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Abstract: The spacing distributions of 453 even-even nuclei are examined in this work. The range of nuclei considered 

spans from A = 22 to 250, with a minimum requirement of five unambiguous levels for each nucleus's spin-parity (J
π
). The 

dataset is divided based on the spin-parity states, which range from 0 to 6 states. To assess the chaoticity parameter for 

each class, the Bayesian inference method is employed. The utilized model successfully interpolates from a Poisson 

(regular) to a Wigner (chaotic) distribution by varying the chaoticity parameter from 0 to 1 accordingly. Notably, regularity 

in the form of γ- and/or octupole-vibrations is observed for states 1+, 3+, and 1–. Conversely, other states exhibit an 
intermediate behavior that lies between the Wigner and Poisson distributions. 
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1 Introduction 

Classical mechanics and quantum mechanics are known to 

be integrable systems due to their reliance on differential 

equations, which allow for closed-range solutions. Once the 
initial conditions of these systems are known, their future 

behavior can be predicted with ease. Additionally, small 

perturbations in initial conditions do not affect the stability 

of solutions, despite slight changes in their time evolution. 

However, the majority of dynamical systems found in 

nature are not integrable. This is due to the difficulty in 

finding real solutions for systems involving forces and 

interactions, as well as the instability of these solutions 

when initial conditions are altered. As a result, such 

systems with unstable classical trajectories are referred to 

as chaotic. [1] 

In the realm of chaotic systems, the progression of the 

system remains unaffected by its starting condition. It is 

observed that even a slight alteration in the initial state of 

the system can lead to utter chaos in its subsequent state. 

Consequently, attempting to accurately predict the future 

state of the system through calculations proves to be futile. 

Hence, it is advisable to approach chaotic systems from a 

statistical perspective by defining their statistical 

characteristics [2-6]. 

On the contrary, the uncertainty principle has led to a 

reevaluation of the significance of the path in quantum 

mechanics. Percival's observation, as cited in [7], regarding 

the semi-classical quantization rule (Bohr) and its relation 

to the bound state energy along the classical periodic orbit, 

which was further studied by Gutzwiller [8], suggests that 

the system can be classified as an integral or chaotic system 

through spectroscopy of its energy levels.  

The random matrix theory (RMT) has proven to be a 

valuable tool in representing the energy levels of highly 

complex systems, such as atomic nuclei, through the 

eigenvalues of a matrix with a random distribution of its 

elements [9]. This theory has quickly gained popularity in 

the fields of physics and mathematics as a new form of 

statistical mechanics where the realization of the system is 

not significant, as noted by Dyson [10]. The efficiency of 

the random matrix lies in the fact that instead of having a 
set of states, we have a set of Hamiltonians. Therefore, 

ergodicity can be used instead of spectral averaging and the 

averaging over this ensemble. 

Bohigas, Giannoni, and Schmit [11] proposed a conjecture 

based on the study of tile distribution of the eigenvalues in 

Sinai billiards. The conjecture suggests that the fluctuation 
characteristics of generic quantum systems, with or without 

time-reversal symmetry, that are fully chaotic in the 

classical limit coincide with those of the Gaussian 

orthogonal (unitary) ensemble, i.e. GOE (GUE). Studies of 

level spacing distributions and partial width distributions in 

nuclei are based on this approximation and generally 

recognize chaos in nuclei through the agreement with GOE 

statistics. 
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The present manuscript endeavors to investigate the level of 

chaoticity present in even-even nuclei that adhere to 

specific regulations, while taking into account all their spin-

parity states. The primary objective of this research is to 

determine the chaoticity parameter f through the application 

of Bayesian inference method on various classes of nuclei 

categorized based on their spin-parity states. This approach 

will enable us to gain insights into the structural 

development of the collective nuclear. 

2 Data Set 

National Nuclear Data Center [12] provides low-lying 

levels of even-even nuclei. First we considered nuclei 

ranging between A = 22 to 250 where spin-parity Jπ 

assignments of at least five sequential levels are 

unambiguous. Second if the spin-parity assignments were 

indeterminate and where the most possible value appeared 

in brackets, we recognized this value.  

Sequence termination is due to arrival at a level with 

unassigned Jπ, or to an ambiguous assignment with spin-

parity among several possibilities, e.g.    (     ). 

However, an exception has been made when only one such 

level occurred and was trailed by numerous unambiguously 

assigned levels consisting at least two levels of the similar 
spin-parity, providing the ambiguous level in a similar 

spectrum position of a neighboring nucleus. Fortunately, 

less than 5% of the studied levels encounter this situation. 

In the following table (1) our data set is summarized. 

Table 1. Data set classified according to their spin-parity 

states. 

States No. of nuclei No. of energy levels 

0
+
 28 168 

1
+
 8 74 

2
+
 150 1132 

3
+
 9 82 

4
+
 61 434 

5
+
 3 25 

6
+
 6 35 

8
+
 1 5 

1
–
 6 63 

2
–
 3 29 

3
–
 25 188 

4
–
 6 42 

5
–
 7 51 

6
–
 5 30 

7
–
 1 6 

All Parity + 167 1955 

All parity – 31 409 

3 Analysis methods 

Normally, spectrum of unit mean level spacing is used in 

statistical studies using random matrix theory by 

appropriate theoretical expression of the number  ( ) 
When the levels of excitation energy are less than the 

energy  , which is called unfolding . Here we will use the 

theoretical formula for constant temperatures, 

 ( )      
(
    

 ⁄ )
                                                    (1)      

Where    ,    and   acquired for each nucleus differ 

significantly with mass number. However, these parameters 

obviously show a propensity to inverse proportion with 

mass numbers variation. In this research, we will use the 

analysis method presented in the references Refs. [13, 14], 

and references there in. 

Both space rotation and invariance under time reversal are 

used to characterize the nuclear states. This can be done by 

Gaussian orthogonal ensemble GOE of (RMT) Wigner’s 

distribution [15], approximate nearest-neighbor-spacing 

distribution of levels of GOE. 

   ( )  
 

 
   (

 

 
  )

                                                            (2)    

Where   is the spacing of neighboring levels. It has mean 
level spacing units. Generally, Poisson distribution is often 

used to give nearest-neighbor-spacing distribution for 

integrable systems, 

   ( )   
                                                                        (3)     

In seeking of finding appropriate analyzing in this work, for 

low-lying nuclear levels we use the method discussed in ref 

[16] to extract the chaoticity parameter( ). The mean value 

of chaoticity parameter  ̅ and its corresponding standard 

deviation σ of   ( | ), are given by 

 ̅  ∫    ( | )d 
 

 
, and    ∫ (   ̅)

 
 ( | )d 

 

 
       (4)                 

4 Results and Discussion 

The nuclear shape is described by the collective model [17], 

which utilizes the parameters γ and β. According to this 

model, nuclear vibrations are identified by γ and β 

vibrations and oscillation. Despite the fixed values of γ and 

β, the stable shape undergoes rotation. This rotational 

motion gives the impression that the nucleons are engaged 
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in collective oscillations. In the case of β vibrations, the 

spin projection of the phonon along the polar axis 

disappears, whereas for γ vibrations, it possesses a value. 

The energy of rotational states, which is influenced by these 
vibrations, can be determined using the given equation;  

  
  

  
[ (   )    ]                                                     (5) 

where K is the angular momentum projection on the 

symmetry axis, J is angular momentum and Φ is the 
moment of inertia perpendicular to the symmetry axis. For 

β vibrations (λ = 2, K = 0) the values of J
π
 are 0

+
, 2

+
, 4

+
, …; 

for γ vibrations (λ = 2, K = 2) the spin parity sequence is 2
+
, 

3
+
 4

+
,…; for octupole vibrations (λ = 3, K = 1) the sequence 

is 1
–
, 3

–
, 5

–
,…[18]. Table (2), and figure (1) summarize the 

results. an apparent regularity has been observed for states 

1
+
, 1

–
, and 3

+
. We may refer to the second state as octupole-

vibrations, while the third state may be described as γ-

vibrations respectively. The rest of the states show an 

intermediate behavior between Wigner and Poisson 

distribution as expected. 

Table 2. Comparison between the Bayesian inference and 

χ
2
-fitting methods in determining the chaoticity parameter   

for each spin-parity state. 

states (f) by 

Bayesian 

analysis 

(f) by χ
2
-

fitting 

No. of 

spacings 

0
+
 0.72 + 0.08 0.67 + 0.09 140 

1
+
 0.52 + 0.13 0.35 + 0.14 66 

2
+
 0.72 + 0.04 0.65 + 0.07 982 

3
+
 0.53 + 0.14 0.68 + 0.07 73 

4
+
 0.74 + 0.05 0.69 + 0.08 373 

5
+
 -- -- 22 

6
+
 -- -- 29 

8
+
 -- -- 4 

1
–
 0.51 + 0.14 0.59 + 0.10 57 

2
–
 -- -- 26 

3
–
 0.74 + 0.08 0.63 + 0.06 163 

4
–
 -- -- 36 

5
–
 -- -- 44 

6
–
 -- -- 25 

7
–
 -- -- 5 

All 

parity 

+ 

0.70 + 0.03 0.64 + 0.07 1689 

All 

parity - 

0.66 + 0.06 0.60 + 0.05 356 

 

 
Bayesian analysis χ

2
-fitting 
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Fig. 1. The chaoticity parameter f for each spin-parity state 

of even-even nuclei. 

5 Conclusions 

The present manuscript investigates the disorderliness of 

each spin-parity state in even-even nuclei. Notably, states 

1+, 1–, and 3+ exhibit a discernible pattern. The second 

state can be characterized as octupole-vibrations, whereas 

the third state can be described as γ-vibrations. Conversely, 

the remaining states display an intermediate behavior that 
lies between the Wigner and Poisson distributions, as 

anticipated. However, it is important to note that the 

statistical analysis conducted in this study was constrained, 

thereby preventing definitive conclusions from being 

drawn. 
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