
J. Stat. Appl. Pro. Lett. 10, No. 1, 77-82 (2023) 77

Journal of Statistics Applications & Probability Letters
An International Journal

http://dx.doi.org/10.18576/jsapl/100106

Asymptotic Inference for Periodic Time-Varying Bivariate

Poisson INGARCH (1,1) Processes

Ahmed Ghezal

Department of Mathematics and Computer Sciences, University Center of Mila, Algeria

Received: 2 Oct. 2022, Revised: 22 Nov. 2022, Accepted: 2 Dec. 2022

Published online: 1 Jan. 2023

Abstract: In this paper, we would like to propose an extension of bivariate Poisson integer valued GARCH (shortly, BINGARCH)

processes to periodically time-varying coefficients one. In these models, the parameters are allowed to switch periodically between

different seasons. The main motivation of this new model is capable of modeling bivariate time series of counts. So, a necessary and

sufficient condition for the periodically stationary in the mean, is established, while providing the closed-form expression for the mean.

Furthermore, we show that the conditional maximum likelihood estimator (CMLE) of the parameter of the model is strongly consistent

and asymptotically normal.
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1 Introduction

Bivariate (multivariate) integer-valued GARCH time series models, proposed by Liu [6], are capable of capturing the
serial dependence between two time series of counts, which has many applications, such as, in epidemiology,
environmental, biology, accidents analysis and many others. These models are based on time-invariant parameter
assumption, in addition a few attempts to model BINGARCH time series of counts, for example, Liu [6] considers
BINGARCH models constructed via the trivariate reduction and proves the stationarity and ergodicity under certain
conditions. Andreassen [1] verifies the strong consistency of the CMLE of BINGARCH models. Lee et al. [5] considers
the problem of testing for a parameter change in BINGARCH models and shows the asymptotic normality of CMLE .
However, it was widely recognized that many economic, financial and environmental integer-valued time series, exhibit a
periodicity feature in their some specific structures which cannot be taken into account and described by time-invariant
parameter integer-valued time series models. So, it is possible to consider a BINGARCH model whose coefficients are
periodic in time series exhibiting structural changes in season (see Bentarzi and Bentarzi [2], for more qualitative
discussion and references therein). Now firstly, we give a necessary and sufficient condition for the periodically
stationary in the mean. Secondly, the aim of this paper is to analysis the asymptotic properties of the CMLE of periodic
BINGARCH models.

The main contributions of this paper can be summarized as follows. In section 2, we set out the main assumptions
underlying introduce the periodic BINGARCH model. In the next section, we give a necessary and sufficient condition
for the periodically stationary in the mean, thus, the closed-form expressions for the mean is obtained. The consistency
and asymptotic normality of the CMLE is proved, in section 4. Section 5 concludes the paper.

2 The model and main assumptions

Let X ′
t =

(
X
(1)
t ,X

(2)
t

)
be the bivariate random vector of counts at time t, where

(
X
(1)
t

)
t≥1

and
(

X
(2)
t

)
t≥1

are the two

time series of counts with the conditional distribution following a Poisson distribution with conditional mean λ
(1)
t and
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λ
(2)
t , respectively. So, a periodically correlated integer-valued process (X t) defined on some probability space (Ω ,ℑ,P)

is called a periodic bivariate Poisson INGARCH (p,q) process with period s > 0 (shortly, PBINGARCHs (p,q)), if it is
given by 




X t |Ft−1 ∽BP

(
λ
(1)
t ,λ

(2)
t ,φt

)

λ t :=
(

λ
(1)
t ,λ

(2)
t

)′
= a0(t)+∑

p
i=1 Ai(t)X t−i +∑

q
j=1 B j (t)λt− j

. (2.1)

In (2.1), Ft is the σ−algebra representing knowledge of the full past up to time t, the parameters

a′0 (t) =
(

a
(1)
0 (t) ,a

(2)
0 (t)

)
, Ai (t) , B j (t) , 1 ≤ i ≤ p, 1 ≤ j ≤ q are 2× 2 matrices and φt = Cov

(
X
(1)
t ,X

(2)
t

∣∣∣Ft−1

)
are

subject to the following assumptions

Assumption 1Are non-negative coefficients with φ. ≥ 0.

Assumption 2Are periodic in t, with period s, i.e., a0 (t) = a0 (t +ms) , Ai (t) = Ai (t +ms) , B j (t) = B j (t +ms) and

φt = φt+ms for 1 ≤ i ≤ p, 1 ≤ j ≤ q and m ∈N.

Since PBINGARCHs (1,1) models are typically used in applications, thus, we focus more on the course of the first-order
PBINGARCHs. Now, setting t = sn+ v, v = 1, ...,s and n ∈ N, for PBINGARCHs (1,1) with periodic notations, can be
replaced with the following equivalent form

{
X sn+v |Fsn+v−1 ∽BP

(
λ
(1)
sn+v,λ

(2)
sn+v,φv

)

λ sn+v = a0(v)+A1(v)X sn+v−1 +B1(v)λ sn+v−1

, (2.2)

where A1 (.) = (akl (.))1≤k,l≤2 and B1 (.) = (bkl (.))1≤k,l≤2 . A lot of models can be defined from (2.2) includes, as special
cases,

i.Standard BINGARCH1 (1,1) : This model, obtained by assuming the functions a0 (.) , A1 (.) , B1 (.) and φ. constant, or
equivalently by assuming that the s = 1 (see, e.g., Liu [6]; Cui and Zhu [4]).

ii.Periodic integer-valued GARCH models (PINGARCHs (1,1)): This model, obtained in a univariate random vector of
counts at time t (see, e.g., Bentarzi and Bentarzi [2]).

Remark.First of all, it is worth noting that the symbolic X t |Ft−1 ∽BP

(
λ
(1)
t ,λ

(2)
t ,φt

)
represents the bivariate Poisson

distribution whose probability mass function is given by

P
(

X
(1)
t = x1,X

(2)
t = x2

∣∣∣Ft−1

)
= exp

{
−
(

λ
(1)
t +λ

(2)
t −φt

)}
(

λ
(1)
t −φt

)x1

x1!

(
λ
(2)
t −φt

)x2

x2!

×∑
x1∧x2

i=0
Ci

x1
Ci

x2
i!


 φt(

λ
(1)
t −φt

)(
λ
(2)
t −φt

)




i

,

where φt < λ
(1)
t ∧λ

(2)
t .

Remark.Recent explanations of bivariate Poisson distribution allows for modeling dependence between X
(1)
t , X

(2)
t and

φt , so there are really three random variables Z
(1)
t , Z

(2)
t and Z

(3)
t , which follow independent Poisson distributions with

parameters λ
(1)
t −φt , λ

(2)
t −φt , φt , respectively, such that X

(1)
t = Z

(1)
t +Z

(3)
t and X

(2)
t = Z

(2)
t +Z

(3)
t (see, Cui and Zhu [4]

for more qualitative discussion).

Remark.The model proposed in this paper is capable of capturing dependence between the two time series
(

X
(1)
t

)
and

(
X
(2)
t

)
, provided that one of the following requirements have to be met: φ. > 0, or the coefficient matrices A1(.) and B1(.)

are not both diagonal.
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3 The desired outcome of the periodically stationary in the mean

In this section, we shall focus our attention on giving a necessary and sufficient condition for the PBINGARCHs (1,1)
process (X t) satisfying (2.2) to be periodical stationary in the L1 sense. This probabilistic property has also been studied
in the symmetric periodic case PINGARCHs (1,1) (e.g., Bentarzi and Bentarzi [2]) and periodic bilinear case
PINBLs(1,0,1,1) (e.g., Bentarzi and Bentarzi [3]). Therefore, we can obtain the closed-form expression for the mean of
PBINGARCHs (1,1) process. Next, the periodical stationary in the L1 of the model in this paper is given in the
following theorem

Theorem 1.The PBINGARCHs (1,1) process defined by (2.2) has a periodical stationary in the mean, if and only if,

ρ1 := ρ
(
∏

s−1

v=0
(A1 (v)+B1 (v))

)
< 1. (3.1)

Moreover, under this condition the mean is given by, for all v ∈ {1, ...,s} ,

E {X sn+v}= E {E {X sn+v |Fsn+v−1 }}

=
(

I(2)−∏
s−1

l=0
(A1 (v− l)+B1 (v− l))

)−1

∑
s−1

u=0

{
∏

u−1

l=0
(A1 (v− l)+B1 (v− l))

}
a0(v− u).

Proof.The idea of proof is to use the conditional mean of the process (X t) , we find E {X t}= E {λ t} and

E {λ t}= a0(t)+A1(t)E {X t−1}+B1(t)E
{

λ t−1

}

= a0(t)+ (A1(t)+B1(t))E
{

λ t−1

}
,

by iteration, we obtain E {X t}=
{

∏t−1
u=0 (A1(t − u)+B1(t − u))

}
E {X0}+∑t−1

u=0

{
∏u−1

l=0 (A1 (t − l)+B1 (t − l))
}

a0(t−u),

with the convention ∏−1
v=0 A1(v) = I(2), from which, using periodic notation, we have, for all v ∈ {1, ...,s} ,

E {X sn+v}=
{
∏

sn+v−1

u=0
(A1(v− u)+B1(v− u))

}
E {X0}+∑

sn+v−1

u=0

{
∏

u−1

l=0
(A1 (v− l)+B1 (v− l))

}
a0(v− u)

=
{
∏

s−1

u=0
(A1(v− u)+B1(v− u))

}n{
∏

v−1

u=0
(A1(v− u)+B1(v− u))

}
E {X0}

+
{
∏

s−1

u=0
(A1(v− u)+B1(v− u))

}n

∑
v−1

u=0

{
∏

u−1

l=0
(A1 (v− l)+B1 (v− l))

}
a0(v− u)

+∑
n−1

k=0

{
∏

s−1

l=0
(A1 (v− l)+B1 (v− l))

}k

∑
s−1

u=0

{
∏

u−1

l=0
(A1 (v− l)+B1 (v− l))

}
a0(v− u),

thus E {X sn+v} , v ∈ {1, ...,s} , converges, as n −→ ∞, if and only if the Condition (3.1) holds.�

Example 1.In this example, the Condition (3.1) for some subclass with particular case are simplified, where we find

Specification ρ1 E {X t}
Standard1 (1,1) ρ (A1(1)+B1(1))< 1

(
I(2)−A1(1)−B1(1)

)−1
a0(1)

PINGARCHs (1,1) ∏s−1
v=0 (a11(v)+ b11(v))< 1 (1−ρ1)

−1
∑s−1

u=0 {∏u
l=1 (a11 (l)+ b11 (l))}a

(1)
0 (v− u)

Table 1: Conditions (3.1) for the existence of E {X t} for certain models.

4 Estimation

In the present section, we consider the conditional maximum likelihood estimator for estimating the parameters of

PBINGARCHs model gathered in vector θ ′ :=
(

θ ′
1,θ

′
2,φ

′
)

∈ Θ := Θ1 × Θ2 × Θ3 ⊂ R
11s where

θ ′
1 := (a

(1)′
0 ,a

(1)′
1 ,a

(2)′
1 ,b

(1)′
1 , b

(2)′
1 ), θ ′

2 := (a
(2)′
0 ,a

(1)′
2 ,a

(2)′
2 ,b

(1)′
2 ,b

(2)′
2 ) and φ ′ := (φ1, ...,φs) with

a
( j)
0 :=

(
a
( j)
0 (1) , ...,a

( j)
0 (s)

)′
, a

( j)
i := (ai j (1) , ...,ai j (s))

′
and b

( j)
i := (bi j (1) , ...,bi j (s))

′
for all i, j = 1,2. The true

parameter value denoted by θ 0 ∈ Θ ⊂ R
11s is unknown and should be estimated. The period s are assumed to be known

and fixed. For this aim, let {X1, ...,Xn;n = sN} be an observations from model (2.2) . Then, constructing the logarithm
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of the conditional likelihood function based on the observation {X1, ...,Xn} , up to a constant free of θ , by

LsN (θ ) = ∑N
t=1 ∑s−1

v=0 lst+v (θ ) with

lt (θ) = X
(1)
t log

(
λ
(1)
t (θ )−φt

)
+X

(2)
t log

(
λ
(2)
t (θ)−φt

)
−
(

λ
(1)
t (θ )+λ

(2)
t (θ )−φt

)

+ log


∑

X
(1)
t ∧X

(2)
t

i=0
Ci

X
(1)
t

Ci

X
(2)
t

i!


 φt(

λ
(1)
t (θ )−φt

)(
λ
(2)
t (θ )−φt

)




i
 .

Hence, we obtain the CMLE of θ 0 by θ̂ n = Argmax
θ∈Θ

Ln (θ ) = Argmin
θ∈Θ

(−Ln (θ)) . So, we consider an approximate version

L̃sN (θ ), using an arbitrarily chosen initial value λ̃ 1, L̃sN (θ) = ∑N
t=1 ∑s−1

v=0 l̃st+v (θ). Next, the partial derivatives of lt (θ)

are expressed as: ∇θ lt (θ ) = ∆t (θ )Et (θ) and ∇2
θ lt (θ ) = ∆t (θ )∇θ Et (θ )+Ut (θ) , where

∆t (θ ) :=




∆
(1)
t (θ) I(4) O(4) O(4)

O(4) ∆
(2)
t (θ ) I(4) O(4)

O′
(4) O′

(4) ∆
(3)
t (θ)


 , Et (θ ) :=




∇θ 1
λ
(1)
t (θ 1)

∇θ 2
λ
(2)
t (θ 2)

1


 ,

Ut (θ ) :=
(

U
( j)
t,i (θ )

)
1≤i, j≤3

⊙
(
Et (θ)⊗E ′

t (θ )
)
,

wherein

1+∆
(k)
t (θ ) =

X
(k)
t

λ
(k)
t (θ k)−φt

− ξ1 (X t ,λ t (θ ) ,φt)

ξ0 (X t ,λ t (θ ) ,φt)
(

λ
(k)
t (θ k)−φt

) ,k = 1,2,

1+∑3
k=1 ∆

(k)
t (θ ) =

ξ1 (X t ,λ t (θ ) ,φt)

ξ0 (X t ,λ t (θ) ,φt)φt

, ξm (X t ,λ t (θ ) ,φt ) = ∑
X
(1)
t ∧X

(2)
t

i=0 Ci

X
(1)
t

Ci

X
(2)
t

i!imψ i (λ t (θ) ,φt) ,

ψ (λ t (θ ) ,φt) = φt

(
λ
(1)
t (θ 1)−φt

)−1(
λ
(2)
t (θ2)−φt

)−1

,

and

U
(k)
t,k (θ ) =

∆
(k)
t (θ )+ 1

λ
(k)
t (θ k)−φt

− ϕ (X t ,λ t (θ ) ,φt )(
λ
(k)
t (θ k)−φt

)2
,k = 1,2, φtU

( j)
t,i (θ ) = ϕ (X t ,λ t (θ ) ,φt)ψ (λ t (θ ) ,φt) ,1 ≤ i 6= j ≤ 2,

ϕ (X t ,λ t (θ ) ,φt) =
ξ2 (X t ,λ t (θ ) ,φt)

ξ0 (X t ,λ t (θ ) ,φt)
−
(

1+∑3
k=1 ∆

(k)
t (θ )

)2

,

U
( j)
t,i (θ )+U

(i)
t,i (θ )+U

( j−1)
t, j−2 (θ ) =U

(i)
t, j (θ)+U

(i)
t,i (θ )+U

( j−1)
t, j−2 (θ) =− ϕ (X t ,λ t (θ ) ,φt )

φt

(
λ
(i)
t (θ i)−φt

) , i = 1,2, j = 3,

φt ∑3
j=1 U

( j)
t,i (θ ) = U

(2)
t,1 (θ )

(
λ
(1)
t (θ 1)+λ

(2)
t (θ2)− 2φt

)
+φ−1

t ϕ (X t ,λ t (θ ) ,φt )−
(

1+∑3
k=1 ∆

(k)
t (θ )

)
,

with the standard symbolics, I(n) denotes the identity matrix and O(k,l) denotes the matrix of order k× l whose entries
are zeros, for simplicity we set O(k) := O(k,k) and O(k) := O(k,1). ⊗ (resp. ⊙) is the usual Kronecker (resp. Hadamard)

product of matrices. ∇θ (resp. ∇2
θ ) be the vector (resp. matrix) of the first (resp. second)-order partial derivatives. A similar

assumptions in Andreassen [1] and may easily be adapted to use with the periodic case, so the CMLE is strongly consistent
and asymptotically normal under the following regularity in adapted or new assumptions

Assumption 3θ0 ∈Θ and Θ is a compact subset of R11s.

Assumption 4a0,θ (.),A1,θ (.) and B1,θ (.) have non-negative entries and B1,θ (.) is full rank for all θ .

Assumption 5φv (θ )< u1 (v)∧u2 (v) where (u1 (v) ,u2 (v))
′ =
(
I(2)−A1,θ (v)

)−1
a0,θ (v) for all v ∈ {1, ...,s} , θ ∈Θ .

Assumption 6There exists a m ∈ [1;+∞] such that
∥∥A1,θ (v)

∥∥
m
+ 21−m−1 ∥∥B1,θ (v)

∥∥
m
< 1 for all v ∈ {1, ...,s} , θ ∈Θ .
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where, for a matrix M∈ R
2×2, ‖M‖m denotes the m−induced norm of matrix M for m ∈ [1;+∞], i.e.,

‖M‖m = max
u 6=O

{
‖Mu‖m /‖u‖m ,u ∈ R

2
}

and ‖u‖m is the m−norm of the vector u. When ‖M‖1 is the maximum absolute

column sum of M, ‖M‖∞ is the maximum absolute row sum. To achieve desired goals in this section, we will need the
following intermediate results gathered in the next three lemmas

Lemma 1.Under Assumptions 3−6, we have

1.
s

∑
v=1

E

{
sup
θ∈Θ

∥∥λ st+v

∥∥
}

< ∞ and
s

∑
v=1

E

{
sup
θ∈Θ

∥∥∥λ̃ st+v

∥∥∥
}

< ∞.

2.λ
(i)
t (θ i) is twice continuously differentiable with respect to θ i (i = 1,2) and satisfies

s

∑
v=1

E





(
sup

θ i∈Θi

∥∥∥∇θ i
λ
(i)
st+v (θ i)

∥∥∥
m

)4


< ∞,

s

∑
v=1

E





(
sup

θ i∈Θi

∥∥∥∇2
θ i

λ
(i)
st+v (θ i)

∥∥∥
m

)2


< ∞,

sup
θ i∈Θi

∥∥∥∥∥
N

∑
t=1

s

∑
v=1

∇θ i

(
λ̃
(i)
st+v (θ i)−λ

(i)
st+v (θ i)

)∥∥∥∥∥
m

< Lκ ta.s., sup
θ i∈Θi

∥∥∥∥∥
N

∑
t=1

s

∑
v=1

∇2
θ i

(
λ̃
(i)
st+v (θ i)−λ

(i)
st+v (θ i)

)∥∥∥∥∥
m

< Lκ t a.s.,

where L stand for a generic positive integrable random variable and κ ∈ (0;1) be a generic constant.

3.sup
θ∈Θ

∥∥∥∥
N

∑
t=1

s

∑
v=1

(
λ̃ st+v (θ )−λ st+v (θ )

)∥∥∥∥
m

< Lκ t a.s.

4.ω ′∇θ i
λ
(i)
t

(
θ i,0

)
= 0 ⇒ ω = O.

5.There is t ∈ Z such that λ t (θ) = λ t (θ 0) a.s. ⇒ θ = θ 0.

Lemma 2.Under Assumptions 3−6, we have

1.max

(
sup
θ∈Θ

∣∣∣∆ (i)
t (θ )

∣∣∣ , sup
θ∈Θ

∣∣∣∆̃ (i)
t (θ )

∣∣∣
)
≤K ‖X t‖+1, max

(
sup
θ∈Θ

∣∣∣U (i)
t,i (θ )

∣∣∣ , sup
θ∈Θ

∣∣∣Ũ (i)
t,i (θ )

∣∣∣
)
≤K ‖X t‖2

for some positive

constant K.

2.sup
θ∈Θ

∣∣∣∆ (i)
t (θ )− ∆̃

(i)
t (θ)

∣∣∣−→ 0 a.s. and sup
θ∈Θ

∣∣∣U (i)
t,i (θ)−Ũ

(i)
t,i (θ )

∣∣∣−→ 0 a.s.

Lemma 3.Under Assumptions 3−6, we have

1.
{

∇θ lt (θ0) ,Ft

}
forms a periodically stationary martingale difference sequence.

2.
s

∑
v=1

E

{
sup
θ∈Θ

∥∥∥∇θ lst+v (θ 0)
(
∇θ lst+v (θ0)

)′∥∥∥
m

}
< ∞ and

s

∑
v=1

E

{
sup
θ∈Θ

∥∥∥∇2
θ lst+v (θ 0)

∥∥∥
m

}
< ∞.

3.p lim

∥∥∥∥
1√
sN

N

∑
t=1

s

∑
v=1

∇θ

(
l̃st+v (θ 0)− lst+v (θ 0)

)∥∥∥∥
m

= 0 and p lim sup
θ∈Θ

∥∥∥∥
1

sN

N

∑
t=1

s

∑
v=1

∇2
θ

(
l̃st+v (θ 0)− lst+v (θ 0)

)∥∥∥∥
m

= 0.

4. lim
n→∞

(
− 1

sN

N

∑
t=1

s

∑
v=1

∇2
θ lst+v

(
θ̃
))

a.s
= I (θ0) , where θ̃ is any intermediate point between θ̂ n and θ 0, and the matrix I (θ 0)

given by I (θ0) := ∑s
v=1 Eθ 0

{
∇θ lst+v (θ 0)

(
∇θ lst+v (θ 0)

)′}
=−∑s

v=1 Eθ 0

{
∇2

θ lst+v (θ 0)
}
.

The main results of this section is the following theorem

Theorem 2.Suppose that (X t , t ∈ Z) is generated by (2.2), then under Assumptions 3−6, we have θ̂n is strongly consistent

and
√

n

(
θ̂ n −θ0

)
 N

(
O, I−1 (θ 0)

)
as n → ∞.

Proof.The proof of Theorem 2 is based on the previous three lemmas.�

5 Conclusion

In this paper, we have introduced a new model for count data, called bivariate Poisson integer valued GARCH model with
periodically time-varying coefficients, which is a natural extension of the standard model with time-invariant coefficients,
constructed by using trivariate reduction method of independent Poisson variables. Thus, we investigated the features of
this new model, we found the necessary and sufficient condition for the periodically stationary in the mean, and the CMLE

for the parameters are considered and asymptotic properties of the estimators are established.
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