
J. Stat. Appl. Pro. 2, No. 1, 61-72 (2013)                                                                                                                     61 

 

 

 

 

 
Extended Beta Distribution and Mixture Distributions with 

applications to Bayesian analysis 

 
Jamal A. Al-Saleh

1
 and Satish K. Agarwal

2
  

 
1
Department of Statistics and Operation Research, Faculty of Science, Kuwait University, P.O. Box 5969, Safat, 

Kuwait 

Email Address: alsalehj@kuc01.kuniv.edu.kw 
2
Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038, Bahrain 

Email Address: satishagarwal123@yahoo.com 

  

Received: 26 Mar. 2012, Revised: 17 Jun. 2012, Accepted: 9 Jul. 2012 

Published online: 1 Mar. 2013 

 

 
Abstract: An extended form of beta distribution by Al-Saleh and Agarwal, is further extended which has an additional two shape 

parameters k and l. Introduction of new shape parameters help to express extended beta distribution not only as a mixture of 

distributions, but also provides extra flexibility to the density function over the interval [0,1]. Certain statistical properties such as 

the r-th moment are defined explicitly. Some of the shapes of family of the densities are also illustrated for different k and l so that 

it may help the Bayesians to approximate a wide range of prior beliefs among the members of the suggested extended family. The 

Bayesian analysis for the posterior of an uncertain parameter for the Bernoulli process using extended beta prior is also considered 

with an application of mortality rates in 12 hospitals performing surgery on babies. 

 

Keywords: Bayesian analysis; extended beta distribution; finite mixture distribution; Gibbs sampling;  Markov chain Monte 

Carlo; prior distribution. 

 

 

1  Introduction 

 
It is well known that by introducing new parameter(s), the generalization of statistical distributions 

such as gamma and beta distributions can be defined. In literature, many generalization of beta distribution 

are considered. The main contributors are Pham-Gia and Doung [1], Volodin [2], Armero, and Bayarri [3], 

McDonald and Xu [4], Wilfling [5], Gordy [6], and Parker [7]. In recent years generalization of beta 

distribution by introducing more parameters are considered by, Barreto-Souza at el, [8], Mahmoudi [9], 

and Singla at el [10].  

 

The extended beta distribution of Al-Saleh and Agarawal [11] can also be written as a finite 

mixture of beta distributions that provides a flexible skewed density over the interval [0,1]. 

The finite mixture of beta distributions receive attention, in practice, quite often when we come across a 

situation where it is not possible to approximate a prior belief by a member of the available family of 

distributions on [0,1]. In such cases, the only suitable choice is the mixture of beta distributions 

[MacLachlan and Basford [12], Titterington et al. [13]]. 
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 = 1, and the fi’s are beta distributions. For the sake of clarity, one of the uses of mixture beta 

distributions can be illustrated through a problem given by Diaconis and YIvisaker [14], that requires a 
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mixture of beta distributions as a prior. The problem is as follows: Diaconis and YIvisaker observed that 

there is a big difference between spinning a coin on a table and tossing it in the air. While tossing often led 

to about an even proportion of an ‘heads’ and ‘tails’, spinning often led to proportion like 1/3 or 2/3. The 

reason for the bias, according to them, was attributed to the shape of the edge. They considered  many 

possibilities to explain this phenomenon before arriving at a 50:50 mixture (that is w1= w2=1/2) of two beta 

distributions, one with Be(10,20) and another with Be(20,10) as a reasonable prior. Therefore, the 

problems of such nature may arise and worth examining. Another situation where mixture of distribution 

can be used is, when one wants to obtain a posterior and has a complicated prior which not fully dominated 

by the data. In such cases if the complicated prior is used, it may not only mislead the posterior but also 

lead to complicated numerical integration if the prior is non conjugate.  

 

Moreover, equation (1) if considered, requires appropriate knowledge of weights w1, … , wn. If it is not 

possible to approximate weights reasonably well, then the number of parameters in the prior distribution 

will increase. In such a situation the Bayesian analysis needed for evaluation of complex integration may 

lead to more difficult problems. In order to overcome this problem, there is a need to search for a new class 

of mixture distributions, on the interval between 0 and 1. The present study is an attempt in this direction. 

 

In this paper, a new extended beta distribution is considered which can also be written as a finite mixture 

of beta distributions, and it provides a flexible skewed density over the interval [0,1]. This mixture 

distribution is useful, particularly in applications where the subjective views of information come from two 

or more sources, and the views are close to each other. Some examples are: the subject expert’s 

assessment, personal viewpoint and decision making of two or more surgeons on performing a surgical 

operation, etc. The usefulness of proposed finite mixture of beta distributions as a conjugate prior are 

demonstrated to obtain the posterior distribution, say of uncertain parameter p of the Bernoulli distribution 

and p follows mixture of beta distribution. It not only gives a nice posterior but also provides simplicity of 

the computations. The specific weights attached to the suggested prior are functions of the parameters and 

the distribution we define represents a class of mixture of beta densities. While equation (1) if used as a 

prior for p, will need the knowledge of weights and hence increase the number of parameters. 

 

In section 2, an extended beta distribution and finite mixture of beta distributions are derived. The 

statistical properties such as the rth moments are computed which may be of some interest to Bayesians. 

The shapes of extended beta distribution have also been given in Figure I-II, for certain values of the 

parameters. These shapes may help in identifying an approximate prior among the family of distributions. 

In section 3, related distributions such as the log-extended beta, extended Pearson type VI, and extended 

generalized F distribution are presented. In section 4, its use as a conjugate prior to derive the posterior 

distribution of uncertain parameter p for the Bernoulli distribution is obtained and the predictive 

distribution of the next observation is also given. In section 5, an illustration is given to show the 

usefulness of extended beta and finite mixture of beta distributions as a prior by considering an application 

of mortality rates in 12 hospitals performing surgery on babies.  

 

 

2   Extended beta distribution 

 
Agarwal and Al-Saleh [15] defined a generalized gamma type distribution with parameters α, β, γ 

and  with probability density function:    
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The equation (2) can be reduced to a two parameter gamma distribution when we let  

β = γ =1, and is defined as:  
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It can be seen that for δ = 0, equation (3) reduces to ordinary gamma distribution. The integral equation (4) 

can be computed using the transformation concerning the generalized hypergeometric function [see 

Andrews [16], Chapter 9, p 365], and is defined as  
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The equation (4) can be computed numerically as 

 

 )1];1[],([)()()()1,( 1    F  

                 )1];1[],([)(   F ,                                                              (6)                            
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To define a new type of finite mixture of beta distributions we use (3), by reducing the range of the 

parameter  to take only negative integers,  = - k (k = 0,1,2, ..n), n is fixed. To do this we first introduce 

extended gamma distribution [ExGa(α,k)] with parameters α > 0 and k integer, with  probability density 

function (pdf) as                           
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where StGa(α+i) is the standard gamma pdf of X, with parameter α+i, and   j is known as 

“Pochhammer symbol” and 
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Hence the equation (8) is a finite mixture of gamma distributions with parameters α > 0, and    k = 0,1,…,n. 

This equation introduces a class of new mixture of gamma distribution to give more flexibility in choice of 

the mixing k.  

 

Theorem 1. Let X and Y be independent random variables, where X having gamma type distribution as 

defined in equation (7) with parameters α and k = 0,1,…,n, and Y having gamma type distribution 

[equation (7)] with parameters β, and l = 0,1,…,m. A random variable U= 
YX

X


 defined on the interval 

between 0 and 1, is said to have an extended beta distribution [ExBe(,,k,l)] with parameters α, β > 0, k = 

0,1, … ,n, and l = 0,1, … ,m, if its probability density function is: 
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Proof: Consider the joint pdf of X and Y 
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Defining X=WU and Y=W(1-U) gives the joint pdf of  W and U as follows: 
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Integrating the equation (10) over ‘w’ gives equation (9).  

 

The rth moment of equation (9) about the origin is: 
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Using equation (11) the mean and the variance can be obtained. We should also emphasis that the moment-
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generating function could be expressed as confluent hypergeometric function.  

 

Next, a few special cases of equation (9) for different values of k and l are considered: 

 

Case 1. For  k=l=0, the equation. (9) reduces to conventional beta distribution. 

 

Case 2. For k=0, and l=1, then equation (9) reduces to: 
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Case 3. For k=1, and l=0, then equation (9) reduces to: 
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Case 4. For k=1, and l=1, then equation (9) reduces to: 
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Case 5. For k=2, and  l=0, then equation (9) reduces to: 
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Case 6. For k=0, and l=2, then equation (9) reduces to: 
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Where Be(α,β) = 
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, is the conventional beta probability density function. The Figures 1-3 

illustrate the graphs [ f(u) eqn (9)] of conventional beta [k=0, l=0] and extended beta pdf f(u;α,β,k,l) for 

several choices of α, β, k, and l.  

 

 
From these graphs it can be seen that for the values α=0.8, and β=1.05 and as k=l increases from 2 to 3 and 

4, the graphs tend towards normality and the thickness of tail also reduces. If we increase the value of α 

and decrease the value of β, [say α=1.10, and β= 0.95], for k=0 and by varying the values of l, there is a 

sharp increase in the shape for u greater than 0.5. These graphs can be helpful not only in getting a general 

idea of how equation. (9) look like for the different choices of k, and l but also in assuming a conjugate 

extended beta prior for Bayesian analysis. 
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3    Related distributions 

    
The moment-generating function of (-logU), when U has extended beta distribution equation (9), 

is: 
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When k=0 and l=0 the distribution of (-logU), has been discussed by Barrett, Normand, and Peleg 

[17]. They suggest the possible use of log-beta distributions in place of log-normal distributions while 

fitting the data which come from positively or negatively skewed distribution. The transformation T = 

U

U

1
, has the following probability density function  

 

 

Figure 1:  Figure 2:  

Figure 3:  
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The equation (13) is defined as the extended Pearson type VI distribution or a finite mixture of pearson 

type VI distributions. For k=0 and l=0 the distribution is Pearson type VI distribution, sometimes called a 

beta-prime distribution [see Keeping [18]]. The extended Pearson type VI distribution is related to the 

extended generalized F distribution when t =
sg , and the probability density function of this distribution is 

defined as  
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which is a finite mixture of generalized F distributions. When k=0 and l=0 it is the generalized F 

distribution and, as a result, is often denoted by GB2 [see McDonald and Richards [19]]. The cumulative 

distribution function corresponding to the extended generalized F density may be expressed in terms of the 

confluent hypergeometric function. The behavior of the hazard rate of the generalized F distribution has 

been examined by McDonald and Richards [19]. Finite mixtures of generalized F distributions are 

considered by McDonald and Butler [20].  

 

 

4   Posterior distribution 

 
In this section the parameter of interest is the probability p of success in a number of trials, which can 

result in success or failure. Suppose there is a fixed number of n trials, with x, number of successes such 

that x~bin(n,p) a binomial distribution of index x and parameter p, thus 
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If p is unknown, and the prior for p has the form equation (9), then for known, , , k, and l the posterior 

evidently will have the mixture form, 
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If we let n = 1, it is evident that equation (16) belongs to the family of mixture distributions which is 

closed under sampling with respect to a Bernoulli likelihood.   

 

The predictive distribution of the next observation y~bin(m, p) a binomial distribution of index y and 

parameter p, after we have the single observation x on top of our previous background information, is 
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This distribution will be defined as the extended beta binomial distribution, or the extended Polya type 

distribution [which is related to Polya distribution when k=l=0, [see Calvin [21]]. 

 

 

5   Application 

 
Spiegelhalter, et al. [22] analyses the data using WinBUGS (page 15) and was specifically used to 

demonstrate the use of beta prior. The model they considered is based on mortality rates during operation 

in 12 hospitals [Table 1]. This application may give some insight in how the Bayesian methods for making 

inference about an uncertain Bernoulli parameter p on the basis of prior knowledge that behave as 

ExBe(,,k,l) and observed data from Bernoulli process would work. 

 
Table 1:  The mortality rates in 12 hospitals performing surgery in babies 

Hospital Number of Operations Number of Deaths Mortality rates 

H1 47 0 0.0 

H2 148 18 0.12162 

H3 119 8 0.06723 

H4 810 46 0.05679 

H5 211 8 0.03791 

H6 196 13 0.06633 

H7 148 9 0.06081 

H8 215 31 0.14419 

H9 207 14 0.06763 

H10 97 8 0.08247 

H11 256 29 0.11328 

H12 360 24 0.06667 

 
Let xt and nt be, the number of deaths, and the number of operations preformed in respective hospital t. 

This problem can be modeled as a binary response variable with true failure probabilities pt. Thus xt can 

follow bin(pt, nt) a binomial distribution where t=1, ..,12, that is     

 

            f(xt|pt) = ttt xn
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Now, suppose we have no idea about the prior knowledge of the probabilities pt for each hospital t. Thus 

we can suggest the following hierarchical models implemented as follows:  

 

Case (i) k and l known 

 

At the first stage and when k and l are known, we assume a prior belief that follows ExBe(t,t, k,l) for the 

true failure probabilities pt for each hospital t. At the second stage, we will assume the following prior 

specification for the hyperparameters tt and t; t~gamma(,), and t~gamma(,) independent, where 

~exponential(), ~exponential(), =0.1, and for the values [k=l=0], [k=0,l=1], [k=1, l=1], and 

[k=2,l=0].  

 

Case (ii) k and l unknown 

 

At the first stage we assume a prior belief that follows ExBe(t,t,k,l) for the true failure probabilities pt for 

each hospital t. At the second stage, we will assume the following prior specification for the 

hyperparameters t, t; kt, and lt, for t=1,…,12, t~gamma(,), t~gamma(,), kt~binomial(q1,100), and 

lt~binomial(q2,100) independent, where ~exponential(), ~exponential(), and qi~beta(0.5,1.5), i=1.2, 

and =0.1. 

 

A Markov Chain Monte Carlo (MCMC) Gibbs sampling approach implemented in using BUGS
@

 computer 

software can give an analysis of estimates of surgical mortality in each hospital t. A burn in of 1000 

updates followed by a further 12000 updates give estimates of pt, for each hospital t=1,…,12, for the case k 

and l known for different k, and l [Tables 2-5], and for the case when k and l unknown [Table 6].  

 

Examination of the above simulations [tables 2-6] the following observations are noticed: 

 
1. For known differing values of k and l, there is no significant difference in the estimates of pt, t = 

1,2,…..,12. 

2. The estimate p1 for unknown k and l (table 6), there is a dramatic shift to the left in the posterior 

mean = 0.006345 from the posterior mean of the cases k and l known (table 2-5), which is closer to 

the true mortality rate of H1 [table 1]. The posterior standard deviation (SD) remains more or less 

the same, and a slight decrease in the MC error. 

3. For the estimates pt, t=2,…,12, for k and l unknown (table 6), there is a small shift to the left in the 

posterior mean from the posterior mean of the cases k and l known (table 2-5), which is closer to 

the true mortality rate for each hospital. The posterior SD all remained more or less the same, and 

a slight increase in the MC error as for the cases k known (table 2-5).  

4. For the estimates kt, for t=1,…,12, the posterior means are 8.484, 9.761, 9.541, 9.402, 9.366, 

9.592, 9.529, 9.519, 9.548, 9.591, 9.716, 9.5 (prior mean = 25), the posterior SD’s about 2.88 
(prior SD = 1.37), with the MC errors about 0.04. The posterior mean has a big shift to the left 

from the prior mean. 

5. For the estimate lt, t=1,…,12, the posterior means are 11.34, 10.47, 10.44, 10.35, 10.5, 10.5, 10.4, 

10.2, 10.42, 10.39, 10.41, 10.38 (prior mean = 25), the posterior SD’s around 2.9 (prior SD = 

1.37), with the MC errors around 0.04. The posterior mean has a big shift to the left from the prior 

mean. 

 

 
In brief, the value of the posterior distribution means stay more or less the same across the results for k and 

l known. For most of the hospitals, the posterior distribution means when k and l are unknown shift slightly 

to the left closer to the true mortality rates. However, the shift for hospital H1 is dramatic and is much 

closer to the true mortality rate compared with the case when k and l are known. Hence, in the above 

example, when k and l are unknown, the analysis using extended beta prior distribution to estimate the 

mortality rates are more successful compared to [k=0, and l=0, Beta prior]. The proposed class of prior 

distributions offers more flexibility for Bayesian methods to choose among the existing classes of priors. 
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     Table 2:   The estimates of surgical mortality for each Hospital when k=0, l=0 

Variable Mean SD MC error 2.5% Median 97.5% 

1p 0.02032 0.01989 4.95E-4 5.62E-4 0.01443 0.07396 

2p 0.1267 0.02674 2.634E-4 0.07905 0.125 0.1849 

3p 0.07441 0.02414 2.263E-4 0.03388 0.07197 0.1285 

4p 0.0579 0.008179 9.032E-5 0.04291 0.05751 0.07502 

5p 0.0421 0.01378 1.434E-4 0.01993 0.04048 0.0736 

6p 0.07082 0.01805 1.862E-4 0.03966 0.06951 0.1095 

7p 0.06681 0.02036 2.058E-4 0.03209 0.06505 0.1116 

8p 0.1475 0.02409 2.136E-4 0.1034 0.1465 0.1973 

9p 0.07181 0.01781 1.89E-4 0.04072 0.0703 0.1099 

10p 0.09129 0.02921 2.638E-4 0.04221 0.08845 0.1553 

11p 0.1164 0.01996 2.042E-4 0.08016 0.1155 0.1579 

12p 0.06925 0.01323 1.434E-4 0.04554 0.06839 0.09723 

 
     Table 3:  The estimates of surgical mortality for each Hospital when k=0, l=1 

Variable Mean SD MC error 2.5% Median 97.5% 

1p 0.02112 0.02033 4.455E-4 9.553E-5 0.01508 0.0743 

2p 0.1239 0.02688 2.914E-4 0.07645 0.1222 0.1813 

3p 0.07132 0.02345 2.372E-4 0.03273 0.06899 0.124 

4p 0.0575 0.008145 9.156E-5 0.04282 0.0571 0.07448 

5p 0.04021 0.01343 1.727E-4 0.01839 0.03871 0.07064 

6p 0.06832 0.01769 2.079E-4 0.03777 0.06688 0.1066 

7p 0.06403 0.01986 2.352E-4 0.0311 0.06214 0.1086 

8p 0.1458 0.02399 2.843E-4 0.1017 0.1448 0.1951 

9p 0.07005 0.01756 1.849E-4 0.03927 0.06875 0.1073 

10p 0.08703 0.02866 3.376E-4 0.03989 0.08455 0.1512 

11p 0.1152 0.02001 2.297E-4 0.07919 0.1137 0.1568 

12p 0.06778 0.01314 1.498E-4 0.04469 0.06705 0.09576 

 
 

     Table 4:   The estimates of surgical mortality for each Hospital when k=1, l=1  

Variable Mean SD MC error 2.5% Median 97.5% 

1p 0.02163 0.02067 4.463E-4 9.553E-5 0.01559 0.07481 

2p 0.1122 0.02387 2.854E-4 0.07027 0.1107 0.1628 

3p 0.06862 0.02024 2.364E-4 0.03413 0.06691 0.1142 

4p 0.05764 0.00801 7.749E-5 0.0426 0.05734 0.07394 

5p 0.04279 0.01325 1.822E-4 0.02029 0.04167 0.0717 

6p 0.06753 0.01654 1.411E-4 0.03874 0.06645 0.1033 

7p 0.06364 0.01792 1.947E-4 0.0324 0.06239 0.1027 

8p 0.1344 0.02221 2.169E-4 0.09396 0.1332 0.1816 

9p 0.06911 0.01627 1.93E-4 0.04074 0.0679 0.1042 

10p 0.08061 0.02383 3.065E-4 0.04024 0.07849 0.133 

11p 0.1078 0.01839 1.641E-4 0.07551 0.1066 0.1464 

12p 0.06765 0.01245 1.278E-4 0.04548 0.06694 0.09375 

 



J. Al-Saleh & S. Agarwal: Extended Beta Distribution and Mixture Distributions ...                                                   71 

 

    Table 5 :  The estimates of surgical mortality for each Hospital when k=2, l=0  

Variable Mean SD MC error 2.5% Median 97.5% 

1p 0.01082 0.01705 6.013E-4 1.65E-13 0.003435 0.06138 

2p 0.1288 0.02806 5.784E-4 0.07864 0.127 0.1886 

3p 0.07664 0.0257 9.5E-4 0.03489 0.07364 0.1345 

4p 0.06484 0.008224 8.61E-5 0.04959 0.06454 0.08165 

5p 0.06797 0.01478 1.646E-4 0.04249 0.06685 0.1003 

6p 0.09154 0.01846 1.82E-4 0.05903 0.09042 0.1315 

7p 0.09352 0.02106 2.259E-4 0.05736 0.09162 0.1393 

8p 0.1501 0.02479 4.518E-4 0.1046 0.149 0.2007 

9p 0.07183 0.01805 1.736E-4 0.04063 0.07048 0.1109 

10p 0.09176 0.02949 6.967E-4 0.04262 0.08899 0.1578 

11p 0.1206 0.02075 6.052E-4 0.0823 0.1197 0.163 

12p 0.06884 0.0133 1.288E-4 0.04499 0.06796 0.09699 

 
    Table 6:  The estimates of surgical mortality for each Hospital when k and l unknown 

Variable Mean SD MC error 2.5% Median 97.5% 

1p 0.006345 0.01213 3.871E-4 1.43E-13 0.001162 0.0418 

2p 0.1252 0.02723 3.07E-4 0.077 0.1236 0.1829 

3p 0.07058 0.02335 2.377E-4 0.03191 0.0683 0.1222 

4p 0.05734 0.008094 9.768E-5 0.04232 0.05701 0.07418 

5p 0.03994 0.01348 1.592E-4 0.01777 0.0384 0.06952 

6p 0.06852 0.01823 1.778E-4 0.03729 0.06705 0.1083 

7p 0.0638 0.02016 2.133E-4 0.03012 0.06201 0.1083 

8p 0.1457 0.02382 2.286E-4 0.1025 0.1443 0.1958 

9p 0.06955 0.01775 1.769E-4 0.03889 0.06816 0.1073 

10p 0.08662 0.02842 3.124E-4 0.03981 0.08334 0.1492 

11p 0.1152 0.02013 2.294E-4 0.07882 0.114 0.1577 

12p 0.06768 0.01314 1.214E-4 0.04438 0.067 0.09574 

 

 

6    Conclusions 

 
The extended beta distribution, which can also be expressed as a mixture of beta distributions, is 

used as a conjugate prior. In certain situations it has an advantage over its competitors in the sense that it 

doesn’t require subjective approach of guessing mixing weights. The posterior of uncertain parameter for 

the Bernoulli distribution using the proposed mixture of beta prior, is studied by using Markov Chain 

Monte Carlo (MCMC), Gibbs sampling approach, on hierarchical models. Another advantage of this prior 

is that one can use it as a two or three or four parameter mixture of beta densities [In literature the mixture 

distribution requires too much information such as guess weights, besides guess values of the parameters]. 

Further advantage of the proposed prior is that it gives more flexibility to the users due to the fact that the 

cases of differing values of k and l [including k=l=0, conventional beta] and also the case of unknown k 

and l are illustrated with the help of an example of real life data set. The illustration gives some idea on 

how the Bayesian methods for making inference about an uncertain Bernoulli parameter, on the basis of 

prior knowledge that behaves as finite mixture of beta distributions, and observed data from Bernoulli 

process, would work. The results reveal that the estimate pi values remain more or less the same across the 

results for known k and l. For hospital H2-H12 for unknown k and l, the values of the estimates are closer to 

the true mortality rates than with the case k and l known, while for hospital H1 the difference is dramatic. 

This difference is more evident in the case of k and l unknown than for k and l known. This shows the 

greater scope of proposed prior. 
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