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Abstract: In this paper we obtain some convergence results for Riemann-Liouville, Caputo, and Caputo–Fabrizio fractional operators

when the order of differentiation approaches one. We consider the errors given by
∣
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∣D1−α f − f ′
∣

∣

∣

∣

p
for p=1 and p = ∞ and we prove

that for bothm the Caputo and Caputo Fabrizio operators, the order of convergence is a positive real r ∈ (0,1). Finally, we compare the

speed of convergence between Caputo and Caputo–Fabrizio operators obtaining that they are related by the Digamma function.
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1 Introduction

Several definitions of fractional operators were emerged in the last years. As a consequence, many interesting discussions
have been taken relevance, as for example which properties define a fractional operator (see for example, [1,2,3,4,5,6]).
Between the different answers given for this question, we stand out the classification criteria given in [7], where a list of
properties that an operator must verify to be considered fractional derivative is proposed.

The suggested criteria given by different authors may vary. But they all agree regarding on the fact that a fractional
derivative must be a linear operator converging to an ordinary derivative when the order of differentiation approaches a
positive integer in an appropriated space of functions. That is, if an operator Dα is considered a fractional derivative, then

it is linear and lim
α→n

||Dα f − f (n)||= 0, for each f belonging to some normed space of functions, (X , || · ||).

Many fractional operators were analyzed in this direction. In particular, the well known fractional derivatives of
Riemann-Liouville (RL) and Caputo (C), that were widely studied in [8,9], were considered in [?]. Another
integrodifferential operator is the Caputo-Fabrizio (CF) derivative defined in [10]. In addition, the CF derivative is
defined through a kernel without singularity, whereas that the RL and C derivatives are defined through
integrodifferential operators with singular kernels. The use of fractional derivatives in the field of applications is in
continuous expansion. For example, the applications to the theory of viscoelasticity or subdiffusion processes for C and
RL operators where studied in [11,12,13,14], whereas a model for a biological epidemic involving a CF operator is
presented.

In this article we will study some topics related to the convergence of the fractional derivatives C, CF and RL to
the ordinary derivative when α ր 1. In section 2 some basic definitions and results on the convergence of the fractional
operators mentioned above are established. In section 3, we will use the Lp norm, for p ∈ [1,∞), to analyze the order of
convergence of each operator when the fractional order of differentiation approaches 1. In particular, we obtain that the
order of convergence for the C and CF derivatives are both less than 1, while it is not possible to analize the order of
convergence for RL derivative when working with these norms. Finally, we compare the speed of convergence between
C and CF derivatives in the L1 norm for some particular cases. We obtain a close formula for the speed of convergence in
the L1 norm for power functions, in terms of the Digamma function.
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2 Preliminaries

In the next definitions, (a,b) ⊂ R is a bounded interval (that is −∞ < a < b < ∞) and

W 1,1(a,b) =
{

f ∈ L1(a,b)/∃g ∈ L1(a,b) such that
∫ b

a f ϕ ′ =−
∫ b

a gϕ , ∀ϕ ∈C1
c (a,b)

}

.

Definition 1Let α ∈ (0,1).

1.If f ∈ L1(a,b), the fractional Riemann–Liouville integral of order α is defined by

aIα f (t) =
1

Γ (α)

∫ t

a
f (τ)(t − τ)α−1dτ.

2.If f ∈W 1,1(a,b), the fractional Riemann–Liouville derivative of order α is defined by

RL
a Dα f (t) =

[

d

dt
aI1−α f

]

(t) =
1

Γ (1−α)

d

dt

∫ t

a
f (τ)(t − τ)−αdτ.

3.If f ∈W 1,1(a,b), the fractional Caputo derivative of order α is defined by

C
a Dα f (t) =

[

aI1−α

(

d

dt
f

)]

(t) =
1

Γ (1−α)

∫ t

a
f ′(τ)(t − τ)−αdτ

Proposition 1[9] If 0 < α < 1 and f ∈W 1,1(a,b) then

RL
a Dα f (t) =

f (a)

Γ (1−α)
(t − a)−α + C

a Dα f (t).

Definition 2Let f be a function in W 1,1(a,b). The fractional Caputo-Fabrizio derivative of order α is defined by

CF
a Dα f (t) =

1

1−α

∫ t

a
f ′(t)e−

α
1−α (t−τ)dτ. (1)

Proposition 2Let f (t) = (t − a)γ defined in [a,b] (γ > 0) and α ∈ (0,1). Then

a)Ca Dα f (t) = Γ (γ+1)
Γ (γ−α+1)(t − a)γ−α .

b)CF
a Dα f (t) = γ

α (t −a)γ−1
[

1−Γ (γ)E1,γ

(

− α
1−α (t − a)

)]

, where Eρ ,ω(·) is the Mittag–Leffler function defined for every

t ∈R by Eρ ,ω(t) =
∞

∑
k=0

tk

Γ (ρk+ω)
.

Proof.See [13] for the proof of a) and [16, Prop 4] for b).

Hereafter if f is defined in an interval (a,b), its extension by zero to R will be considered if the context requires a
whole definition.

In order to give in the following section some general results, we now define a general linear operator that coincides,
according to certain hypotheses, with the fractional derivatives defined above.

Definition 3Let (a,b) ⊂ R and let h : R
+ × (0,1) → R be a function such that

h(·,β ) ∈ W 1,1(R+) and h(·,β ) ∈ L1(R+) uniformly in (0,β0],β0 ∈ (0,1). We define the operator
h
aD1−β : W 1,1(a,b)→W 1,1(a,b) by

h
aD1−β g(t) := (g′ ∗ h(·,β ))(t) a.e. in (a,b). (2)

Remark.Note that if we the kernels hC(t,α) = 1
Γ (α) t

−(1−α) and hCF(t,α) = e−
1−α

α t

α defined for t > 0 are considered, then

the C and CF derivatives of order 1−α given in Definition 1-3 and Definition 2 are recovered.

Next, we recall some classical results about convergence almost everywhere for C and RL derivatives when the the
order of differentiation tends to 1.
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Proposition 3The following limits hold.

a)If f ∈W 1,1(a,b), then

lim
αր1

RL
aDα f (t) =

d

dt
f (t), a.e. in (a,b).

b)If f ∈C1[a,b], then

lim
αր1

RL
aDα f (t) =

d

dt
f (t) for every t ∈ (a,b].

The proof of a) follows from [17, Theorem 2.6] and Proposition 1. For b) see [8, Theorem 2.20]. The next proposition is
a direct consequence of Propositions 1 and 3.

Proposition 4The following limits hold.

a)If f ∈W 1,1(a,b), then

lim
αր1

C
a Dα f (t) =

d

dt
f (t), a.e. in (a,b).

b)If f ∈C1[a,b], then

lim
αր1

C
a Dα f (t) =

d

dt
f (t) for every t ∈ (a,b].

For the CF derivative we present the next result, which is a generalization of the one obtained in [16].

Proposition 5The following limits hold.

a)If f ∈W 1,1(a,b), then

lim
αր1

CF
a Dα f (t) =

d

dt
f (t) a.e. in (a,b).

b)If f ∈C2[a,b], then

lim
αր1

CF
a Dα f (t) =

d

dt
f (t) for every t ∈ (a,b].

Proof.a) Let f ∈ W 1,1(a,b) be. Then f ′ ∈ L1(a,b) and by classical density results in L1(a,b) (see e.g. [18]) there exists

a simple function, which will be called g′ε by an abuse of language, such that g′ε(t) =
n

∑
i=1

qiχ[ai,bi](t), where bi ≤ ai+1 for

every i = 1, ...,n− 1 and

|| f ′− g′ε ||L1(a,b) <
ε

2
. (3)

Now for every t ∈ [a,b], let gε(t) =
∫ t

a g′ε be. Then if t ∈ [ak,bk], for any k given it follows that

CF
a Dα gε(t) =

k−1

∑
i=1

qi
1

α

(

e−
α

1−α (t−bi)− e−
α

1−α (t−ai)
)

+ qk

1

α

(

1− e−
α

1−α (t−ak)
)

. (4)

Taking the limit when α ր 1 in (4), we have that

lim
αր1

CF
a Dα gε(t) = qk = g′ε(t).

For every t ∈ (a,b) and α ≥ 1
2

the following estimations hold

|g′ε(t)| ≤
n

∑
i=i

qi and
∣

∣

CF
a Dα gε(t)

∣

∣≤
k

∑
i=i

2qi,

thus the Lebesgue Convergence Theorem can be applied to compute the next limit

lim
αր1

∣

∣

∣

∣

CF
a Dα gε − g′ε

∣

∣

∣

∣

L1(a,b)
= lim

αր1

∫ b

a

∣

∣

CF
a Dα gε(t)− g′ε(t)

∣

∣dt = 0. (5)
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By the other side,

∣

∣

∣

∣

CF
a Dα f −CF

a Dα gε

∣

∣

∣

∣

L1(a,b)
≤

∫ b

a

∣

∣ f ′(τ)− g′ε(τ)
∣

∣

1− e−
α

1−α (b−τ)

α
dτ ≤

1

α
|| f ′− g′ε ||L1(a,b). (6)

where Fubini’s Theorem has been applied due to the fact that f ′− g′ε ∈ L1(a,b). From (3) and (6) we have that

∣

∣

∣

∣

CF
a Dα f −CF

a Dα gε

∣

∣

∣

∣

L1(a,b)
<

ε

2α
. (7)

Finally, from (3) and (7) it holds that

∣

∣

∣

∣

CF
a Dα f − f ′

∣

∣

∣

∣

L1(a,b)
≤

ε

2α
+
∣

∣

∣

∣

CF
a Dα gε − g′ε

∣

∣

∣

∣

L1(a,b)
+

ε

2
. (8)

Taking the limit when α ր 1, in (8) we conclude that

lim
αր1

∣

∣

∣

∣

CF
a Dα f − f ′

∣

∣

∣

∣

L1(a,b)
≤ ε, for every ε > 0,

and in consequence item a) is proved. The proof of b) is given in [16].

As mentioned before, the purpose of this paper is to analyze the convergence and the “speed” of convergence of the
mentioned fractional derivatives in different norms. Are they strongly different taking into account that C and RL
derivatives are defined in terms of singular kernels while CF derivative is defined for a no singular kernel? We will see in
the next section that the answer is no.

In Figures 1 and 2, functions f (t) = t +1 and g(t) = cost are compared, and it can be seen how the fractional RL, CF
and C derivatives converge pointwise in (0,1) to f ′ and g′ respectively.

Fig. 1: Some fractional derivatives of f (t) = t +1

3 Caputo and Caputo-Fabrizio convergence

3.1 General estimates

In this section we study the order of convergence respect on the parameter related to the order of differentiation, for
different Lp norms. In this sense, we define the following general error expression associated with a general fractional
operator.
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Fig. 2: Some fractional derivatives of f (t) = cos(t)

Definition 4Let (a,b)⊂R, f ∈W 1,p(a,b), 1 ≤ p ≤ ∞ and aD1−β the fractional operator given in (2). We define the error

estimate in the Lp norm associated to the fractional derivative as

E f ,p : (0,1) → R
+
0

β → E f ,p(β ) = ||aD1−β f − f ′||Lp(a,b).
(9)

From now on we will denote by aD1−β to refer to the fractional derivative of C or CF type, where the superscript may
be omitted if it is beyond doubt).

Note 1.Note that the error estimate for the RL operator is not well possed. En fact, if we consider f (t) ≡ 1 and a = 0,
Propositions 1 and 2 yields that

RLD1−β f (t) =
tβ−1

Γ (β )
. (10)

By replacing (10) in (9) for β = 1/2 and we compute the norm in L2 we have that

E f ,2(β ) =
∣

∣

∣

∣

∣

∣

RLD1/2 f − f ′
∣

∣

∣

∣

∣

∣

L2(0,b)
=





∫ b

0

(

t−1/2

Γ (1/2)

)2

dt





1/2

which clearly diverges.

The next Lemma states that, if we can estimate the rates
Eg,1(β )

β r for every g such that g′ ∈ D (where D is a dense set

contained in L1(a,b)), then we can estimate the rate
E f ,1(β )

β r for any function f ∈W 1,1(a,b).

Lemma 1.Let (a,b) ⊂ R and aD1−β a fractional operator defined in (2). Suppose that there exist a dense subset

D ⊂ L1(a,b) and a fix number r > 0 such that

Eg,1(β ) = O(β r) (resp.Eg,1(β ) = o(β r)), β → 0+ ∀g ∈W 1,1(a,b)such thatg′ ∈ D. (11)

Then,

E f ,1(β ) = O(β r) (resp.E f ,1(β ) = o(β r)), β → 0+ ∀ f ∈W 1,1(a,b). (12)
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Proof.Let f ∈ W 1,1(a,b) and ε > 0 be. Then f ′ ∈ L1(a,b) and there exist a function g′ε in D (we are making an abuse of
language again by using the apostrophe), such that

∣

∣

∣

∣g′ε − f ′
∣

∣

∣

∣

L1(a,b)
< ε. (13)

Thus, if we set gε(t) =
∫ t

a g′ε for every t ∈ (a,b) it holds that

E f ,1(β )≤
∣

∣

∣

∣

∣

∣aD
1−β
t ( f − gε)

∣

∣

∣

∣

∣

∣

L1(a,b)
+Egε ,1(β )+

∣

∣

∣

∣g′ε − f ′
∣

∣

∣

∣

L1(a,b)
. (14)

By applying definition (2) and Young’s inequality we get

∣

∣

∣

∣

∣

∣aD
1−β
t ( f − gε)

∣

∣

∣

∣

∣

∣

L1(a,b)
=
∣

∣

∣

∣( f − gε)
′ ∗ h(·,β )

∣

∣

∣

∣

L1(a,b)
≤
∣

∣

∣

∣ f ′− g′ε
∣

∣

∣

∣

L1(a,b)
||h(·,β )||L1(a,b) . (15)

And using the uniformly boundedness of h and (13) gives that

∣

∣

∣

∣

∣

∣aD
1−β
t ( f − gε)

∣

∣

∣

∣

∣

∣

L1(a,b)
≤ Kε. (16)

By applying inequalities (11) (13) and (16), to (14), it yields that

E f ,1(β )≤ (K + 1)ε +Cβ r β → 0. (17)

From the arbitrary choice of ε , the thesis holds.

Remark.An analogous result to the given in Lemma 1 can be obtained by replacing the || · ||L1(a,b) norm by the || · ||p norm,

for 1 ≤ p ≤ ∞, due to the validity of Young’s inequality.

3.2 Order the convergence for the CF derivative

Theorem 1.Let f ∈W 1,1(a,b) and aD
1−β
t = CF

a D1−β . Then,

E f ,1(β ) = o(β r), β → 0+, ∀r ∈ (0,1), (18)

and

E f ,1(β ) = O(β ), β → 0+. (19)

Proof.Let h : R+ × (0,1) → R be defined by h(t,β ) = e
−

1−β
β

t

β . Note that h
aD

1−β
t = CF

a D1−β because h is an admissible

kernel in Definition 3.
Now, let ε > 0 and f ∈W 1,1(a,b). In order to apply Lemma 1, we consider the set D of simple functions which is dense

subset in L1(a,b). By making again an abuse of language by using the apostrophe, let the function g′ε(t) =
n

∑
i=1

qiχ[ai,bi](t)∈

D be such that
|| f ′− g′ε ||L1(a,b) < ε. (20)

Note that
||g′ε ||L1(a,b) ≤ ||g′ε − f ′||L1(a,b)+ || f ′||L1(a,b) < ε + || f ′||L1(a,b). (21)

Then if we set gε(t) =
∫ t

a g′ε and integrate by parts, it holds that the error estimate in the interval (ak,bk) verifies that

Egε χ[ak,bk ]
,1(β ) =

∫ bk

ak

∣

∣

∣

∣

∣

k−1

∑
i=1

qi

1−β

(

e
− 1−β

β
(t−bi)− e

− 1−β
β

(t−ai)
)

+
qk

1−β

(

1− e
− 1−β

β
(t−ak)

)

− qk

∣

∣

∣

∣

∣

dt

≤ β r

[

k−1

∑
i=1

|qi|β
1−r

(1−β )2

(

e
− 1−β

β
(ak−bi)− e

− 1−β
β

(bk−bi)+ e
− 1−β

β
(ak−ai)− e

− 1−β
β

(bk−ai)
)

+ |qk|(bk − ak)
β 1−r

1−β
+ |qk|

β 1−r

(1−β )2

(

1− e
− 1−β

β
(bk−ak)

)]

.

(22)
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Clearly, the last inequality in (22) tends to 0 when β ց 0 if r ∈ (0,1). Being Egε ,1(β ) =
n

∑
k=1

Egχ[ak,bk ]
,1(β ), we conclude

that Egε ,1(β ) = o(β r), ∀r ∈ (0,1) and (18) holds from Lemma 1.
Consider now the case r = 1 where (22) becomes

Egε χ[ak,bk ]
,1(β )≤ β

[

k−1

∑
i=1

|qi|

(1−β )2

(

e
−

1−β
β

(ak−bi)− e
−

1−β
β

(bk−bi)+ e
−

1−β
β

(ak−ai)− e
−

1−β
β

(bk−ai)
)

+(bk − ak)
|qk|

1−β
+

|qk|

(1−β )2

(

1− e
− 1−β

β
(bk−ak)

)]

.

(23)

We define

Ak =
k−1

∑
i=1

|qi|

(1−β )2

(

e
−

1−β
β

(ak−bi)− e
−

1−β
β

(bk−bi)+ e
−

1−β
β

(ak−ai)− e
−

1−β
β

(bk−ai)
)

, k = 1, . . . ,n.

By applying the mean value theorem to the last term in brackets in (23), we get

Egε χ[ak,bk ]
,1(β ) = β



Ak +(bk − ak)
|qk|

1−β



1+
e
− 1−β

β
(bk−ck)

β







 , (24)

where ak < ck < bk. Being lim
β→0+

Ak = 0 and lim
β→0+

e
−

1−β
β

(bk−ck)

β = 0, ∀k = 1,2, · · · ,n, we conclude that

Egε ,1(β ) =
n

∑
k=1

Egε χ[ak,bk ]
,1(β )≤ β

[

K1 +K2

n

∑
k=1

|qk|(bk − ak)

]

≤ β K, (25)

where the last inequality comes form

n

∑
k=1

|qk| (bk − ak) = ||gε ||L1(a,b) ≤ ε + || f ′||L1(a,b) ≤ 1+ || f ′||L1(a,b), ∀ε ∈ (0,1).

Finally, (19) is obtained from (25) and Lemma 1.

Reasoning in a similar way, the next theorem follows.

Theorem 2.Let f ∈W 1,p(a,b) and aD
1−β
t = CF

a D1−β . Then, for 1 < p < ∞

E f ,p(β ) = o(β r), β → 0+, ∀r ∈

(

0,
1

p

)

, (26)

and

E f ,p(β ) = O
(

β
1
p

)

, β → 0+. (27)

Proof.The proof is analogous to the given in Theorem 1. The difference relies in the estimation (22). For this case, we
apply Minkowsky inequality, and integrate by parts in order to obtain an error estimate in the interval (ak,bk).

Egε χ[ak ,bk]
,1(β ) =

(

∫ bk

ak

∣

∣

∣

∣

∣

k−1

∑
i=1

qi
1

1−β

(

e
−

1−β
β

(t−bi)− e
−

1−β
β

(t−ai)
)

+ qk

1

1−β

(

1− e
−

1−β
β

(t−ak)
)

− qk

∣

∣

∣

∣

∣

p

dt

)
1
p

≤ β r

{

k−1

∑
i=1

|qi|
β

1
p−r

(1−β )
p+1

p p
1
p

[

(

e
− 1−β

β
p(ak−bi)− e

− 1−β
β

p(bk−bi)
) 1

p

+

(

e
− 1−β

β
p(ak−bi)− e

− 1−β
β

p(bk−bi)
) 1

p

]

+(bk − ak)
1
p |qk|

β 1−r

1−β
+ |qk|

β
1
p−r

(1−β )
p+1

p p
1
p

(

1− e
−

1−β
β

p(bk−ak)
) 1

p

}

(28)
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Clearly, the last inequality in (28) tends to 0 when β ց 0 if r ∈
(

0, 1
p

)

. Being Egε ,p(β ) =
n

∑
k=1

Egχ[ak,bk ]
,1(β ), we conclude

that Egε ,1(β ) = o(β r), ∀r ∈
(

0, 1
p

)

and (26) holds from Lemma 1.

Consider now the case r = 1
p

where (28) becomes

E
gε χ[ak,bk ]

, 1
p
(β )≤ β

1
p

{

k−1

∑
i=1

|qi|

(1−β )
p+1

p p
1
p

[

(

e
−

1−β
β

p(ak−bi)− e
−

1−β
β

p(bk−bi)
) 1

p

+

(

e
−

1−β
β

p(ak−bi)− e
−

1−β
β

p(bk−bi)
) 1

p

]

+(bk − ak)
1
p |qk|

β
p−1

p

1−β
+

|qk|

(1−β )
p+1

p p
1
p

(

1− e
− 1−β

β
p(bk−ak)

) 1
p







(29)

As before, we define Ak =
k−1

∑
i=1

|qi|

(1−β )
p+1

p p
1
p

[

(

e
− 1−β

β
p(ak−bi)− e

− 1−β
β

p(bk−bi)
) 1

p

+

(

e
− 1−β

β
p(ak−bi)− e

− 1−β
β

p(bk−bi)
) 1

p

]

for

every k = 1, . . . ,n. Then, by applying the mean value theorem to the last term in brackets in (29) first and noting that

lim
β→0+

Ak = 0 and lim
β→0+

e
−

1−β
β

p(bk−ck)

β
2
p

= 0, ∀k = 1,2, · · · ,n, we conclude that

Egε ,p(β ) =
n

∑
k=1

Egε χ[ak ,bk]
,1(β )≤ β

1
p

[

K1 +K2

n

∑
k=1

|qk|(bk − ak)

]

≤ β
1
p K. (30)

Finally, (27) is obtained from (30) and Lemma 1.

Remark.Note that the estimate (26) does not hold for r = 1
p
. In fact, let f1(t) = t defined in [0,b]. It is easy to see that

E f1,p(β ) =
∣

∣

∣

∣

∣

∣

CF D1−β f1 − f ′1

∣

∣

∣

∣

∣

∣

Lp(0,b)
=

β
1
p

(1−β )
1
p





∫ b

0

∣

∣

∣

∣

∣

∣

1−
e
−

1−β
β

t

β

∣

∣

∣

∣

∣

∣

p

dt





1
p

. (31)

Taking into account that the limit e
−

1−β
β

t

β → 0 when β → 0 holds, we can make the integrand in (31) grater than 1/2 for

small values of β obtaining that





∫ b

0

∣

∣

∣

∣

∣

∣

1−
e
− 1−β

β
t

β

∣

∣

∣

∣

∣

∣

p

dt





1
p

≥ b
1
p

2
. Then, we conclude that

lim
β→0+

E f1,p(β )

β
1
p

6= 0.

Besides,if we consider the function f2(t) = et defined in t ∈ [0,b] we see that it is an O(β ) but it is not an o(β ) because

E f2,1(β ) =
∣

∣

∣

∣
CF D1−β f2 − f ′2

∣

∣

∣

∣

L1(0,b)
= β

1−β

(

1− e
− 1−β

β
b

)

, from where we deduce that

lim
β→0+

Eg,1(β )

β
= 1 6= 0.

3.3 Order the convergence for the C derivative

Theorem 3.Let f ∈W 1,1(a,b) and aD
1−β
t = C

a D1−β . Then,

E f ,1(β ) = o(β r), β → 0+, ∀r ∈ (0,1),

and

E f ,1(β ) = O(β ), β → 0+.
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Proof.Let h : R+× (0,1)→ R defined by h(t,β ) = t−(1−β)

Γ (β ) . Note that h is an admissible kernel in Definition 3, moreover,

h
aD

1−β
t = C

a D1−β .
Let ε > 0 and f ∈W 1,1(a,b) be. Let D be a dense subset in L1(a,b) described in Lemma 1. Reasoning like in Theorem

1, consider the function g′ε(t) =
n

∑
i=1

qiχ[ai,bi](t) ∈ D such that

|| f ′− g′ε ||L1(a,b) < ε. (32)

Then, (21) holds. Let us estimate the error in the interval (ak,bk). Setting gε(t) =
∫ t

a g′ε and applying Proposition 2 it holds
that

Egε χ[ak,bk ]
,1(β ) = β r |qk|

Γ (1+β )

∫ bk

ak

∣

∣

∣

∣

∣

(t − ak)
β −Γ (1+β )

β r

∣

∣

∣

∣

∣

dt. (33)

And,

lim
β→0+

∫ bk

ak

∣

∣

∣

∣

∣

(t − ak)
β −Γ (1+β )

β r

∣

∣

∣

∣

∣

dt = 0, if r ∈ (0,1).

Then, lim
β→0+

= Egε χ[ak,bk ]
,1(β ) = 0. Being Egε ,1(β ) =

n

∑
k=1

Egχ[ak,bk ]
,1(β ), we conclude that Egε ,1(β ) = o(β r), ∀r ∈ (0,1).

In consequence, Lemma 1 gives that E f ,1(β ) = o(β r), ∀r ∈ (0,1).
Consider the case r = 1. From (33) we have

Egε χ[ak,bk ]
,1(β ) = β

|qk|

Γ (1+β )

∫ bk

ak

∣

∣

∣

∣

∣

(t − ak)
β −Γ (1+β )

β

∣

∣

∣

∣

∣

dt. (34)

Now,

lim
β→0+

(t − ak)
β −Γ (β + 1)

β
= ln(t − ak)−Γ ′(1).

Thus, by Lebesgue convergence Theorem, we have that

lim
β→0+

∫ bk

ak

∣

∣

∣

∣

∣

(t − ak)
β −Γ (1+β )

β

∣

∣

∣

∣

∣

dt =

∫ bk

ak

| ln(t − ak)−Γ ′(1)|< ∞,

hence Egε ,1(β ) = O(β ) for every g such that g′ ∈ D. By applying Lemma 1 the thesis holds.

Reasoning in a similar way, the next theorem follows.

Theorem 4.Let f ∈W 1,p(a,b) and aD
1−β
t = C

a D1−β . Then,

E f ,p(β ) = o(β r), β → 0+, ∀r ∈ (0,1),

E f ,p(β ) = O(β ), β → 0+.

Remark.It is easy to see that E f ,1(β ) is not in general an o(β ) when β → 0+. In fact, let g(t) = |t − 1| be defined in
t ∈ [0,2] and compute it’s C derivative

CD1−β g(t) =







− tβ

Γ (β+1)
si t ∈ [0,1],

2(t−1)β−tβ

Γ (β+1)
si t ∈ (1,2]

.

We have

Eg,1(β ) =
∣

∣

∣

∣

∣

∣

CD1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,2)
=

1
∫

0

∣

∣

∣

∣

∣

−
tβ

Γ (β + 1)
+ 1

∣

∣

∣

∣

∣

dt +

2
∫

1

∣

∣

∣

∣

∣

2(t − 1)β − tβ

Γ (β + 1)
− 1

∣

∣

∣

∣

∣

dt

≥

2
∫

1

1−
2(t − 1)β − tβ

Γ (β + 1)
− 1dt =

Γ (β + 2)− 3+ 2β+1

Γ (β + 2)
≥ 2(Γ (β + 2)− 3+ 2β+1).
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Being β > 0,

lim
β→0+

Eg,1(β )

β
≥ lim

β→0+
2

Γ (β + 2)− 3+ 2β+1

β
= 2(Γ ′(2)+ ln2) 6= 0.

Moreover, by using Hölder’s inequality we have that

Eg,1(β ) =
∣

∣

∣

∣

∣

∣

CD1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,2)
≤
∣

∣

∣

∣

∣

∣

CD1−β g− g′
∣

∣

∣

∣

∣

∣

Lp(0,2)
||1||Lq(0,2) = 2

1
q Eg,p(β ),

where 1
p
+ 1

q
= 1, which leads to

lim
β→0+

Eg,p(β )

β
≥ 2

1− 1
q (Γ ′(2)+ 1) 6= 0.

Remark.It is worth noting that Theorems 1 and 3 give us a similar order of convergence for CF and C derivatives
respectively. It is interesting that the difference between the kernels (the first one non-singular and the second one
singular!) has not been relevant in the convergence result.

3.4 Some comments about the speed of convergence

Based on the results obtained in the preceding section, it is natural to ask: Does the C derivative converges to the
ordinary derivative faster than the CF derivative? Or conversely, does the CF derivative converges to the ordinary
derivative faster than the C derivative?

Let us compare the speed of convergence in the L1 norm. Consider the function

g : [0,T ] → R

t → g(t) = tm, m ∈ N.
(35)

From Proposition 2 we have that

∣

∣

∣

∣

∣

∣

CF D1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,T)
=

∫ T

0

m

1−β
tm−1

∣

∣

∣

∣

β −Γ (m)E1,m

(

−
1−β

β
t

)∣

∣

∣

∣

dt. (36)

and

∣

∣

∣

∣

∣

∣

CD1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,T )
=

∫ T

0
mtm−1

∣

∣

∣

∣

1− tβ Γ (m)

Γ (m+β )

∣

∣

∣

∣

dt. (37)

With the aim to compute the integrals (36) and (37) we present the next Lemma.

Lemma 2.Let m ∈ N−{1}, and let t∗ : (0,1)→R
+ and s∗ : (0,1)→ R

+ be the functions defined as

t∗(β ) = v if Γ (m)E1,m

(

−
1−β

β
v

)

= β (38)

and

s∗(β ) = w if wβ Γ (m)

Γ (m+β )
= 1 (39)

respectively. Then we have that

a)m− 1 ≤ t∗(β ) for every β ∈ (0,1).

b)m− 1 ≤ s∗(β ) for every β ∈ (0,1).
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Proof. a)Let m ∈ N. From [5, Example 4.1 - (d)] it follows that lim
t→∞

E1,m

(

− 1−β
β t
)

= 0. We also know that the Mittag-

Leffler function Eα ,β (−t) is complete monotonic1 for every α ∈ [0,1] and β ≥ α (see [19, Ch. 4]) which lead us to

conclude that E1,m

(

− 1−β
β t
)

is a decreasing function on (0,∞).

Therefore, if Γ (m)E1,m

(

− 1−β
β (m− 1)

)

≥ β , there exists a unique t∗ ≥m−1> 0 such that Γ (m)E1,m

(

− 1−β
β t∗

)

= β .

We will prove that Γ (m)E1,m

(

− 1−β
β (m− 1)

)

≥ β .

From [13, p. 18] we know that

Γ (m)E1,m

(

−
1−β

β
t

)

=
(m− 1)!

(

− 1−β
β t
)m−1






e
− 1−β

β
t
−

m−2

∑
k=0

(

− 1−β
β t
)k

k!






=

(m− 1)!
(

− 1−β
β

)m−1

tm−1

Rm−2

(

e
− 1−β

β
t
,0

)

,

(40)

where Rm−2

(

e
−

1−β
β

t
,0

)

is the Taylor error of e
−

1−β
β

t
centered at 0 which can be expressed as

Rm−2

(

e
−

1−β
β

t
,0

)

=

(

− 1−β
β

)m−1

(m− 2)!

t
∫

0

(t − x)m−2e
−

1−β
β

x
dx. (41)

From (40) and (41) we have

Γ (m)E1,m

(

−
1−β

β
t

)

=
m− 1

tm−1

t
∫

0

(t − x)m−2e
−

1−β
β

x
dx.

Applying integration by parts and the Mean Value Theorem, we obtain

Γ (m)E1,m

(

−
1−β

β
t

)

=
m− 1

tm−1



tm−2 β

1−β
− (m− 2)

β

1−β

t
∫

0

(t − x)m−3e
− 1−β

β
x
dx





=
m− 1

t

β

1−β
−

m− 1

t

β

1−β
e
−

1−β
β

ξ
, ξ ∈ [0, t].

Hence, using that x ≤ ex,∀x ∈ R, for t = m− 1 we have

Γ (m)E1,m

(

−
1−β

β
(m− 1)

)

=
β

1−β

(

1− e
−

1−β
β

ξ
)

≥
β

1−β

(

1− e
− 1−β

β
(m−1)

)

≥
β

1−β

(

1−
β

(1−β )(m− 1)

)

≥
β

1−β

(1−β )(m− 1)−β

(1−β )(m− 1)
.

(42)

On the other hand

1−
1

m− 1
≥ β ⇔

β

1−β

(1−β )(m− 1)−β

(1−β )(m− 1)
≥ β , (43)

and form (42) and (43) it yields that Γ (m)E1,m

(

− 1−β
β (m− 1)

)

≥ β . Now, note that if m ≥ 3 then 1− 1
m−1

≥ 1
2
. Thus,

for β ∈
(

0, 1
2

)

and m ≥ 3, Γ (m)E1,m

(

− 1−β
β t

)

≥ β . In addition, taking m = 2 in (42), we have

Γ (2)E1,2

(

−
1−β

β
t

)

≥
1

t

β

1−β

(

1− e
− 1−β

β
t

)

.

1 Recall that a function f : (′,∞)→ R is completely monotonic if f is differentiable for every natural order k and (−1)k f (k)(x) ≥ 0

for every k ∈ N0 and x
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Finally, for t = m− 1 = 1,

Γ (2)E1,2

(

−
1−β

β

)

≥
β

1−β

(

1− e
−

1−β
β

)

.

Define the function g(β ) = β − e
− 1−β

β , which is continuous and lim
β→0+

g(β ) = 0, g′(β ) = 1+ 1−β
β e

− 1−β
β > 0, from

where g(β )≥ 0,∀β ∈ (0,1). Then −e
− 1−β

β ≥−β , and

Γ (2)E1,2

(

−
1−β

β

)

≥
β

1−β
(1−β ) = β .

Then, ∀m ≥ 2, there exists t∗ ≥ m− 1 such that Γ (m)E1,m

(

− 1−β
β t∗

)

= β .

b)Let m ∈ N. Considere the function H(β ) =
(

Γ (m+β )
Γ (m)

) 1
β

. By the Gautschi’s inequality [15],

x1−s <
Γ (x+ 1)

Γ (x+ s)
< (x+ 1)1−s, ∀x > 0,∀s ∈ (0,1).

Then

(m+β − 1)1−(1−β ) <
Γ ((m+β − 1)+ 1)

Γ ((m+β − 1)+ (1−β ))
< ((m+β − 1)+ 1)1−(1−β )

(m+β − 1)β <
Γ (m+β )

Γ (m)
< (m+β )β

m− 1 < m+β − 1 <

(

Γ (m+β )

Γ (m)

) 1
β

< m+β ,

so m− 1 ≤ s∗(β ) for every β ∈ (0,1).

Finally, we present the next proposition where the speed of convergence for natural power functions is obtained.

Proposition 1.Let g be the function defined in (35), m ≥ 2 a fixed natural, and T ∈ [0,m− 1]. Then

lim
β→0+

∣

∣

∣

∣
CF D1−β g− g′

∣

∣

∣

∣

L1(0,T )
∣

∣

∣

∣CD1−β g− g′
∣

∣

∣

∣

L1(0,T)

=
m−T

T

1

Ψ(m+ 1)− lnT
,

where Ψ(·) is the Psi function (or Digamma function), defined as Ψ(x) = Γ ′(x)
Γ (x) for x ∈ R−Z

−
0 .

Proof.Let m ≥ 2 a fixed natural and T ∈ [0,m− 1]. Observe that β −Γ (m)E1,m

(

− 1−β
β ·0

)

< 0. Being T ≤ m− 1, by

Lemma 2 we deduce that

β −Γ (m)E1,m

(

−
1−β

β
t

)

< 0.

Then, from (36) and (37) we have

∣

∣

∣

∣

∣

∣

CF D1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,T)
=

Γ (m+ 1)

1−β

∫ T

0
tm−1

E1,m

(

−
1−β

β
t

)

dt −
β

1−β
T m

=
T m

1−β

(

Γ (m+ 1)E1,m+1

(

−
1−β

β
T

)

−β

)

,

and

∣

∣

∣

∣

∣

∣

CD1−β g− g′
∣

∣

∣

∣

∣

∣

L1(0,T )
=

T m

Γ (m+β + 1)

(

Γ (m+β + 1)−Γ (m+ 1)Tβ
)

.
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Therefore,

∣

∣

∣

∣
CF D1−β g− g′

∣

∣

∣

∣

L1(0,T)
∣

∣

∣

∣CD1−β g− g′
∣

∣

∣

∣

L1(0,T)

=
Γ (m+β + 1)

1−β

Γ (m+1)
β E1,m+1

(

− 1−β
β T

)

− 1

Γ (m+β+1)−Γ (m+1)Tβ

β

.

Now, from [5, Example 4.1]

E1,m+1

(

−
1−β

β
T

)

=
1

(

− 1−β
β T

)m






e
− 1−β

β
T
−

m−1

∑
k=0

(

− 1−β
β T

)k

k!






,

from where we conclude that

lim
β→0+

Γ (m+ 1)

β
E1,m+1

(

−
1−β

β
T

)

=
m

T
.

By the other side

lim
β→0+

Γ (m+β + 1)−Γ (m+ 1)Tβ

β
= Γ ′(m+ 1)−Γ (m+ 1) lnT.

Then,

lim
β→0+

∣

∣

∣

∣
CF D1−β g− g′

∣

∣

∣

∣

L1(0,T )
∣

∣

∣

∣CD1−β g− g′
∣

∣

∣

∣

L1(0,T)

=
m−T

T

1

Ψ(m+ 1)− lnT
,

and the thesis holds.

Proposition 1 affirms that the speed of convergence for tm vary depending on the power m and the interval length T for
the L1 norm. This is in concordance with the graphics in Figures 1 and 2 where it can be seen that the fractional derivatives
is more unestable for short times.

Another interesting thing to remark is that the speed of convergence of these two operators (when computed to power
functions) is comparable. This is in contrasts to what we expected, because the exponential no-singular kernel in the CF
derivative does not make it faster than the C derivative.

Let us see some examples in the next table where we have taken the values T = 1 and T = m− 1.

Table 1: Different speed of convergence

m lim
β→0+

||C F D1−β g−g′||
L1(0,1)

||CD1−β g−g′||
L1(0,1)

lim
β→0+

||C F D1−β g−g′||
L1(0,m−1)

||CD1−β g−g′||
L1(0,m−1)

3 1.592207522 0.8881460240

4 1.991876242 0.8179851126

5 2.344504178 0.7816816178

6 2.669821563 0.7594559202

4 Conclusion

We have analyzed the order of convergence of different fractional differential operators to the ordinary derivative, when
the order of derivation tends to one, for L1 and Lp norms, p > 1. We proved that the derivatives have a similar order of
convergence for both norms (in fact the order is a number r in the interval (0,1)). As expected, the error estimate for the
RL operator is not well defined. Finally, we studied the speed of convergence of the C and CF derivatives for power
functions, concluding that, in general, neither of them is faster than the other.
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