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Abstract: A generalization of the log-logistic distribution so-called the transmuted log-logistic distribution is proposed and studied.
Various structural properties including explicit expressions for the moments, quantiles, mean deviations of the new distribution are
derived. The estimation of the model parameters is performed by maximum likelihood method. We hope that the new distribution
proposed here will serve as an alternative model to the other models which are available in the literature for modeling positive real data
in many areas.
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1 Introduction

The quality of the procedures used in a statistical analysis depends heavily on the assumed probability model or
distributions. Because of this, considerable effort has been expended in the development of large classes of standard
probability distributions along with revelent statistical methodologies. In fact, the statistics literature is filled with
hundreds of continuous univariate distributions. However, in recent years, applications from the environmental, financial,
biomedical sciences, engineering among others, have further shown that data sets following the classical distributions are
more often the exception rather than the reality. Since there is a clear need for extended forms of these distributions a
significant progress has been made toward the generalization of some well-known distributions and their successful
application to problems in areas such as engineering, finance, economics and biomedical sciences, among others.

In this article we use transmutation map approach suggested by Shaw et al. [15] to define a new model which
generalizes the log-logistic (LLog) model. We will call the generalized distribution as the transmuted log-logistic
(TLLog) distribution. According to the Quadratic Rank Transmutation Map,(QRTM), approach the cumulative
distribution function(cdf) satisfy the relationship

F2(x) = (1+λ )F1(x)−λF1(x)2 (1)

which on differentiation yields,

f2(x) = f1(x) [1+λ −2λF1(x)] (2)

where f1(x) and f2(x) are the corresponding probability density function(pdf) associated with F1(x) and F2(x)
respectively and −1 ≤ λ ≤ 1. An extensive information about the quadratic rank transmutation map is given in Shaw et
al.[15].

We will use the above formulation for a pair of distributions F(x) and G(x) where G(x) is a submodel of F(x).
Therefore, a random variable X is said to have a transmuted probability distribution with cdf F(x) if

F(x) = (1+λ )G(x)−λG(x)2, |λ | ≤ 1 (3)

where G(x) is the cdf of the base distribution. Observe that at λ = 0 we have the distribution of the base random variable.
Aryal et al. [ 2, 3] studied the transmuted extreme value distributions. The authors provided the mathematical
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12 Gokarna R. Aryal: Transmuted Log-Logistic Distribution

characterization of transmuted Gumbel and transmuted Weibull distributions and their applications to analyze real data
sets. In the present study we will provide mathematical formulation of the transmuted log-logistic(TLLog) distribution
and some of its properties.

2 Transmuted Log-Logistic Distribution

The log-logistic distribution is a derivative of the very popular logistic distribution which was initially developed to model
population growth by Verhulst [19]. Since the development of logistic growth curve there have been several contributions
suggesting alternative functional forms for growth whilst retaining the sigmoid and asymptotic property of the Verhulst
logistic curve. Several well known growth functions which extend the standard Verhulst equation are discussed in [18].
The use of the logistic distribution for economic and demographic purposes was very popular in the nineteenth century.
The logistic distribution is also known by names such as growth function, autocatalytic curve and so on depending on
its applications. The importance of the logistic distribution is already been included in many areas of human endeavor
including biology, epidemiology, psychology, technology, energy and others.
A random variable X is said to have the log-logistic (LLog) distribution, also known as the Fisk distribution in economics,
with parameters α and β if its cdf is given by

G(x) =
xβ

αβ + xβ , x > 0 (4)

where, α > 0 is a scale parameter and β > 0 is a shape parameter. Note that this distribution is unimodel if β > 1 and the
mode is α . The log-logistic distribution is widely used in practice and it is an alternative to the log-normal distribution
since it presents a failure rate function that increases, reaches a peak after some finite period and then declines gradually.
The properties of the log-logistic distribution make it an attractive alternative to the log-normal and Weibull distributions
in the analysis of survival data [5]. Recent study by Dey et al. [6] helps to discriminate between the log-normal and log-
logistic distributions. The log-logistic distribution has also been used in hydrology to model stream flow and precipitation
[16], and [4], and for modeling flood frequency [1]. Additionally, it is used in economics as a simple model of the
distribution of income [7]. This distribution is a survival model useful in reliability studies. Gupta et al.[9] made a study
of log-logistic model in survival analysis. Ragab et al. [14] developed order statistics from the log-logistic distribution and
their properties. Collet [5] suggested the log-logistic distribution for modeling the time following a heart transplantation.
Kantam et al. [11] studied acceptance sampling based on life tests: log- logistic model.

The pdf of a log-logistic distribution is given by

g(x) =
β
α

(x/α)β−1

[1+(x/α)β ]2
, x > 0 (5)

Now using (3) and (4) we have the cdf of a transmuted log-logistic (TLLog)distribution given by

F(x) =
(1+λ )αβ xβ + x2β

(αβ + xβ )2 (6)

Hence, the pdf of transmuted log-logistic(TLLog) distribution with parameters α ,β , and λ is

f (x) =
βαβ xβ−1[(1+λ )(αβ + xβ )−2λxβ ]

(αβ + xβ )3 x > 0. (7)

Note that for λ = 0 we have the pdf of a log-logistic distribution. Also note that for x = α we have f (x) = β
4α which is

clearly independent of λ . Figure 1 illustrates some of the possible shapes of the density function of transmuted log-logistic
distribution for selected parameters.

3 Moments and Quantiles

In this section we shall present the moments and qunatiles for the transmuted log logistic distribution. The kth order
moments, for k < β , of a transmuted log-logistic random variable X , is given by
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Fig. 1 PDF of TLLog distribution

E(Xk) = (1+λ )αkB
(

1− k
β
,1+

k
β

)
−2λαk+β B

(
1− k

β
,2+

k
β

)
(8)

where, B(., .) is the beta function defined by

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt

Using the functional relationships

B(x,y) =
Γ (x)Γ (y)
Γ (x+ y)

and
Γ (x)Γ (1− x) =

π
sin(πx)

we have the kth order moments givable by

E(Xk) = αk kπ/β

sin
(

kπ
β

) [1+λ −λαβ
(

1+
k
β

)]
(9)

In particular, the mean of the transmuted log-logistic distribution is given by

E(X) =
πα/β

sin(π/β )

[
1+λ −λαβ (1+1/β )

]
Table 1 lists the first four ordinary moments for selected values of the parameter λ of the transmuted log-logistic

distribution for α = 1 and β = 10.
Using these ordinary moments one can easily compute the variance, skewness and kurtosis of the transmuted log-

logistic distribution for the selected values of the parameters.
The qth quantile xq of the transmuted log logistic distribution can be obtained from (6) as

xq = α

[
−(1+λ −2q)+

√
(1+λ )2 −4λq

2(1−q)

]1/β

(10)
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14 Gokarna R. Aryal: Transmuted Log-Logistic Distribution

Table 1 Moments of transmuted log-logistic distribution for selected values of the parameters

λ =−1 λ =−0.5 λ = 0 λ = 0.5 λ = 1
k = 1 1.12 1.07 1.02 0.97 0.91
k = 2 1.28 1.18 1.07 0.96 0.86
k = 3 1.51 1.34 1.16 0.99 0.82
k = 4 1.85 1.59 1.32 1.06 0.79

Hence, the distribution median is

x0.5 = α
[
−λ +

√
1+λ 2

]1/β
.

In particular if λ = 0 then the median of the resulting log-logistic distribution is simply the parameter α . To illustrate
the effect of the shape parameter λ on skewness and kurtosis we consider measures based on quantiles. The shortcomings
of the classical kurtosis measure are well known. There are many heavy-tailed distributions for which this measure is
infinite, so it becomes uninformative. The Bowley’s skewness [12] is one of the earliest skewness measures defined by the
average of the quartiles minus the median, divided by half the interquartile range, given by

B =
Q3 +Q1 −2Q2

Q3 −Q1
=

Q(3/4)+Q(1/4)−2Q(2/4)
Q(3/4)−Q(1/4)

and the Moors kurtosis [13] is based on octiles and is given by

M =
(E3 −E1)+(E7 −E5)

E6 −E2
=

Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)
Q(6/8)−Q(2/8)

For any distribution symmetrical to 0 the Moors kurtosis reduces to

M =
(E7 −E5)

E6

It is easy to calculate that for standard normal distribution E1 =−E7 =−1.15,E2 =−E6 =−0.67 and, E3 =−E5 =−0.32.
Therefore, M = 1.23. Hence, the centered Moor’s coefficient is given by:

M =
(E7 −E5)+(E3 −E1)

E6 −E2
−1.23.

Figure 2 displays the Bowley (B) and Moors (M ) kurtosis as a function of the parameter λ for α = 1 and β = 10. It is
evident that both measures depend on the parameter λ .

4 Mean Deviation

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean and
the median. These are known as the mean deviation about the mean and the mean deviation about the median respectively
and are defined by

δ1(X) =
∫ ∞

0
|x−µ| f (x)dx (11)

and

δ2(X) =
∫ ∞

0
|x−M| f (x)dx, (12)

where

µ = E(X) =
πα/β

sin(π/β )

[
1+λ −λαβ (1+1/β )

]
and

M = Median(X) = α
[
−λ +

√
1+λ 2

]1/β
.
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Fig. 2 Behavior of Bowley(B) and Moors(M) kurtosis for TLLog distribution

The measures δ1(X) and δ2(X) can be expressed as δ1(X) = 2µF(µ)−2J(µ) and
δ2(X) = µ −2J(M) where J(q) =

∫ q
0 x f (x)dx. For a transmuted log-logistic distribution

J(q) = (1+λ )αβ
∫ q/α

0

yβ

(1+ yβ )2 dy−2λαβ
∫ q/α

0

y2β

(1+ yβ )3 dy (13)

One can easily compute these integrals numerically in software such as MAPLE[8], MATLAB [17], and R [10] and
hence get the mean deviations about the mean and about the median as desired. From the mean deviations we can construct
Lorenz and Bonferroni curves, which are used in several areas including economics, reliability, insurance and medicine
and others.

Some numerical values of the mean deviation from mean and median for selected value of α = 1 and β = 10 and
different values of λ are listed in the table 2 below.

Table 2 Mean deviation from the mean and the median for selected values of the parameters

λ =−1 λ =−0.5 λ = 0 λ = 0.5 λ = 1
δ1 0.135 0.145 0.145 0.132 0.099
δ2 0.133 0.144 0.144 0.132 0.099

5 Random Number Generation and Parameter Estimation

Using the method of inversion we can generate random numbers from the transmuted log-logistic distribution as

(1+λ )αβ xβ + x2β

(αβ + xβ )2 = u

where u ∼U(0,1). After simple calculation this yields

x = α

[
−(1+λ −2u)+

√
(1+λ )2 −4λu

2(1−u)

]1/β

. (14)
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16 Gokarna R. Aryal: Transmuted Log-Logistic Distribution

One can use equation (14) to generate random numbers when the parameters α,β and λ are known. The maximum
likelihood estimates, MLEs, of the parameters that are inherent within the transmuted log-logistic probability distribution
is given by the following: Let X1,X2, · · · ,Xn be a sample of size n from a transmuted log logistic distribution. Then the
likelihood function is given by

L =
β nαnβ (∏n

i=1 xi)
β−1 ∏n

i=1

[
(1+λ )(αβ + xβ

i )−2λxβ
i

]
∏n

i=1

(
αβ + xβ

i

)3 (15)

Hence, the log-likelihood function L = lnL becomes

L = n lnβ +nβ lnα +(β −1)
n

∑
i=1

ln(xi)−3
n

∑
i=1

ln(αβ + xβ
i )

+
n

∑
i=1

ln[(1+λ )(αβ + xβ
i )−2λxβ

i ] (16)

Therefore, the components of the score vector are given by

∂L

∂α
=

nβ
α

−3βαβ−1
n

∑
i=1

{
αβ + xβ

i

}−1
+(1+λ )βαβ−1

n

∑
i=1

{
(1+λ )(αβ + xβ

i )−2λxβ
i

}−1
, (17)

∂L

∂β
=

n
β
+

n

∑
i=1

ln(αxi)−3
n

∑
i=1

αβ lnα + xβ
i ln(xi)

(αβ + xβ
i )

+
n

∑
i=1

[1+λ ][αβ lnα + xβ
i ln(xi)]−2λxβ

i ln(xi){
(1+λ )(αβ + xβ

i )−2λxβ
i

} , (18)

∂L

∂λ
=

n

∑
i=1

(αβ − xβ
i ){

(1+λ )(αβ + xβ
i )−2λxβ

i

} . (19)

The maximum likelihood estimator θ̂θθ =
(

α̂, β̂ , λ̂
)′

of θθθ = (α,β ,λ )
′

is obtained by setting the score vector to zero and
solving the nonlinear system of equations. It is usually more convenient to use nonlinear optimization algorithms such as
quasi- Newton algorithm to numerically maximize the log-likelihood function given in (16).

We can compute the maximum values of the unrestricted and restricted log-likelihood functions to obtain likelihood
ratio (LR) statistics for testing the sub-model of the new distribution. For example, we can use the LR statistic to check if
the fit using the transmuted log-logistic distribution is statistically “superior” to a fit using the log-logistic distribution for
a given data set, i.e. we can compare the first model against the second model by testing H0 : λ = 0 versus Ha : λ ̸= 0.

6 Reliability Analysis

The survival function, also known as the reliability function in engineering, is the characteristic of an explanatory variable
that maps a set of events, usually associated with mortality or failure of some system onto time. It is the probability that
the system will survive beyond a specified time.

The transmuted log-logistic distribution can be a useful model to characterize failure time of a given system because
of the analytical structure. The reliability function R(t), which is the probability of an item not failing prior to some time
t, is defined by R(t) = 1−F(t). The reliability function of a transmuted log-logistic distribution is given by

R(t) =
α2β +(1−λ )αβ tβ

(αβ + tβ )2 . (20)

Note that at t = α , R(t) = 2−λ
4 which is a constant independent of the parameter β . Figure 3 illustrates the reliability

behavior of a transmuted log-logistic distribution as the value of the parameter λ varies from −1 to 1.
The other characteristic of interest of a random variable is the hazard rate function also known as instantaneous failure

rate defined by

h(t) =
f (t)

1−F(t)

which is an important quantity characterizing life phenomenon. It can be loosely interpreted as the conditional probability
of failure, given it has survived to the time t. The hazard rate function for a transmuted log-logistic distribution is given
by

c⃝ 2013 NSP
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Fig. 3 Reliability function of TLLog distribution

h(t) =
β tβ−1

[
(1+λ )αβ +(1−λ )tβ ]

(αβ + tβ )[αβ +(1−λ )tβ ]
. (21)

It is important to note that the units for h(t) is the probability of failure per unit of time, distance or cycles. Note that
at t = α we have h(t) = β

α(2−λ ) .
Figure 4 illustrates the behavior of the hazard rate function of a transmuted log-logistic distribution for selected values

of the parameters.
Observing the behavior of the hazard rate function it is worth noting that the transmuted log-logistic distribution will

have more applicability than the log-logistic distribution and some of its generalizations.
Many generalized probability models have been proposed in reliability literature through the fundamental relationship

between the reliability function R(t) and its cumulative hazard function(CHF) H(t) given by H(t) =− lnR(t). The CHF
describes how the risk of a particular outcome changes with time.

The cumulative hazard rate function of a transmuted log-logistic distribution is given by

H(t) =
∫ t

0
h(x)dx

= 2ln(αβ + tβ )−β lnα − ln
(

αβ +(1−λ )tβ
)

= ln

( {
1+(t/α)β}2

1+(1−λ )(t/α)β

)
Observe that:

i) H(t) is nondecreasing for all t ≥ 0,
ii) H(0) = 0,
iii) limt→∞ H(t) = ∞.

It is important to note that the units for H(t) are the cumulative probability of failure per unit of time, distance or cycles.

7 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice. We know that if X(1),X(2), · · · ,X(n)
denotes the order statistics of a random sample X1,X2, · · · ,Xn from a continuous population with cdf FX (x) and pdf fX (x)
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Fig. 4 Hazard rate function of TLLog distribution

then the pdf of X( j) is given by

fX( j)(x) =
n!

( j−1)!(n− j)!
fX (x)[FX (x)] j−1[1−FX (x)]n− j

for j = 1,2, · · · ,n.

We have from (4) and (5) the pdf of the jth order log-logistic random variable X( j) given by

gX( j)(x) =
n!

( j−1)!(n− j)!
βα(n+1− j)β xβ j−1

(αβ + xβ )n+1

Therefore, the pdf of the nth order log-logistic statistic X(n) is given by

gX(n)(x) =
nβαβ xnβ−1

(αβ + xβ )n+1 (22)
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and the pdf of the 1st order log-logistic statistic X(1) is given by

gX(1)(x) =
nβαnβ xβ−1

(αβ + xβ )n+1 (23)

In particular, we can express the following recursive relationship between the pdf of the kth order and (k+1)th order
log-logistic statistic

gX(k+1)(x) =
(

n− k
k

)( x
α

)β
gX(k)(x)

Now we provide the distribution of the order statistics for transmuted log-logistic random variable. The pdf of the jth
order statistic for transmuted log-logistic distribution is given by

fX( j)(x) =
n!

( j−1)!(n− j)!
βαβ xβ−1

(αβ + xβ )2n+1

{
(1+λ )(αβ + xβ )−2λxβ

}
×
{
(1+λ )αβ xβ + x2β

} j−1{
(1−λ )αβ xβ +α2β

}n− j

Therefore, the pdf of the largest order statistic X(n) is given by

fX(n)(x) =
nβαβ xβ−1

(αβ + xβ )2n+1

{
(1+λ )(αβ + xβ )−2λxβ

}{
(1+λ )αβ xβ + x2β

}n−1

and the pdf of the smallest order statistic X(1) is given by

fX(1)(x) =
nβαβ xβ−1

(αβ + xβ )2n+1

{
(1+λ )(αβ + xβ )−2λxβ

}{
(1−λ )αβ xβ +α2β

}n−1

Note that λ = 0 yields the order statistics of the two parameter log-logistic distribution.
We can express the the pdf of the (k+1)th order transmuted log-logistic statistic in terms of the (k)th order transmuted

log-logistic statistic using the following relationship

fX(k+1)(x) =
(

n− k
k

)( x
α

)β
(
(1+λ )αβ + xβ

(1−λ )xβ +αβ

)
fX(k)(x).

8 Concluding Remarks

In the present study, we have introduced a new generalization of the log-logistic distribution called the transmuted log-
logistic distribution. The subject distribution is generated by using the quadratic rank transmutation map and taking the
2-parameter log-logistic distribution as the base distribution. Some mathematical properties along with estimation issues
are addressed. The hazard rate function and reliability behavior of the transmuted log-logistic distribution shows that the
subject distribution can be used to model reliability data. We expect that this study will serve as a reference and help to
advance future research in the subject area.
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