
Inf. Sci. Lett. 13, No. 3, 545-557 (2024) 545

Information Sciences Letters
An International Journal

http://dx.doi.org/10.18576/isl/130308

Gull Alpha Power Moment Exponential Distribution:

Statistical Properties, Estimation and Applications

Manal H. Alabdulhadi

Department of Mathematics, College of Science, Qassim University, Buraydah, 51452, Saudi Arabia

Received: 2 Feb. 2024, Revised: 20 Mar. 2024, Accepted: 24 Mar. 2024

Published online: 1 May 2024

Abstract: This article introduces a new generalized distribution family called Gull alpha power moment exponential distribution.

We discuss some of its statistical aspects, such as skewness, kurtosis, moments, incomplete moments, and entropy. The associated

model parameters were estimated using maximum likelihood estimation (MLE). The performance of the ML approach to estimate the

parameters was evaluated by a simulation study using Mote-Carlo simulations. The performance of the suggested model is demonstrated

using two real data sets, and it is found to be more suited to both data sets than the other competitive models.
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1 Introduction

Probability distributions are most commonly used in statistical theory and practice as their fundamental concept. Data
analysis is of paramount importance in many scientific disciplines. However, the data may simultaneously have two or
more characteristics, such as skewness, kurtosis, and monotonic and non-monotonic failure rates. In contrast, certain
family and most classical distributions cannot account for two or more data characteristics simultaneously because their
cumulative density function has only one shape parameter. Numerous generalizations of probability distributions have
been proposed in the literature to provide distributions with additional shape parameters, such as the variable
transformation, the exponentiation method, the quantile method, the combination of two or more distributions/models,
and so on. Consequently, many novel distributions have been extended and refined over the last decade. For example, the
gamma-G in [1], Weibull odd Burr III −G in [9], Kumaraswamy-G in [2], type-I half logistic Burr X −G in [3], T-X
family in [4], beta odd log-logistic generalized in [5], logistic-X family in [6], Burr X generator in [7], odd-Burr
generalized family in [8], odd Fréchet −G in [10], exponentiated Kumaraswamy −G in [11], generalized inverted
Kumaraswamy−G in [12], generalized truncated Fréchet−G in [13], Type II exponentiated half logistic−G in [14], new
extended cosine−G in [15], Marshall-Olkin odd Burr III−G in [16], odd generalized N-H−G in [17], new truncated
Muth−G in [18], sine-exponentiated Weibull−G in [19], odd inverse power generalized Weibull−G in [20], Type II
half-logistic odd Fréchet−G in [21], ratio exponentiated general−G in [22], alpha power transformed Weibull−G in [23],
compounded Bell−G in [24], sine Burr−G in [25], exponentiated M−G in [26], generalized odd Burr III−G in [27],
truncated burr X−G in [28], Topp-Leone odd Fréchet−G in [29], Truncated Cauchy power Weibull−G in [30],
exponentiated power generalized Weibull power series−G in [31], odd Perks−G in [32], and Kumarswamy truncated
Lomax distribution in [33].

In 2020, [34] proposed the Gull alpha power (GAP) family of distribution. This distribution family has a single shape of
the parameters of its cumulative function (CDF). Recently, researchers have extended the GAP family of distributions by
adding two or more data features and making the family more flexible. Some of these extensions are the GAP Chen-G in
[35], the GAP Ampadu-G by [36], the exponentiated generalized GAP exponential (EGGAPE) model in [41], the
exponentiated generalized GAP Rayleigh (EGGAPR) model in [40], the exponentiated GAP exponential (EGAPE)
distribution by [42], and an extended Kumaraswamy- GAP exponential (K-GAPE) model in [43].
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According to [34], the GAP family of distributions with CDF and probability density function (PDF), respectively, are
given as follows

F (z;λ,ω) = λ1−G(z;ω)G(z;ω), z ∈ R, λ > 0, λ , 1, (1)

and
f (z;λ,ω) = λ1−G(z;ω)g(z;ω) [1− log(λ)G(z;ω)] , z ∈ R, λ > 0, λ , 1. (2)

whereg(z;ω)andG(z;ω)are the PDF and the CDF of parent distribution.
Moment distributions play an important role in probability theory. In [44] the moment exponential distribution (ME) was
investigated, which is more flexible than the exponential distribution. The ME has another name which is the length biased
exponential (LBE) distribution. The CDF and PDF of the ME distribution are

G (z; ψ) = 1−

(

1+
z

ψ

)

e
−
z
ψ , z,ψ > 0. (3)

and

g (z; ψ) =
z

ψ2
e
−
z
ψ , z,ψ > 0. (4)

Many authors studied the ME or LBE such as; [37] studied the Bayesian and non-Bayesian estimation of dynamic
cumulative residual Tsallis entropy for the ME distribution, [38] introduced the Kavya-Manoharan inverse LBE
distribution and [39] discussed the extended Marshall-Olkin LBE distribution.
This article aims to introduce a new generalized family of distributions, the Gull alpha power ME (GAP-ME)
distribution. We determine some main properties and investigate the meaning and flexibility of the new distribution. This
article can be organized as follows. Section 2 studies and develops the GAP-ME distribution. In Section 3, we discuss
some mathematical properties of the new distribution. Section 4 presents maximum likelihood estimation, while Section
5 investigates the performance of the GAP-ME model using a simulation study. In Section 6, we apply the GAP-ME
model to two real data sets, followed by some concluding remarks in Section 7.

2 The GAP-ME Distribution

The CDF of random variable Z can be obtained by inserting (3) in (1) as below

F (z;λ,ψ) = λ
(

1+ z
ψ

)

e
−
z
ψ
[

1−

(

1+
z

ψ

)

e
−
z
ψ

]

, z,ψ,λ > 0, λ , 1. (5)

The accompanying PDF is

f (z;λ,ψ) = λ
(

1+ z
ψ

)

e
−
z
ψ z

ψ2
e
−
z
ψ

[

1− log(λ)

(

1−

(

1+
z

ψ

)

e
−
z
ψ

)]

, z,ψ,λ > 0, λ , 1, (6)

where, ψ and λ are two scale parameters. The survival function of Z is provided as

R (z;λ,ψ) = 1−

[

λ
(

1+ z
ψ

)

e
−
z
ψ
[

1−

(

1+
z

ψ

)

e
−
z
ψ

]]

. The hazard rate function (HRF), reversed HRF and cumulative HRF of Z are provided as:

h (z;λ,ψ) =
λ
(

1+ z
ψ

)

e
−

z
ψ

z
ψ2 e

−
z
ψ [1− log(λ)(1−

(

1+ z
ψ

)

e
−

z
ψ ) ]

[1−λ
(

1+ z
ψ

)

e
−

z
ψ

]
[

(

1+ z
ψ

)

e
−

z
ψ

]

τ (z;λ,ψ) =

z
ψ2 e

−
z
ψ [1− log(λ)(1−

(

1+ z
ψ

)

e
−

z
ψ ) ]

[

1−
(

1+ z
ψ

)

e
−
z
ψ

]

H (z;λ,ψ) = −log(1−

[

λ
(

1+ z
ψ

)

e
−
z
ψ
[

1−

(

1+
z

ψ

)

e
−
z
ψ

]]

)

. Figures 1 and 2 show the PDF and the HRF for the GAP-ME distribution, with different parameter values shown.
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Fig. 1 The PDF and HRF plots for the GAP-ME distribution
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Fig. 2 The CDF and SF plots for the GAP-ME distribution

3 Characterizations of the GAP-ME Distribution

In this section, we examine several important statistical characters of the GAP-ME model.

3.1 Moments

In probability theory and statistics, moments of a distribution is essential for determining its features and creating informed
decisions of the model. They provide insightful information on the central tendencies, shape, and spread of the data. We
derive he rth moments of GAP-ME distribution. If Z has the PDF (6), then µ‘r is obtained as follows

µ‘r =

∫

∞

0
zrf (z;λ,ψ) dz (7)
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by employing Eq. (6) in Eq. (7) we have

µ′r =
1

ψ2

∫

∞

0
zr+1λ

(

1+ z
ψ

)

e
−
z
ψ

e
−
z
ψ

[

1− log(λ)

(

1−

(

1+
z

ψ

)

e
−
z
ψ

)]

dz. (8)

Since, the power series can be written as

λv =
∞
∑

i=0

(log(λ))i

i!
vi . (9)

By inserting (9) in (8), we get

µ′r =
1

ψ2

∞
∑

i=0

(log(λ))i

i!

∫

∞

0
zr+1

(

1+
z

ψ

)i

e
−
(i+1)z
ψ

[

1− log(λ)

(

1−

(

1+
z

ψ

)

e
−
z
ψ

)]

dz.

We can re-write the above equation as below

µ′r =
(1− log(λ))

ψ2

∞
∑

i=0

(log(λ))i

i!

∫

∞

0
zr+1

(

1+
z

ψ

)i

e
−
(i+1)z
ψ dz

−

1

ψ2

∞
∑

i=0

(log(λ))i+1

i!

∫

∞

0
zr+1

(

1+
z

ψ

)i+1

e
−
(i+2)z
ψ dz.

(10)

By applying the binomial expansion (1 + z)i =
i
∑

j=0

(

i
j

)

zj to (10), then

µ′r = (1− log(λ))
∞
∑

i=0

i
∑

j=0

(

i
j

)

(log(λ))i

ψ2+j i!

∫

∞

0
zr+j+1e

−
(i+1)z
ψ dz

−

∞
∑

i=0

i+1
∑

j=0

(

i +1
j

)

(log(λ))i+1

ψ2+j i!

∫

∞

0
zr+j+1e

−
(i+2)z
ψ dz.

Then,

µ′r = (1− log(λ))
∞
∑

i=0

i
∑

j=0

(

i
j

)

(log(λ))iΓ (r + j +2)ψr

i!(i +1)r+j+2

−

∞
∑

i=0

i+1
∑

j=0

(

i +1
j

)

(log(λ))i+1Γ (r + j +2)ψr

i!(i +2)r+j+2
.

(11)

where Γ(.) is the gamma function. Setting r =1, 2, 3, and 4 in Eq. (11) the first four ordinary moments of Z are
obtained.
Table 1 illustrates the numerical results of µ

′

1, µ
′

2, µ
′

3, µ
′

4, the variance (σ2), the skewness (SK), the kurtosis (KR) and
coefficient of variation (COV) for the GAP-ME distribution.

3.2 Incomplete moments

The incomplete moment is an important metric that can be used to determine conditional moments, the mean waiting
time, and measures of income inequality. The sth upper incomplete moment of the GAP-ME distribution can be provided
by

ωs(t) =

∫ t

0
zsf (z;λ,ψ) dz (12)

Plugging Eq. (6) in Eq. (12), we have

ωs(t) =

∫ t

−∞

zsλ
(

1+ z
ψ

)

e
−

z
ψ z

ψ2
e
−

z
ψ

[

1− log(λ)

(

1−

(

1+
z

ψ

)

e
−

z
ψ

) ]

dz.
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Table 1 Numerical results of µ
′

1, µ
′

2, µ
′

3, µ
′

4, SK, KR, and COV for the GAP-ME model

ψ λ µ
′

1 µ
′

2 µ
′

3 µ
′

4 σ2 SK KR COV

1.5

1.8 0.151 0.109 0.084 0.069 0.086 1.671 4.230 1.932

2.3 0.188 0.134 0.104 0.084 0.099 1.336 3.191 1.675

2.8 0.223 0.159 0.123 0.100 0.109 1.073 2.542 1.481

3.3 0.257 0.183 0.141 0.114 0.117 0.852 2.118 1.327

3.8 0.291 0.206 0.159 0.129 0.122 0.660 1.838 1.197

4.3 0.324 0.229 0.176 0.143 0.124 0.488 1.660 1.086

4.8 0.357 0.252 0.194 0.157 0.125 0.331 1.560 0.988

5.3 0.390 0.275 0.211 0.170 0.123 0.184 1.526 0.899

5.8 0.422 0.297 0.227 0.184 0.119 0.047 1.549 0.818

6.3 0.453 0.319 0.244 0.197 0.113 0.008 1.626 0.742

3

1.8 0.051 0.037 0.030 0.024 0.035 3.708 15.617 3.668

2.3 0.064 0.047 0.037 0.031 0.043 3.203 11.978 3.226

2.8 0.078 0.057 0.045 0.037 0.051 2.830 9.627 2.904

3.3 0.091 0.067 0.053 0.043 0.058 2.537 7.985 2.655

3.8 0.104 0.076 0.060 0.050 0.066 2.296 6.775 2.454

4.3 0.117 0.086 0.068 0.056 0.072 2.094 5.848 2.288

4.8 0.131 0.096 0.075 0.062 0.079 1.919 5.117 2.146

5.3 0.144 0.105 0.083 0.068 0.084 1.765 4.528 2.023

5.8 0.157 0.115 0.090 0.074 0.090 1.627 4.043 1.915

6.3 0.170 0.124 0.097 0.080 0.095 1.503 3.640 1.819

5

1.8 0.020 0.015 0.012 0.010 0.015 6.207 41.450 5.933

2.3 0.026 0.019 0.015 0.013 0.019 5.444 32.166 5.236

2.8 0.032 0.023 0.019 0.015 0.022 4.888 26.181 4.734

3.3 0.037 0.028 0.022 0.018 0.026 4.460 22.001 4.348

3.8 0.043 0.032 0.025 0.021 0.030 4.115 18.916 4.040

4.3 0.048 0.036 0.028 0.023 0.033 3.829 16.547 3.785

4.8 0.054 0.040 0.032 0.026 0.037 3.587 14.669 3.571

5.3 0.059 0.044 0.035 0.029 0.040 3.377 13.145 3.387

5.8 0.065 0.048 0.038 0.032 0.044 3.193 11.884 3.227

6.3 0.070 0.052 0.041 0.034 0.047 3.029 10.823 3.085

6.5

1.8 0.013 0.009 0.007 0.006 0.009 8.038 68.637 7.620

2.3 0.016 0.012 0.009 0.008 0.012 7.074 53.435 6.732

2.8 0.020 0.014 0.012 0.010 0.014 6.376 43.645 6.092

3.3 0.023 0.017 0.014 0.011 0.017 5.840 36.812 5.602

3.8 0.026 0.020 0.016 0.013 0.019 5.410 31.771 5.211

4.3 0.030 0.022 0.018 0.015 0.021 5.056 27.900 4.889

4.8 0.033 0.025 0.020 0.016 0.024 4.756 24.833 4.618

5.3 0.037 0.027 0.022 0.018 0.026 4.498 22.343 4.386

5.8 0.040 0.030 0.024 0.020 0.028 4.273 20.281 4.184

6.3 0.044 0.032 0.026 0.021 0.030 4.073 18.547 4.006

After some simplification, then

ωs(t) = (1− log(λ))
∞
∑

i=0

i
∑

j=0

(

i
j

) (log(λ))iγ
(

r + j +2, (i+1)tψ

)

ψr

i!(i +1)r+j+2
−

∞
∑

i=0

i+1
∑

j=0

(

i +1
j

) (log(λ))i+1γ
(

r + j +2, (i+2)tψ

)

ψr

i!(i +2)r+j+2
.

3.3 Entropy

Rényi entropy (RE) [45] is a statistical measure of the distribution’s essential shape, and it is defined using (ν > 0,ν , 1):

IR(ν) =
1

1− ν
log[

∫

∞

0
f (z;λ, ψ)νdz] . (13)
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Where ν > 0, ν , 1. Based on PDF (6), f (z;λ,ψ)ν can be formed as follows:

f (z;λ,ψ) = λ

(

1+
(z)ν

ψ

)

e
−
νz
ψ (z)ν

ψ2
e
−

νz
ψ [1− log(λ)(1−

(

1+
z

ψ

)

e
−

z
ψ ) ]ν (14)

Putting Eq. (13) in Eq. (14), we have

IR(ν) =
1

1− ν
log[

∫

∞

0
λ

(

1+
(z)ν

ψ

)

e
−
νz
ψ (z)ν

ψ2
e
−

νz
ψ [1− log(λ)(1−

(

1+
z

ψ

)

e
−

z
ψ )]ν dz] (15)

Table 2 shows some numerical findings of the RE for the GAP-ME model.

Table 2 Some numerical findings of the RE for the GAP-ME model.

ψ λ δ=1.2 δ=1.5 δ=2 δ=2.5 δ=3 δ=3.5 δ=4

1.5

1.8 8.321 4.079 2.647 2.160 1.911 1.758 1.654

2.3 7.005 3.424 2.214 1.801 1.589 1.459 1.37

2.8 5.948 2.898 1.866 1.512 1.33 1.218 1.142

3.3 5.065 2.458 1.574 1.271 1.114 1.017 0.951

3.8 4.306 2.081 1.324 1.063 0.928 0.844 0.787

4.3 3.641 1.749 1.105 0.881 0.765 0.693 0.643

4.8 3.049 1.455 0.909 0.719 0.62 0.558 0.515

5.3 2.515 1.189 0.733 0.573 0.489 0.436 0.399

5.8 2.030 0.947 0.573 0.440 0.37 0.325 0.293

6.3 1.584 0.725 0.426 0.318 0.26 0.223 0.197

3

1.8 15.070 7.425 4.853 3.981 3.537 3.265 3.081

2.3 13.648 6.716 4.381 3.588 3.184 2.937 2.769

2.8 12.507 6.146 4.002 3.273 2.901 2.673 2.518

3.3 11.554 5.670 3.686 3.010 2.665 2.453 2.308

3.8 10.735 5.262 3.414 2.784 2.462 2.264 2.128

4.3 10.018 4.904 3.176 2.586 2.284 2.098 1.971

4.8 9.380 4.585 2.964 2.410 2.126 1.95 1.83

5.3 8.805 4.298 2.773 2.251 1.983 1.817 1.704

5.8 8.282 4.037 2.600 2.107 1.853 1.696 1.589

6.3 7.802 3.798 2.440 1.975 1.734 1.585 1.483

5

1.8 20.593 10.175 6.675 5.492 4.892 4.526 4.278

2.3 19.141 9.449 6.192 5.090 4.53 4.189 3.957

2.8 17.976 8.868 5.805 4.767 4.24 3.918 3.7

3.3 17.003 8.381 5.481 4.498 3.998 3.692 3.484

3.8 16.168 7.964 5.203 4.266 3.789 3.498 3.3

4.3 15.436 7.598 4.959 4.064 3.607 3.328 3.138

4.8 14.785 7.273 4.743 3.883 3.445 3.176 2.994

5.3 14.198 6.980 4.547 3.721 3.298 3.04 2.864

5.8 13.664 6.713 4.370 3.573 3.165 2.916 2.746

6.3 13.174 6.468 4.207 3.437 3.043 2.802 2.637

6.5

1.8 23.536 11.642 7.650 6.302 5.619 5.203 4.922

2.3 22.077 10.913 7.164 5.898 5.255 4.864 4.599

2.8 20.906 10.328 6.774 5.573 4.963 4.591 4.34

3.3 19.928 9.839 6.449 5.302 4.719 4.364 4.123

3.8 19.088 9.419 6.169 5.069 4.509 4.168 3.937

4.3 18.352 9.052 5.924 4.865 4.326 3.997 3.774

4.8 17.698 8.725 5.706 4.683 4.162 3.844 3.629

5.3 17.108 8.430 5.510 4.520 4.015 3.707 3.498

5.8 16.571 8.162 5.331 4.371 3.881 3.582 3.379

6.3 16.079 7.916 5.167 4.234 3.759 3.468 3.27
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4 Method of ML Estimation

In this section, we used the ML estimates (MLEs) method to estimate the unknown parameters of the GAP-ME
distribution. Let z1, . . . , zn be the random sample of size n, from the GAP-ME distribution Eq. (6). The log-likelihood
function of the GAP-ME distribution is given by

logL =
n

∑

i=0

(1 +
zi
ψ
) e
−
zi
ψ log(λ) +

n
∑

i=0

log(zi ) − log(ψ
2) −

n
∑

i=0

zi
ψ

+
n

∑

i=0

[

1− log(λ)

(

1−

(

1+
zi
ψ

)

e
−
zi
ψ

) ]

. (16)

By differentiating Eq. (16) with regarded to λ and ψ as next

∂L

∂λ
=

n
∑

i=0



















e
−
zi
ψ (1 + zi

ψ )

λ
+
1− e

−
zi
ψ (1 + zi

ψ )

λ



















, (17)

and
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(18)
To get the MLEs of the parameters λ and ψ, set equations (17) and (18) to zero and solve these nonlinear systems of

equations concurrently.

5 Monte Carlo Simulations

In order to study the performance of the ML approach for estimating parameters, simulation study was conducted using
Mote Carlo simulations. The calculations in this section are carried out using R program. The simulation process is
structured as follows:

1.The random samples from the GAP-ME distribution were generated by using the inverse of equation (5).
2.Mote Carlo simulations were preformed 1000 times with n = 30, 50, 70, 100 and 200.
3.Tables 3, 4, and 5 list the selected values for the parameters.
4.Mean, Bias, MSE and AIL are computed.

Tables from 3 to 5 display the simulation results of the GAP-ME distribution with various values of λ, ψ and n. Based on
the results in the tables, the estimated MSE and AIL decrease, when n increase. It can be concluded that the simulation
performs well enough to estimate the parameters λ and ψ.

Table 3 Numerical outcomes for the GAP-ME model at λ = 0.1 and ψ =0.3

n parameter mean Bias MSE AIL

30
λ 0.1208 0.0208 0.0174 0.3760

ψ 0.2972 0.0028 0.0025 0.1954

50
λ 0.1166 0.0166 0.0103 0.3133

ψ 0.2988 0.0013 0.0012 0.1377

70
λ 0.1102 0.0102 0.0064 0.2655

ψ 0.2989 0.0011 0.0009 0.1165

100
λ 0.1063 0.0063 0.0040 0.2303

ψ 0.2992 0.0008 0.0006 0.0950

200
λ 0.1047 0.0047 0.0020 0.1754

ψ 0.2996 0.0004 0.0003 0.0662
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Table 4 Numerical outcomes for the GAP-ME model at λ = 0.07 and ψ =0.1

n parameter mean Bias MSE AIL

30
λ 0.0905 0.0205 0.0131 0.3110

ψ 0.0990 0.0010 0.0003 0.0628

50
λ 0.0832 0.0132 0.0059 0.2316

ψ 0.0990 0.0010 0.0001 0.0444

70
λ 0.0767 0.0067 0.0035 0.1924

ψ 0.0992 0.0008 0.00003 0.0378

100
λ 0.0779 0.0079 0.0027 0.1792

ψ 0.0998 0.0002 0.00006 0.0316

200
λ 0.0719 0.0019 0.0013 0.1385

ψ 0.0999 0.0001 0.00003 0.0222

Table 5 Numerical outcomes for the GAP-ME model at λ = 0.08 and ψ =0.2

n parameter mean Bias MSE AIL

30
λ 0.1006 0.0206 0.0112 0.3039

ψ 0.1987 0.0013 0.0009 0.1162

50
λ 0.0929 0.0129 0.0076 0.2621

ψ 0.1988 0.0012 0.0006 0.0944

70
λ 0.0919 0.0119 0.0048 0.2255

ψ 0.1994 0.0006 0.0004 0.2744

100
λ 0.0828 0.0028 0.0028 0.1868

ψ 0.1983 0.0017 0.0003 0.0626

200
λ 0.0842 0.0042 0.0014 0.1474

ψ 0.1998 0.0002 0.0001 0.0439

6 Modelling to Real Data

To demonstrate the effectiveness of the GAP-ME distribution in a data-fitting situation, two data sets generated from the
real world are used in this section. The MLEs of the parameters of this distribution and other competing distributions
are presented, and the goodness-of-fit statistics for this distribution and other competing distributions are compared. To
compare the corresponding models, we consider seven well-referenced metrics of goodness-of-fit. These metrics include
the Akaike information criterion (AK-IC), the Bayesian-IC (B-IC), the Kolmogorov–Smirnovtest (Ko-Sm), the Anderson-
Darling test (A-D), the Cramer-von Mises test (C-VM) and the p-value (PV).

The First Dataset

According to the information presented in [46], we investigate the number of months that it takes for patients undergoing
renal dialysis to get infected. The dates at the time of infection are: 5.5, 6.5, 6.5, 7.5, 3.5, 7.5, 12.5, 3.5, 2.5, 2.5, 12.5, 13.5,
3.5, 11.5, 7.5, 14.5, 14.5, 4.5, 7.5, 8.5, 9.5, 10.5, 21.5, 25.5, 27.5, 21.5, 22.5, and 22.5. Now, we divide these data by thirty
to execute a normalization procedure, producing values ranging from 0 to 1. The collected data are updated: 0.116667,
0.25000, 0.28333, 0.450000, 0.08333, 0.25000, 0.35000, 0.38333 0.483333, 0.416667, 0.416667, 0.750000,0.483333,
0.116667, 0.850000, 0.316667, 0.116667, 0.15000, 0.18333, 0.216667, 0.916667, 0.216667, 0.25000,0.25000, 0.08333,
0.716667, 0.716667, and 0.750000.

We assess the goodness-of-fit of the GAP-ME model to analyze this dataset. The fits of the GAP-ME distribution is
compared with power xlindley (PXL) model in [47], inverse power Lindley model (IPL) in [48], Kumaraswamy (Kw)
model in [49], and beta (B) model [50].

Table 6 shows the MLEs and standard errors (SEs) of the model parameters. Table 7 illustrates the MLEs of the estimated
parameters and the goodness of fit of the GAP-ME model compared to the other competing models. As shown in Tables
6-7, the GAP-ME model has the lowest values and the largest PV for all goodness-of-fit criteria, indicating that it fits the
data set better than the other models. Figure 3 illustrates the histogram with fitted PDF, fitted CDF and PP plot of the
GAP-ME model.

The Second Dataset

The data set below (n = 40) comes from [51] and represents the time to failure (103h) of a turbocharger of one engine
type. The data are
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Table 6 MLEs and SEs (in the parentheses) for the first dataset.

Model Estimates

GAP-ME (λ,ψ) 0.81232

(0.64044)

0.17562

(0.04924)

PXL (η, β) 1.637

(0.2409)

4.2239

(0.9428)

IPL (η, β) 1.1641

(0.1421)

0.3153

(0.0827)

Kw (η, β) 1.265

(0.2544)

2.0797

(0.5714)

B (η, β) 1.3567

(0.3332)

2.1058

(0.5496)

Table 7 Goodness-of-fit measures for the first dataset.

Models AK-IC B-IC KO-SM A-D C-VM PV

GAP-ME -3.79049 -1.12609 0.11229 0.38855 0.04881 0.87193

PXL -3.5549 -0.8905 0.12081 0.465 0.0627 0.80843

IPL 0.2734 2.9378 0.13099 0.7071 0.1012 0.72263

Kw -3.325 -0.6606 0.13772 0.7049 0.1136 0.66296

B -3.5552 -0.8908 0.14118 0.6859 0.1101 0.63213

8.5 3.0 4.6 5.3 6.07.3 7.7 8.0 8.4 2.0 3.9 5.0 5.6 1.6 3.5 4.8 5.4 6.0 6.5 7.0 6.1 6.5 7.1 7.3 7.8 8.1 8.4 2.6 4.5 5.1 5.8 6.3
6.7 7.3 7.7 7.9 8.3 8.7 8.8 9.0.
The fits of the GAP-ME distribution is compared with beta Fréchet (BFr) model in [52], exponentiated Fréchet (EFr)
model in [53], Marshall-Olkin log logistic (MO-LLoG) model in [54], generalized Gompertz (G-Gom) model in [55] and
Marshall-Olkin extended inverse Weibull (MO-IW) model in [56].
Tables 8-9 show the MLEs of the parameters of each fitted model with their standard errors (SEs) and the goodness of fit
statistics are presented. Tables 8-9 show that the GAP-ME model achieves the lowest value in all goodness-of-fit metrics
and the largest PV compared to the other competing models. In addition, the histogram with the fitted PDF, the fitted CDF
and the PP diagram of the GAP-ME model are shown in Figure 4.

Table 8 MLEs and SEs (in the parentheses) for the second dataset.

Model Estimates

GAP-ME (λ,ψ) 0.00391

(0.00541)

1.58401

(0.13927)

BFr (a, b, λ, α) 71.1502

(2.1131)

259.1749

(111.2123)

74.9748

(38.1707)

0.1685

(0.0323)

EFr (a, b, λ) 1.6108

(0.1674)

1.9440

(0.2033)

7.9296

(3.3140)

MO-LLoG (α,β,γ) 4.6878

(0.3149)

4.8416

(0.6536)

3.9474

(0.0772)

G-Gom (α,β,λ) 9.5146

(5.2499)

0.4498

(0.2038)

2.9039×10−6

(0.035)

MO-IW (α,λ,θ ) 48362

(8.4147× 10−6)

4.8391

(0.6512)

0.9275

(0.2303)

7 Conclusion

In this paper, a new two-parameter lifetime distribution called Gull alpha power Moment Exponential Distribution is
proposed. Several statistical and computational features of the GAP-ME model are calculated, including skewness,
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Fig. 3 Plots of the estimated PDF, CDF, and PP plot of the GAP-ME model for the first dataset.

Table 9 Goodness-of-fit measures for the second dataset.

Models AK-IC B-IC KO-SM A-D C-VM PV

GAP-ME 179.2559 182.6337 0.13866 1.29934 0.19466 0.42534

BFr 190.5317 197.2872 0.1523 1.9815 0.3161 0.3109

EFr 209.1836 214.2502 0.2438 3.4798 0.6067 0.0172

MO-LLoG 183.4 188.5 0.1437 1.4072 0.2142 0.3807

G-Gom 186.3 191.4 0.1542 1.7601 0.2757 0.2976

MO-IW 183.4 188.5 0.1438 1.4131 0.2153 0.3800

kurtosis, moments, incomplete moments and entropy. The maximum likelihood method is used to estimate the model
parameters. To investigate the performance of the ML approach to estimate the parameters, a simulation study using
Mote-Carlo simulations was conducted. An application to two real data sets was performed to investigate the
significance and flexibility of the presented model. We proved that both data sets were well fitted by the GAP-ME model.

Acknowledgement

Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this
project.

© 2024 NSP

Natural Sciences Publishing Cor.



Inf. Sci. Lett. 13, No. 3, 545-557 (2024) / www.naturalspublishing.com/Journals.asp 555

Fig. 4 Plots of the estimated PDF, CDF, and PP plot of the GAP-ME model for the second dataset.
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