + pξ2

δ2 )2(m2
4 − β2)

.

(5.10)
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The equation (5.10) agrees with Kumar and Partap [13] and has been discussed for homo-
geneous, isotropic, stress free micropolar elastic plate.

Elastic Plate
In the absence of micropolarity effect (K = p = 0), the secular equation (5.10) reduces

to [
tanm1d

tanm3d

]±1

=
−4ξ2αβ

(β2 − ξ2)2
. (5.11)

The equation (5.11) agrees with Graff [9] and has been discussed for homogeneous,
isotropic, stress free elastic plate.

6 Regions of the Secular Equation

In order to explore various regions of the secular equations, here we consider the equa-
tion (5.9) as an example for the purpose of discussion. Depending upon whether m1, m2,
m3, m4, α, and β being real, purely imaginary or complex, the frequency equation (5.9) is
correspondingly altered as follows:

Region I
When the characteristic roots are of the type, α2 = −α′2, β2 = −β′2, m2

k = −α2
k,

k = 1, 2, 3, 4 so that α = ια′, β = ιβ′, mk = ιαk, k = 1, 2, 3, 4 are purely imaginary
or complex numbers. This ensures that the superposition of partial waves has the property
of exponential decay. In this case, the secular equations are written from equation (5.9) by
replacing circular tangent functions of mk, k = 1, 2, 3, 4 with hyperbolic tangent functions
of αk, k = 1, 2, 3, 4.

Region II
This region is characterized by δ < c < 1. In this case, we have

β = β, m3 = m3, m4 = m4, α = ια′, mk = ιαk, (i = 1, 2)

and the secular equations can be obtained from equation (5.9) by replacing circular tangent
functions of mk, k = 1, 2 with hyperbolic tangent functions of αk, k = 1, 2.

Region III
In this case, the characteristic roots are given by m2

k, k = 1, 2, 3, 4 and the secular
equation is given by equation (5.9).

7 Waves of Short Wavelength

Some information on the asymptotic behavior is obtained by letting ξ → ∞,
tanhαid/tanhαjd→ 1, i = 1, 2; j = 3, 4. If we take ξ > ω/δ, it follows that c < δ < 1.
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Then we replace α, β, mi with ια′, ιβ′, ιαi and secular equations (5.9) reduces to

4ξ2(1− p

2δ2
)2α1α2α3α4(α1 + α2)(α3 + α4)

= (
pξ2

δ2
− β′2 − ξ2)2[(α2

1 + α2
2 + α1α2 − α′2)(α2

3 + α2
4 + α3α4 − β′2)

+
QR

PS
(α2

1 − α′2)(α2
2 − α′2) +

QV

PU
(α2

3 − β′2)(α2
4 − β′2)

+
Q2RV

P 2SU
(α3α4 + β′2)(α1α2 + α′2)− RV

SU
(α1 + α2)(α3 + α4).

These are merely Rayleigh surface wave equations. The Rayleigh results enter here since
for such wavelengths, the finite thickness plate appears as a half-space. Hence vibrational
energy is transmitted mainly along the surface of the plate.

8 Amplitudes of Displacements, Microrotation and Microstretch

In this section, the amplitudes of displacement components, microrotation and mi-
crostretch for symmetric and skew symmetric modes of plate waves, have been computed.
Upon using Eqs. (4.4)–(4.7), we obtain

(ur)sy = {−ξ(cosm1z + L cosm2z) +Mm3 cosm3z +Nm4 cosm4z}AJ1(ξr)e−ιωt

(ur)asy = {−ξ(sinm1z+L′ sinm2z)+M ′m3 sinm3z +N ′m4 sinm4z}BJ1(ξr)e−ιωt

(uz)sy = −{m1 sinm1z + Lm2 sinm2z − ξ(M sinm3z +N sinm4z)}AJ0(ξr)e−ιωt

(uz)asy = {m1 cosm1z+L′m2 cosm2z−ξ(M ′ cosm3z +N ′ cosm4z)}BJ0(ξr)e−ιωt

(φθ)sy = δ2{(β2 −m2
3) sinm3z − (β2 −m2

4)
f3m3C3

f4m4C4
sinm4z}B′J1(ξr)e−ιωt

(φθ)asy = δ2{(β2 −m2
3) cosm3z − (β2 −m2

4)
f3m3s3
f4m4s4

cosm4z}A′J1(ξr)e−ιωt

(φ∗)sy =
1
δ23
{(α2 −m2

1) cosm1z + (α2 −m2
2)L cosm2z}AJ0(ξr)e−ιωt

(φ∗)asy =
1
δ23
{(α2 −m2

1) sinm1z + (α2 −m2
2)L

′ sinm2z}BJ0(ξr)e−ιωt

where

L = −g1m1s1
g2m2s2

, L′ = −g1m1C1

g2m2C2
,

M =
P (g2m2T

−1
1 − g1m1T

−1
2 )f4s1

Qg2m2m3(f4 − f3)T−1
3 s3

, M ′ =
P (g2m2T1 − g1m1T2)f4C1

Qg2m2m3(f4 − f3)T3C3
,

N = −P (g2m2T
−1
1 − g1m1T

−1
2 )f3s1

Qg2m2m4(f4 − f3)T−1
4 s4

, N ′ = −P (g2m2T1 − g1m1T2)f3C1

Qg2m2m4(f4 − f3)T4C4
,

Ti = tanmid, i = 1, 2, 3, 4.
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9 Example Results

With the view of illustrating theoretical results obtained in the preceding sections, we
now present some numerical results. The material chosen for this purpose is aluminium -
epoxy composite (microstretch elastic solid), the physical data for which is given below

ρ = 2.19× 103Kgm−3, λ = 7.59× 109Nm−2, µ = 1.89× 109Nm−2,

K = 0.0149× 109Nm−2, γ = 0.0268× 105N, j = 0.00196× 10−4m2,

j0 = 0.00185× 10−4m2, λ0 = λ1 = 0.037× 109Nm−2, α0 = 0.61× 105N,

b0 = 0.025× 105N, d = 0.01m.

For a particular model of a microstretch viscoelastic solid, the relevant parameters are ex-
pressed as

χI = χ(1− ιQ−1
k ), k = 1, 2, 3, 4, 5, 6, 7, 8 for χ = λ, µ,K, γ, α0, λ0, λ1, b0

respectively, where

Q−1
1 = 0.05, Q−1

2 = 0.01, Q−1
3 = 0.015, Q−1

4 = 0.1,

Q−1
5 = 0.15, Q−1

6 = 0.15, Q−1
7 = 0.1, Q−1

8 = 0.1.

A FORTRAN program has been developed for the solution of equation (5.9) to compute
phase velocity c for different values of n by using the relations tan(θ) = tan(nπ + θ) and
m2

i = ξ2(c2a2
i − 1).

In general, wave number and phase velocity of the waves are complex quantities, there-
fore, the waves are attenuated in space. If we write

c−1 = v−1 + ιω−1q (9.1)

then ξ = K1 + ιq , where K1 = ω/v and q are real numbers. This shows that v is the
propagation speed and q is attenuation coefficient of waves. Upon using Eq. (9.1) in the
FORTRAN program developed for the solution of equation (5.9) to compute phase velocity
c, attenuation coefficient q for different modes of wave propagation can be obtained.

The non-dimensional phase velocity and attenuation coefficient of symmetric and skew
symmetric modes of wave propagation have been computed for various values of non-
dimensional wave number from secular equation (5.9). The corresponding numerically
computed values of phase velocity and attenuation coefficient are shown graphically in
Figs. 9.1–9.4 for different modes (n = 0 to n = 3). The amplitudes of displacements,
microrotation and microstretch for symmetric and skew symmetric modes are presented
graphically in Figs. 9.5–9.12. The solid curves correspond to microstretch viscoelastic
plate (MVEP) and dotted curves refer to microstretch elastic plate (MEP).
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Figure 9.1: Phase velocity profile for symmetric modes of wave propagation

Figure 9.2: Variation of attenuation coefficient of symmmetric modes of wave propagation
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Figure 9.3: Phase velocity profile for skewsymmetric modes of wave propagation

Figure 9.4: Variation of attenuation coefficient of skewsymmmetric modes of wave propagation
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Figure 9.5: Amplitude of symmetric displacement (ur)

Figure 9.6: Amplitude of skewsymmetric displacement (ur)
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Figure 9.7: Amplitude of symmetric displacement (uz)

Figure 9.8: Amplitude of skewsymmetric displacement (uz)
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Figure 9.9: Amplitude of symmetric microrotation (φθ)

Figure 9.10: Amplitude of skewsymmetric microrotation (φθ)
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Figure 9.11: Amplitude of symmetric microstretch (φ∗)

Figure 9.12: Amplitude of skewsymmetric microstretch (φ∗)
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Phase velocity
The phase velocity of higher modes of wave propagation, symmetric and skew sym-

metric attains quite large values at vanishing wave number, which sharply slashes down
to become steady with increasing wave number. It is observed that the phase velocities of
different modes of wave propagation start from large values at vanishing wave number and
then exhibit strong dispersion until the velocity flattens out to the value of the microstretch
Rayleigh wave velocity of the material at higher wave numbers. The reason for this asymp-
totic approach is that for short wavelengths (or high frequencies) the material plate behaves
increasingly like a thick slab and hence the coupling between upper and lower boundary
surfaces is reduced and as a result the properties of symmetric and skew symmetric waves
become more and more similar.

The phase velocity of lowest symmetric and skewsymmetric mode (n = 0) remains
constant with the variation in wave number in microstretch elastic plate (MEP) and mi-
crostretch viscoelastic plate (MVEP) respectively, whereas the phase velocity of lowest
symmetric mode and skewsymmetric mode (n = 0) varies at lower wave number and
becomes constant at higher wave number in microstretch viscoelastic plate (MVEP) and
microstretch elastic plate (MEP) respectively.

It is observed that phase velocity in MEP is more than in MVEP for symmetric modes
n = 1, 2, 3 and skewsymmetric modes n = 0, 1, 2, 3. In case of lowest symmetric mode
(n = 0), for wave number ξd ≤ 0.8 phase velocity in MVEP is more than in case of MEP,
the values of phase velocity are smaller in MVEP than in MEP for wave number ξd ≥ 0.8.
The phase velocity for symmetric mode n = 2 in MEP is more than in case of MVEP for
symmetric mode n = 3.

Attenuation coefficients
The variation of attenuation coefficient with wave number for symmetric and skew

symmetric modes is represented graphically in Figs. 9.2 and 9.4 respectively in case of
microstretch viscoelastic plate (MVEP). For the symmetric modes n = 1, 2, 3, we observe
the following:

(i). the magnitude of attenuation coefficient has maxima upto 10.14 at ξd = 5.07.
(ii). The variation of attenuation coefficient with wave number remains same.

(iii). the attenuation coefficient varies linearly with wave number. For lowest symmetric
mode n = 0, the magnitude of attenuation coefficient increases upto 8.37 in region
0.07 ≤ ξd ≤ 3.08 at ξd = 1.08 and varies linearly with increase in wave number
and attains maxima upto 10.13 in region 3.08 ≤ ξd ≤ 5.07 at ξd = 5.07.

For skewsymmetric modes we observe the following:

(i). the attenuation coefficient varies linearly with wave number for modes n = 2, 3.
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(ii). for mode n = 1, the attenuation coefficient varies linearly with wave number in
region 0.07 ≤ ξd ≤ 4.08 and the attenuation coefficient is highest in the region
4.08 ≤ ξd ≤ 5.08 and attains maximum value upto 10.89 at ξd = 5.08.

(iii). for lowest mode, the attenuation coefficient varies linearly with wave number in re-
gion 1.08 ≤ ξd ≤ 5.08 and the lowest mode has higher attenuation coefficient than
other modes for the region 0.07 ≤ ξd ≤ 1.08.

Amplitudes
Figs. 9.5–9.12 depict the variations of symmetric and skew symmetric amplitudes of

displacement (ur), displacement (uz), microrotation (φθ) and microstretch (φ∗) in case
of microstretch viscoelastic plate (MVEP) and microstretch elastic plate (MEP). The dis-
placement (ur) of the plate is maximum at the centre and minimum at the surfaces for
symmetric mode as can be seen from Fig. 9.5. It is evident from Fig. 9.6 and Fig. 9.7
that (i) the values of the skewsymmetric displacement (ur) and symmetric displacement
(uz) of the plate is maximum at top surface, zero at the centre and minimum at the bottom
surface in case of microstretch elastic plate (MEP); (ii) the values of the skewsymmetric
displacement (ur) is minimum at z = −0.6d, zero at the centre and maximum at z = 0.6d,
whereas the values of the symmetric displacement is maximum at z = −0.6d, zero at the
centre and minimum at z = 0.6d in case of microstretch viscoelastic plate (MVEP). From
Fig. 9.8, it is noticed that the values of the displacement (uz) of the plate is maximum at
the centre and minimum at the surfaces in case of microstretch viscoelastic plate (MVEP)
and minimum at the centre and maximum at the surfaces in case of microstretch elastic
plate (MEP) for skewsymmetric mode. The values of the symmetric microrotation (φθ) of
the plate is maximum at top surface, zero at the centre and minimum at the bottom surface
as seen from Fig. 9.9. The values of the microrotation (φθ) and microstretch (φ∗) of the
plate is minimum at the centre and maximum at the surfaces for skewsymmetric mode and
symmetric modes respectively as observed from Fig. 9.10 and Fig. 9.11. The values of the
skewsymmetric microstretch (φ∗) of the plate is minimum at top surface, zero at the centre
and maximum at the bottom surface as seen from Fig. 9.12. (ur)sym, (ur)asym, (uz)sym,
(uz)asym, (φθ)sym, (φθ)asym, (φ∗)sym and (φ∗)asym correspond to the values of (ur),
(uz), (φθ) and (φ∗) for symmetric and skew symmetric modes respectively. The values of
the symmetric displacement (ur), skewsymmetric displacement (uz) and skewsymmetric
microrotation (φθ) of the plate are more in microstretch elastic plate (MEP) in comparison
to microstretch viscoelastic plate (MVEP), whereas values of the symmetric microstretch
(φ∗) of the plate are more in microstretch viscoelastic plate (MVEP) in comparison to
microstretch elastic plate (MEP). The values of the skewsymmetric displacement (ur),
symmetric displacement (uz) and symmetric microrotation (φθ) of the plate are smaller in
microstretch elastic plate (MEP) in comparison to microstretch viscoelastic plate (MVEP)
below the centre of the plate and are more in microstretch elastic plate (MEP) in compar-
ison to microstretch viscoelastic plate (MVEP) above the centre of the plate, whereas the
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values of the skewsymmetric microstretch (φ∗) of the plate in case of microstretch elastic
plate (MEP) are more below the centre of the plate and are smaller above the centre of the
plate.

10 Conclusions

(i). The propagation of axi-symmetric vibrations in infinite homogeneous, isotropic mi-
crostretch viscoelastic plate subjected to stress free conditions is investigated after
deriving the secular equations.

(ii). It is noticed that the motion of axi-symmetric vibrations is governed by the Rayleigh
- Lamb type secular equations.

(iii). At short wavelength limit, the secular equations in case of symmetric and skew sym-
metric modes of propagation of axi-symmetric vibrations in a stress free plate re-
duces to the Rayleigh surface frequency equations.

(iv). The phase velocities of higher modes of propagation, symmetric and skewsymmetric
attain quite large values at vanishing wave number which sharply slashes down to
become steady and asymptotic to the reduced Rayleigh wave velocity with increasing
wave number. The phase velocity in MEP is more than in MVEP for symmetric
modes n = 1, 2, 3 and skewsymmetric modes n = 0, 1, 2, 3.

(v). The attenuation coefficient varies linearly with wave number for symmetric modes
n = 1, 2, 3 and for skewsymmetric modes n = 2, 3.

(vi). The amplitudes of displacement components, microrotation and microstretch for
symmetric and skew symmetric modes are computed numerically and presented
graphically.
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