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Abstract: This paper investigates some qualitative properties of solutions for fractional differential systems. Particularly, we focus
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theorems and Pachpatte inequality. Unlike most of previous results, the existence theorem is proved under non-Lipschitzian condition.
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1 Introduction

In this paper, we study some qualitative analysis of solutions for semi-linear fractional system of the form

{ P (t) =A(t)x(t) + ¢ (t,x(t) © DPx(r)) .t € (t0,7) n
M]x(t()) +N1X(T> = b ,szl (t()) +N2x/ (T) = by,

where 2% and 2P are Caputo derivatives with orders o € (1,2), and B € (0,1) such that a — B > 1, x(t) € R",
red=lt,1],x(t0), x (o), x(7),x (), b1, by € R", A(t), My, Ma, Ni, N2 € R™"_are n x n matrices such that M+ N,
M>+ N, are invertible, and ¢ : [fp, 7] x R” x R" — R”" is a continuous function satisfying ¢ (¢,0,0) =0, ¢ € J.

Very recently, it has been recognized that fractional differential equations provide a meaningful description for many
real life processes in various fields of engineering, physics and economics. One can consult the applications of fractional
differential equations in [1,2,3,4,5,6], and references therein.

Qualitative properties of solutions are the most interesting features that have attracted numerous researches during the
last years; see for examples [7,8,9]. Due to their significance, these features have been further investigated for fractional
differential equations [10, 11]. In this context, many results have been reported for the purpose of studying different aspects
of solutions (see [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]).

As is well known, the existence of solutions is essential property prior to any further investigation, the establishment
of a priori bounds is of high importance for stability of solutions and the dependence of solutions on parameters is also
significant for approximation theory.

Motivated by these facts, we follow this trend and investigate these properties for a type of semi-linear fractional order
systems. Specifically, we investigate the existence of solution for the system (1) using the Schafaer’s fixed point theorem
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and by Banach fixed point theorem, we obtain sufficient conditions for uniqueness of this system. Moreover, we obtain
a priori bound for the solutions of the system using Pachpatte inequality and various investigations on dependence of
parameters are performed on the system. Finally, the results are supported by practical example to validate the theoretical
results.

It is worthy mentioning that the novelty of results of this article is due to establishing various analytical approaches
under non-Lipschitzian condition on semi-linear time dependent fractional differential system with matrices nonlocal
conditions.

Overview of paper: In Section 2, we recall notations, basic concepts and preparatory results. In Section 3, we state and
prove the existence of the solution for system (1). In Section 4, We obtain sufficient conditions for uniqueness of solution
for system (1). In section 5, we obtain a priori bound for the solutions of system. In section 6, some results on dependence
of parameters are studied. Finally, the results are supported by practical example.

2 Essential preliminaries

Some fundamental results that will be used later in the sequel are stated in this section.

Definition 1.7he Riemann-Liouville (left-sided) fractional integral of ¢ € C(J) is defined by

1

Y (0 = (1Y) (1) = g5 [ =9 v () ds @ >0
Iy
Definition 2.7he Caputo derivative (left-sided) of a function y € C) (J) is defined as
"y @), n—1<a<n,

c@aw(t) = { l[/(n) (1), a=n.

The composition of the fractional integral and derivative is given as
G (1) = ),

n—1
1% (1) = wit)+ Y el — o).
k=0
The next result is due to Pachpatte [29] that includes a Volterra and Fredholm integrals.

Lemma 1.Ler u(t) € C(J,Ry), a(t,s), b(t,s) € C(D,R.) and a(t,s), b(t,s) be nondecreasing in t for each s € J and
suppose that

u(r) Sc+/a(t,s)u(s)ds—i—/b(t,s)u(s)ds,tEJ,

wherecZO,andD:{(t,s)EJZ:IOSSSIST}.I]‘

T s
P(t):/b(t,s)exp /a(s,f)dr ds <1,
fo

fo

then
t

- exp /a(t,s)ds ,tEJ.

fo

Lemma 2.Let M+ Ny, k= 1,2, be invertible matrices, then the integral solution of the linear fractional differential system

{C@"‘x(t) =A(t)x (1) + ¢ (1),t € (to,7), ¢ € (1,2),

M]x(to)Jerx(T) :bl,sz/ (t())+N2x/ (T) = by, &
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is given by
x(1) = (My +Ny) "' by
+ [t 10)h — (x = 10) (M1 +N1) ™ W | (Mo +-N) "
— (My+Ny) ™ N (A(D)x (1) + 0 (7)) + 1 (A()x (1) + ¢ (1))
+ {(r—to) My +Ny) " Ny — (t—to)ln} (My+Ny) "' N,
<IN (A(T)x (1) + 0 (7). 3)
Proof Applying the fractional integral operator /% to both sides of equation (2), we have
x(t)=ao+ai(t—to) +1%(A(t)x (1) + ¢ (1)), 4)

for some vectors ag,a; € R”. Differentiating x (¢), we have

!/

x () =a+1%"HA@W)x (1) +9 (1))
The boundary conditions imply

{ (My 4+ Ny)ag+ (t—to)Niay = by — N I* (A(7)x(
a) = (Mz —I—Nz)il by — (M2 —I—Nz)il Nz]ail (A(T)x

Hence

ap = (My+Ny) ™ by — (My +Np) ™ NI (A(7)x (7) + 6 (7))
—(T—10) (My +Ny) "' Ny (My +N2) ™' by
(T —10) (My +Ny) ' Ny (Ma +Na) ™' NoT® 1 (A(T)x (1) + 9 (7).

Substituting ag, and a; in (4) we obtain (3). This finishes the proof.

If ¢ = by = by =0, then system (2) has a zero solution. The semigroup property of the fractional integral %18 = J*+B

can be used to obtain the following property:

A _socfl s 7sozfsfl P
(1%9(0)~ 1" 6:(1)) = | (“ F)(a)‘”)—(t F)(aj;f()>¢(s>ds

3 Existence of solution

Consider the Banach space
¢ ={x:x(t) e CUR") “PPx(t) e CURY) 1 €T},

equipping the norm

Il = max { 1]

teJ teJ

]} = o max () om0 .

where ||x(7)|| and }’C.@ﬁx(t) || are norms on R". Define the operator equation

Fx=x,X€FC,

&)
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where .7 : € — € is defined by
Fx(t) = (My+N) " by + [(¢ = t0)l — (t=10) (M1 +N1) " Ny | (M + o)~ b

— (M +N) T N (A(T)x(r) + o (T,x(r),c 2B (1) )

L (A(t)x(t) o (t,x(t),c .@ﬁx(t)))

+ [(‘L’—to) My +N) "Ny — (tfto)ln} Mz +N>) "' N

x 7! (A(T)x(r) + (T,x(r),c @ﬁx(r))) . ©)
Differentiating equation (6) (f—times, 0 < f§ < 1), we deduce that

‘PP Fx(t) = zlfﬁ%%(t) =1" B+ Ny) by
+1%7P (A(t)x (t)+ ¢ (t,x(t),“ @ﬁx(t)))
— My +No) " N1 B (A(T)x(r) + (T,x(r),c @ﬁx(r))) . @

We observe that problem (1) has solution if the operator (6) has a fixed point. The existence result is obtained by using
the Schafaer’s fixed point theorem which is based on the following assumption

(H1)¢ : J x R" x R* — R" is a continuous function and there exist positive real numbers .,k = 1,2,3, such that

[ A(e) e (6) = y(0)] + [ (r, ()CWX())—N ). 2Py(@)]]]
< n+ i =)+ 1| PP = PPy H ®)
forallzr € J,x(t),y(t) € R". In partlcular, since ¢(¢,0,0) = 0, we have

[aox@)+0 (nx0) PPx0) | <mtmle )]+

“PPx(1)|, ©9)

forallr € J, x(r) e R™.
(H2)Assume that
1

F(OC—I—]) > 72((91+1)(T—l0)+069092)(f—l0)a7 R
Cla—B+1)> y(1+6)(r—1)*F.

Remark.One may observe that condition (8) is of non-Lipschitzian form. However, if 73 = 0 then it becomes the well
known Lipschitz condition.

The next notations will be used to generate compact expressions.
o= [0 +8)7 | 0 = |03 7| = 01 1] e = B 1]

(6= 100, — (e =10) (My + M) ' Ni|| 8 = 0n [Mil], 6 = B2 | Na] .

6y = max;c;

Theorem 1.If (H1) and (H2) hold, then the system (1) has at least one solution provided that
{ B((01+1)(T—10) + abB) (1—10)* " 1 (1+6;) (t—10)* " } <1

fmax T (a+1) T T(a—B+1)

Proof. The proof will be given in several steps.
(Step 1) We show that .% is continuous. Let x,, be a sequence such that x,, — x in &, then for each ¢ € J, we have

[ Fxn(t) = Fx(t)|| < 6% (||[A(D)]] [|xn () —x(T)]])
+o,1%o (T,x,, (7)< PP, (r)) —¢ (T,x(‘c) < @ﬁx(r)) H
I (JA@)| xn (1) —x (@)1])
1|9 (1,50 ()£ PP (1) = ¢ (1,x(1) £ 2P (1)) |
+60621% ! ([|A ()| [ (7) = x (D))
006,17 1% |9 (‘L’,xn (7). ZPx, (1)) —¢ (‘L’,x(T) < .@ﬁx(r)) H
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Similarly, we find

“9P Fx,(t) = <GP Fx()|| < 1P AW o (1) > (0]

B H¢ (t,x,, (1) £ PPx, (t)) —0 (t,x(t) c .@ﬁx(t)) H
+0.1% 7P (JJA(D) || [lxa () —x (D))
1P H¢ (‘L’,xn (1) £ PPx, (1)) ) (‘L’,x(f) @Bx(f)) H .

The continuity of ¢ imply that || (,x, (¢) P2Px, (1)) —¢ (£, x(r) ¢ .@ﬁx(t)) || = 0as n— o, forevery t € J. In virtue of
dominated convergence theorem, we deduce that .% is continuous.

(Step 2) We show that .# maps bounded set into bounded set. Indeed, it is enough to show that for r > 0, there exists
a positive constant L, such that if x € B, = {x € € : ||x| 4 <r}, we have ||#x||, < L. Using hypothesis (H1), for each
t € J, we have

[ Zx(1)]| < K1+ 60Kz + 6, I

Ax(t )+¢(Tx )H
Ax(r) + ¢ (1,5()¢ t))H+90921a IHAx )+ 0 (Tale ),C@ﬁx(f))H
On(t—1)"  nt—1)* 66y (t—10)*"
(o+1) F(a 1) I (o)

biyr(t—10)"  6ipr(t—iw)*  pri—1wn)*  pnri—1n)"

I'(a+1) I'(a+1) I'(a+1) I'(a+1)
9092’}/2}"(1'71‘())(171 9092’}/3}"(‘57 )ail

I'(a) I'(a) ’

+I1*

< K1+ 6oz +

and

K> (t —t())liﬁ n il (l—to)aiﬁ
r2-p) F'la—p+1)
071 (1—19)* P n pr(t—1)* P N pr(t—10)* P
I'lao—p+1) TI'(a—p+1) T'(a—p+1)
610r (T —10)"P  Grpr(t—19)* P
I'la—B+1) I'lfa—B+1)

C@ﬁ%(r)” <

Therefore

K (t—1)'"
r(2 ﬁ)
+(T*to) "(61+ 1) (t—10) + aB08) (1 +r (1t 1))
I'(a)
B+ D) (T-100)" P (n+r(p+n)
I'la—B+1) '

This shows that ||.% x|, < L, where

K (t—10)""
r ﬁ)
(T—10)*"" (61 +1) (t—10) + B062) (i + 12 (12 + 1))
I'(a)
(O (=) P (ntrptn)
I'a—p+1)

|7 x

IS K1+ 6pKr +

L:= K1+ 6k +

+
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(Step 3) We show that . maps bounded set into equicontinuous set of €. Let t1, , € J such that | < ;. Let B, be a
bounded set of ¢ defined as in step 2. Let x € B, then

|Zx(12) — Fx ()| < K (rm)+ﬁ JACED R

x HA(S) (x(s)) + ¢ (s,x(s),c @ﬁx(s))‘ ds

15}

+m / (tr 75)0571 HA(S) (x(s))+¢ <S,x(s),c @ﬁx(s))‘

ds

—l—%/f(r—s)aZHA(s) (x(s))+¢ (s,x(s),C@ﬁx(s))Hds

fo

<ol )+ HEHRER) (12— 10)* — (11 —10)* +2(02 — 11)*]

I'(a+1)
+92(T*to)a71(}’1+r(7’2+}’3))(f2*f1)
I'(a) ’
and
C@ﬁyx(lz) C@ﬁyx t1 H 7[3 /} lz—s (x p-1 (tl—S)ail‘

X HA(S) (x(s))+¢ (s,x(s),c @ﬁx(s)) H ds

g ] =9 A 6 +6 (5000 (0 as

(n+rp+mn) [(tz —10)* P — () —10)* P 201, - tl)afﬂ]
'la—p+1) ’
As t; — 1y, the right-hand sides of the above inequalities tend to zero. This shows the equicontinuity for the set # B, C % .
As a consequence of steps 1 to 3 together with the Arzela-Ascoli theorem, we deduce that % : 4 — % is completely
continuous.

(Step 4) We show that the set of solutions of the system (1) is bounded. This is equivalent to showing that, for each
A € (0,1), the solutions of the following family of boundary value problems

<

‘D (t) = AW () + 29 (1,x(1) < PPx()) 1 > 1,
Mlx(l())-i-le( ) = Aby, (10)

T
sz (l0)+N2 (T Ab>,

are bounded, with the bound independent of A. Let x; be a solution to (10) for fixed A € (0,1). Then by Lemma 2, x;,
satisfies that

X (1) = A (M +Ny) by + A [(tfto)lnf (T —10) (M, +N,)*'Nl} (Mz+N>) " by
A (My+ Ny NI (A(T)x(r) +o (T,x(r),“ @ﬁx(r)))
AL (A(t)x(t) o (t,x(t),c @ﬁx(t)))
+A [(‘L’—to)(Ml FN) TN - (tfto)ln} (My+Ny) "' N

il (A(T)x(f) +o (r,x(r),c @ﬁx(f))) .
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Therefore, as in Step 2, we deduce that

6 —19)* % 6,0 EPRYAS
2| < &1+ Goka + (=) 1 (T=10)"  6o6ni (T—1o)

I'(a+1) I'(a+1) I'(a)
01% |lxall (r—10)* " 0% ||<2Px, || (r—10)"
F(O“rl) I (a+1)
+72||X7L||(T B DPx || (v —10)”
F(06+1) I'(o+1)
606, ||xa || (T—10)*" +90927/3H69ﬁx,1H T—1)%!
I (a) I'(a) '
and
i < Bl ni
M= Te=-B) "T(a—B+1)

01 (t—0)* P plulE—n)*"  nlvPulc-0)*"

I'a—p+1) I'(a—pB+1) I'(a—p+1)
T a1 i il
Fla—Br1) Fla—p+1)

Hence, we get

(K’] + 90K2)F((X+ 1)

Ixall < F(OC+])—’)/2((91+1)(T—l())+069092) (T—l())OFl
71 (61 + 1) (T—10) + ao) (¢ — 1) *"
F((X—l—l) ((91+1)(T—l() + 06p6,) (T—l())OFl
%01+ 1) (T—10) + b (T—19)* ! coB
1 9 x)LH;
F((X—l—l) ((91+1)( —t() +069092)(T—l0)a
and
e ne e

re-p)(r@-p+1-n+6)(t-n)*")
7 (1+6) (r—10)* P
(F@=p+1)-n+6)(r-10)* ")
B(1+6)(r—1)* P
F'a—B+1)—p(1+6)(1—1)

+

5 Il
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‘We deduce.
(ki +6p1) T (o + 1)
F(a+1)—p((6,+1)(t—10) + 06p6:) (T —19)* "
I (81 +1) (£ —10) + Bps) (T —19) %!
T(o+1)—p (6 +1)(T—10) + abyb) (t—10)* "
1 (814 1) (2 —10) + a0 (7—10)* ")
+r(oa+ D=1 (6 +1)(T—10) + abb:) (T —10)* "
o (t—10) " Pr(a—p+1)
re—p)(I@-B+1)-n(1+6)(c—0)*")
1 (814 1) (e —10) + a0 (7—10)* ")
+F(a+ 1) =1 (81 +1)(t—10) + 0662 (T —10) >
ln(1+6) (t—1)* P
(Fa=B+1)-p+6)(r—0)* )

leall <

X

X

where {1 =1— (014 1) (T—10)+ @600y (1—1)* " T (at+1) =1 (61 +1)(t—t0)+26062) (t—10)*~
B(1+6:)(1-10)" P L(a—p+1)-15(1+62)(z—19)* P
is a bound of any solution of system (10) which is independent of the value A.
Hence, Schafaer’s theorem now can be applied to yield the existence of at least one solution x(¢) satisfying the operator
fixed point equation .#x = x, x € ¢, which means that the system (1) has at least one solution.

1
. The right side of the above inequality

4 Uniqueness result

The simplest way to get the uniqueness of the solution of the problem (1) is investigating the validity of Banach fixed
point theorem. To use this theorem, we have to assume the Lipschitz condition on the nonlinear term in the right-side of
equation (1). Hence, we assume that y; = 0 in the assumption (H1) and we use the next alternative assumption.

(H3)There exist positive real numbers 7», y3 such that
JA@) [x(t) = y(0)] + [@ (1, x(0),“ PPx(t)) = 9 (2,3(1),* 2P y(1))] |
< Bollx(t) =y ()| + Bl PP x(0) = <P y(0)]).
From (7), we have
[2Px(r) ~ PPy (r)| < 1°7P [AWIx(r) = (O] + [0(2,3(0),“ PP x(0)) = 9 1,3(0),“ PP y(0))]|
+6,1 P ||A(7)[x() — ¥(7)]
+19(7,x(7), *FPx(7)) - 9(2,3(2),  FPy(0))

—19)%—B
< ((mn%) pllx—]

(t—19)* P

+<(92+1)7F(06—ﬁ+1)

>Yallc@ﬁxc@ﬁyl,

which implies that
(6 +1)(T—10)% Py
(@—B+1)—1y3(62+1)(T—19)* P

|c 7P e~ 7Py < = =1l (an
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Theorem 2.Assume that (H2) and (H3) are satisfied. Then the system (1) has a unique solution on J provided that A < 1,
where

A= ,yz(T_tO)almaX{ {(059092-1-((‘24- ))( f))
Vs (00062 + (61 +1)(T—10)) (B2 + 1) (T —10)*
o) (C(oe—=B+1)=p(62+1)(t—10)*~ ﬁ)

(64 1)(z—10)' }

IN'la—B+1)—p(6241)(t—19)* P (12)

ProofLet x,y € €. For each t € J, using (11), we have
A@K(T) = ()] + [ (2.5(0), 2P 2(1)) — 0 (2,3(0),* 2P ¥(0))]|
AW() = (1) + [0(e.3(0), °DPx(0) = 9 (1,3(1), PPy(1)))
+ 0061 [ A(D)[x(1)  y(2)] + [9(2,5(2),“ZPa(x) — 6 (x.,3(2), FPy(0))]|
< 6u1% (llx(r) = 3(=) | + I 2P x(z) < PPy(o)]))
+ 1% (llnte) — yO)ll + B PP x(0) < 2Py(0)]))
+ 800:1°”" (lla(0) = 3(2) | + B PP () — < PPy(o)]))

< 6 : (ai)l)

;aﬁ)]) (mlle=sll+ 1l PP =Py )
( )ocfl
I'(a )
F( +1)
B(r—0)*"
I'(a)
Pt —19)*"!
< |Praty
72(73) (0808 + (61 + 1)(T— 1)) (62 + 1) (T — 1) P!
IF'(a—B+1)—p(6+1)(t—19)* P [lx =l

| Zx(t) = Zy()|| < 611

+I*

(il =l + pll 2P x <Py

+ 08— (=l + wll2Px —<FPy)
(068082 + (81 +1)(v—10)) [x =]
+ (06082 + (81 + 1)z —10)) [|'FPx— Py

(069092 + (91 + 1)(T—t0))

Similarly, using (11), we have
[2PFx(1) PP Zy(0)|] < 1%7F [ AWx(0) =y (O] + [6(1,5(0),“2Px(0)) = 6 (1,5(0),“ 2Py )]

+ 61% P Aol x<r>—y(r)]+[¢<m(r>ﬁ@ﬁx< DETICAORCON|
GRS [ A
- I'la—B+1)
1(6+1)(r=10)* P @+0E- 0Py
F'lao—B+1) T(a—B+1)—p(6,+1)(t—19)* P
LU )
F(a—B+1)—n(6+1)(t—19)* P '

_|_

Therefore, we get
| Fx—Fylle <Alx—yll,
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where A as defined in (12). Thus, .7 is contraction. Hence, Banach’s fixed point theorem guarantees a fixed point which
is the unique solution of the system (1). The proof is completed.

5 Priori bound of solution

In this section we investigate the existence of a priori bounds for the solutions of system (1). The current results provide
geometric insight into the potential solutions of system (1) by providing an estimate on their size and location without
having an explicit knowledge of solutions. In the previous sections, we proved that system (1) has at least one solution,
hence, it can be assumed metaphorically in this section that system (1) has a set of solutions. In accordance with Lemma
1, we use the following notations

11 (08062 + (61 + 1) (7 — 10)) (7 — 1) "~
I'(a+1)

1% (14 6) (14 6) (1 —19)** P

a+1) (T (a—B+1)-1(1+6)(t—10)"F)

ka5 (1+ 60 (2= B+ 1) (t—10)* P
F(a+ D)2 B) (I (a=B+1)=5(1+6) (t-1) )

006717 (1+6) (T —10)** P~
I (@) (I'(@=B+1)-(1+6:) (t—10)* *)
Bo0r s Kol (00— B+1) (t—10)* P

F(@)r@-B)(I'(@=B+1)-n5(1+8)(c—10)* )

c= K]+ 6y +

+

+

+

+

1

+ Y3(1+61)F(a_ﬁ+1)(t—s)a’ﬁ

altss) =l =97\ g ra—B) (I (a=B+1)-5(1+6)(c—0)**)

000 (a—B+1)(t—s5)* P!

+ 9
F(za—ﬁ—l)(F(a—ﬁ+1)—y3(1+92)(r—t0)°‘*ﬁ)

91 (t—s) 9()92
I'la) I'(a—1)

b(t,s) = p(t—s5)*2 {

+02y31“(a7ﬁ +1) (608, 2 —B—1)+ (146) (t—s5)) (t—5)* P
ra—B) (I (a—B+1)-%01+6) (t-10)* *)

)

and
s

p(t)]b(t,s)exp /a(s,f)dr ds.

fo
Theorem 3.If (HI) and (H2) hold, then, fort € J, all solutions x of system (1) satisfying the priori bound

1

exp /a(t,s)ds ,tel.

fo

X @)l <

1= p(t)

provided that p(t) < 1,t € J.
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Proof-Let x be a solution of system (1) on J. If x is a zero solution, then the result is obvious. Hence, we assume that x is
a nonzero vector function. In accordance with Lemma 2, we have

x(1) = (My+Ny) " by
[0 = (= 10) (M1 +-N) ™ N (02 8)
— (M, N N (Ax(r)+¢ (r,xm:’@ﬁx(f)))
+1% (4x(0) + ¢ (1,20 7Px (1))
+ [(rfto) (M, +N) " Ny — (tfto)l,l] (My+Ny) ™ Ny
i (Ax(‘r)+¢ (‘nx(‘r),“@’%(r))) .

Then,

[lx(@O)|| < K1 +60k2+6; I*

Ax(7)+ ¢ (r,xm:‘ @ﬁx(‘r)) H
Ax (1) + 0 (t.,x(t),f 9%(;)) )

+ 606, 1%! HAx(T)+¢ (f,x(f),"ﬁhﬁx(r))H,

+I*

and

"Qﬁx(t)H <1 Pyt HA(t)x(t)+¢ (t,x(t)," Qﬁx(t)) H
T b (A(T)x(r)+¢ (r,xm:’@ﬁx(f))) .
Condition (9) implies

@)l < K+ 0o+ 01% (1 2 ()] + 3

)
+ 1 (n+plxO+5° 2 | (0)])

+ 6061 (n+n k() + 1| 2P (v)] )

= K+ 6Kz
4o (IE i (@) + e [ 20
B+t o)+ [ 22
+ 9092(% +y2]afl Hx(‘t)”#»j@la*] cob ”X<7)H>,
and
cg KZ(T*IO)F'B bl (T—[O)a’ﬁ 67 (Tfto)afﬁ
)Qﬁx(f)HS r2-p) I'a—p+1) T(a—B+1)

+ I ()l + 02061 x (7)]

b f@ﬁx<t)|(+ely31“*/’ (‘@/’me.

This inequality can be reduced to

ol (@—B+1)(t—1) *
r =) (F(@-B+1)-n51+6) (c 1) F)
N nr(e—p+1)(c—n)""
F(a—B+1)(M@—B+1)-%1+6) (c—1)* ")
enl(@—B+1)(x—10)""
Fla=B+1) (I (@—B+1)— 5 (1+6) (t—10)* P)
nl(a—F+1)
(Fa=B+1-n(1+6)(r-0)"")
Oyl (@—B+1)
(Fa=B+1-n(1+6)(r-0)" ")

]

1P ()]

1P x (o).

Therefore,
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On(t—1)"  Bbn(t—10)""  nlt—1n)"
I'(a+1) I'(a) I'(a+1)

0Ny (1—10)** P
I (a+1) (T (@—B+1)-1(1+6) (1 —1)*F)
prol (0 =B+ 1)(T—1)* P
L@+ DI 2= B)(F(a=B+1)-n(1+6) (t-1)* )
)2(173

Ix (@I < K1 + 6ok +

+

+

ny(t—rto
I (a+1) (T (@ B+1)-1(1+6) (t—1)*F)
013kl (00— B+ 1) (T —19)* P!
M@+ DI 2=B)(F(a=B+1)-n(1+6) (t-1)* )
2a-P

+

+

617371 (T—10)
(a+1) (T (a—B+1)-1(1+6) (t—1)*F)
20—

+

0167173 (T —1o)
F(OC+1)<F(05—B+1)*9/3(1+92) (T*l‘o)aiﬁ)
Qb yskal (00— B+1) (T —10)" P

F(@)r@-B)(I'(@-p+1)-n5(1+6)(c—10)* *)
20—B—1

+

+

0007311 (T—19)
r(a) (F(afﬁ+1)f}/3(1+92) (rfto)“*ﬁ)
N 606273627 (T —19)”* P!
(@) (T (a=B+1) =5 (146) (t-10)* )
+I% |lx (1)
vy (1+6) I (a—B+1)
(F(a—BJrl)*}’3(1+92)(T*t0)a7ﬁ)
Ol (a—B+1)
(C(@=p+1)-n+6)(c—0)"")
+ 0171 ||x (7) || + 6062 11% ! |lx (7)
0y (1+6) I (a—B+1)
(Fla-p+n-n0+e)(r-0)*")
006,30 I (a—B+1)
(M(@=B+1)-1(1+6:) (t—10)* )

+ PP |x(n)]

+ e 0l

+ PPl (7)]|

+ PP (n)ll,

This can be rewritten in the form
t T
el < e+ [a(t.s)lx@)lds+ [ ble.s)e(s)ds, 1 €.
0] 0]

Using Lemma 1, we deduce the result. This finishes the proof.
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6 Dependence of parameters

For ¢ Lipschitz in the second and third variables, the solution’s dependence on the order of the differential operator, the
boundary values, and the nonlinear term ¢ are discussed in this section. To proceed further, the following condition is set.

(H4)For any € > 0, there exists positive constants ¢; and ¢, such that

Hlar el g (x(s) — g (e H <61 llg (x(s)) — g (ke (s))
Hape U= fo (x(5) — 8 (v () | < 2 8 (x(5)) — 8 (e ()]

for any s € J, where g(x(s)) = Ax(s) + ¢ (s,x(s) @ﬁx(s)). Moreover, we assume that

h(t—10)" <1+0 +M)<F(a e+1),
B+6)(t—1)* P <T(a—e—B+1).

Theorem 4.Let (H1) and (H4) be hold. If x, and x¢ are the respective solutions of the problems (1) and

{“_@0‘ Ex(t) = A(t)x ()+¢(t x(1), ‘.@/5x( t)),e>0,t € (1,7), (13)
Mlx(to +N (T) bl,sz (to)-i—Nzx( ) by,

where 1 < o — € < a < 2, then there exists a constant kg > 0 such that

b= xelly < ke. (14)

Proof By Lemma 2, we can obtain
xe (t) = (My+Ny) by
[ =) = (7= 10) (My +N) ™' Vi | (M2 4+ N2) ' b
— (M4 N) T I (A (1) + 9 (T2 (7). PP (7)) )
H197E (A (1) + 9 (1,3 (1) £ PPre (1)) )
+ {(‘L’—to)(Ml FN) TN - (tfto)ln} (My+Ny) "' N

%€ (A(‘L’)xs (t) + ¢ (‘L’,xg (7). @ﬁxg(f))) , (15)

which is the solution of (13). Then

() = xe (O] < & || (A(2)x(2) + ¢ (7.2(2) £ 2Px(2) ) )
1 (A()xe (7) + 9 (. (7) £ PPxe (1)) |
I (A(t)x (1) +¢ (t,x(t) C@ﬁx(t)))
—%E (A(t)xg(t)+¢(t,xg )€ DPxe (1) ))H
17 (A () + 6 (7.x() £ 7Px(v)) )
1% (A (7) + 6 (% (7). PPre (1) )|

+

+606,
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Using the identity (5), we get

0 =5 )] < s / (0= )% JA(s) (x(5) — xe(s))

ds

*% J (=9 1A (x(5) —xe(s)

fo
+¢ (s,x (s),° @ﬁx(s)) —0 (S,.Xg (s) ¢ DPxe (s)) H ds.
The hypothesis (H1) implies that

(T . to)(xfsfl

[lx (1) —xe (1)]| < Tla—et1)

(606202 (a—€)+ (1+6161)(T—10))

X (7 +plx—xel|+ 1| PPx— < DPxe||).
( )

Hence
= xe|| < (t —t())aieil (60626 (0c—€)+ (1+6161) (T—10)) (71 + 7 HC@ﬁx— C@ﬁst)
fh= F(OC—€+1)—’)/2(T—t0)a7€71(9092§2(OC—8)+(]+91Q1)(T—t0)) -
(16)
By virtue of (15) and (7), we have
“PPxe(t) =1'""P (My+N2) ' by
H19 P (A (1) + 9 (1% (1), PP (1)) )
— (My+Ny) " N1 P (A(‘L')xg (t) + ¢ (‘L’,xg(r),c PP, (r))) .
Following similar steps as the above, we get
PP P <197 (A (0(0) —xe (1)) + 0 (1,5(0), 2P (1)) = 6 (1.2:(0)* PPxe (1))
o197 P (A(T) (x(7) —x¢ (1)) + 0 (T,x(r),c @ﬁx(r)) —¢ (T,xg(r),c PP xe (r)))
(T—10)" P (14 65) (% + Yol — el an

Tr(a—e—B+1)—p(1+6)(t—1)* P
Using the inequalities (17) and (16), and simplifying lead to

nr(e—e—B+1)(14+6,+608,)(t—19)* ¢

)

[l = xe| <
x

and
(—e+1)(1+6,) (t—19)% 7P

3

copby— C.@ﬁxEH < nl

P
where

w=T(a—e+ D) (a—e—PB+1)—pl(a—e+1)(1+6)(t—10)* P
—pl(a—e—B+1)(1+6,+606) (T —19)*°.
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Put
oa—E&

T—1 _
ke = MTO)max{F(afer D(1+6) (t—10) P. I (a—e—B+1)(1+6;+606,)},
we get (14). This finishes the proof.

The dependence of parameters on the right-hand side of equation (1) is investigated in the next result. For this purpose,
we use the following notations

ki =T (a—B+1)(abb+(1+6))(t—10))(t—10)*"",

ky =T (a—B+ 1) (a+1)—pL(a+1)(1+6)(t—1)* P —pk,
ks =T (a+1)(1+6,) (t—10)* P,

Theorem 5.Suppose that (HI) hold. Let x, and x¢ be the respective solutions of the problems (1) and

{c_@o% (1) =A(t)x(t)+ ¢ (t,x( ) .@ﬁx(t)) +&he (1) ,he € C(Jty, 7], R),1 € (10, 7T), (18)
Mlx(t() +N1x(T) bl,sz( +N2x (T = by,

where € > 0. Then | < (ellhell+m) M , whenever ky > 0.

Proof.In view of Lemma 2, we have

xe (1) = (My +Ny) "' by
| = 10)0 = (T = 10) (My + M) Ny | (Ma 4 No) ™ b

— (M +Ny) T NI (A(‘L')xg (t) + ehe (7) + 6 (f,xg (7),¢ .@Bxg(‘l:)))
+I* (A(t)Xg (t)+€he (t) + 0 (t,xe (t) C DPxe (t)))
+ (2= 10) M+ N) T N = (1= )] (Mo + No) T
X% (A(2)xe () + ehe () + 6 (7. (7) £ PP (7)) ).
Then

[lx(£) = xe (1) || < €611 |he ()] + 6,17

(A(T)x(r) +o(t
— (A (1) + 9 (T2 (7). PP () )
(A(t)x(t) +¢ (t,x(t) < @ﬁx(t)))
~ (AW () + 0 (1.2 () PPxe() )|
260621 e (<) |+ 0621 |
~ (A@e (0 + 6 (T3 (7). PPre(m) )|

The hypothesis (H1) implies that

€I e (1)] + 1

o a—1
[[x (1) —xe (t)]| < €(aB62+ (14 61)(T—10)) %

(r—10)*""
"Tla+n

< (n+mlv—xel+n

(069092 + (1 + 6, ) (‘L’ — l‘o))

o <),
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Consequently

£ (0006 + (1+61) (T—19)) [[he| (T —10)*”"
(F(@+1)=p(e—10)"" (2806 +(1+6)) (t~10)) )
N (T—10)""" (0606, + (1+ 6)) (T—19))
(M@t 1) =p(r—1)"" (@806 + (14 6) (r—10)) )
+}/3(7:—t0)a71 (808> + (1+6)) (T —1)) || 2Px— cgﬁx£||_
(M @+ 1) —p(r—10)"" (2806 + (14 61) (:—10)) )

[lx = xe|| <

+

From (7), we have

(& |lhell+71) (1+ 65) (T—10)* P
F(a=B+1) =1 (1+6) (t—1)"F)
P (1462 (T—10)" P x—xe |
(F(afﬁ +1)—p(1+6) (Tito)ocfp)

copby — C@%@H <

Therefore
ellhellky | vk
_ < ey A
H‘x Xg” — k2 + k2 ?
and
c by H<3Hhs”k3 Yiks
ka ky

It is obvious that ||x — x¢ ||, < max{‘sHthk1 + 21 k‘ , ‘SHhEHk3 + 4 k*} hence the result follows. This completes the proof.

To investigate small perturbation in the boundary conditions, we use the following notations

h = (069092+(1 +91)(T—t0))(7—t0)a71,
hy=T(a—B+1)—p(1+6)(1—1)* P,
hy =T (2—B)I (a+1)[01+ 6oDh],

hy = hohs + YoM I (@ — B+ 1) (t—10)" 7,

= I (a—B+1) ([T (a+1)—hip) (t—1) P +phs(1+6,) (1—1)* P,
h6:hzr(aﬁLl)*’)/zh]F((X*ﬁ‘i’l).

Theorem 6.Suppose that (HI) hold. Let x, and xg be the respective solutions of the problems (1) and
{“-@“X(t) =A@Ox (1) +9 (1.x(1) £ 2Px(1)) 1 € (10, 7),
Mx(t9) +Nix(t) =b + @, sz (t())—l—Nzx (1) =by+ o,
where @ € R". Then

- | @ || max{hy,hs}
= heI' (2—-PB)

ylmax{hll"(oc—ﬁ—i—]),(] 1) (a+ 1) (T—10)" f’}
s :

+
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Proof.From Lemma 2, we have
xp (1) = (My+N)) ™" (b1 + @)
+ [t =)k — (5= 10) (M1 + N) ™ Ny | (Mo - N) ™ (2 + @)

<1 (A0 (1) + 9 (7,050 (1) < PP30(1)) ).
Then
lx—xa < @] (1 + 60D)
(t—10)*"
I'(a+1)
C‘@ﬁX* C@ﬁXw‘

+ (069092 + (1 + 9]) (‘L’ — l‘o))

x (n+nlv—xol +n

).

%ol (t—1)F  (1+6)(F—1)""
r2-p F(a—B+1)

X (y] = xall+ 7 Hcgﬁxf C@ﬁxw") .

and

C@ﬁx - C@B.Xg

<

The above two estimates lead to
[@]| " (o + 1) (D + 6p12)
(F (@+1)—n(abb+(1+6))(t—1)) (T—lo)afl)

n 71 (606 + (14 61) (1 —19)) (T —10)* "
(F(a+1)— (@808 +(1+6) (r—10)) (r—10)* ")
LB | 2Bx — < DPxg | (0006 + (1+61) (t—10)) (T —10)* "

(F (@+1) =P (abbr+(1+61)(t—1))(T— to)OH)

¥ —xa| <

)

and

by C.@BxEH < ﬁszHF(a*BJrl)(T*to)FB
T re-p)(F@-B+1)-n(+6)(r-10)" ")
n(1+6)(t—1)* P
(Fla-p+n-n0+o)(-0"")
Bl —xall(1+6)(c-0)*F
(Fla=B+1)-%(1+6)(c—10)"F)

These two estimates can be solved to get

+

+

[x—xal| < ||@]]
><< hohs + oI (00— B+ 1) (1—10)' P )
r'2-pB)(hl(a+1)—phI(a—p+1))
Yihil' (o —B+1)
hhl (a+1)—phl (a—B+1)

+
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and

cpby_ C.@ﬁxg

< o
<192F((x B+1)(I (Oc+1)h]yg)(rto)lB+y2h3(1+92)(Tto)aﬁ>

F2=B) (Il (a+1)—pml (¢—p+1))

+ y‘(1+92)1—‘(06+1)(7:7t0)0‘*ﬁ
ml (a+1)—phIl (a—B+1) )"

The two estimates can be maximized to get

‘ ||@|| max{hy,hs}

= heI'(2—B)

yimax { T (@—B+1),(1+6:) I (@+1)(x—1)* "}
he '

[|x — x¢

+

This finishes the proof.

Remark.In case y; = 0, then previous results easily follows due to Lipschitz condition.

7 Application

In this section, we provide a particular example for the purpose of validating and confirming the proposed results.

Example 1.Consider the BVP
ol (x1(0)\ _ t 0\ [x(t)
7 (xg(t)) —0-04(0 t) (xz(t)
240.016¢2sin <22 x; (1)
+ —I(y 2 1 ( ) ’

e ()4 (0)° N
10 ()42 (1)) +0.016¢sin < P2x, (¢

240.016¢2sin <22 x; (1)
for t € [0,2]. Clearly ¢ (1,x(t),*ZPx(1)) = |

M +0.016¢3sin “P2x, (t)

is continuous and satisfies
L(xp (1) +x2 (1))

the following estimate:

[A@) () =y O]+ [0 (1,5 (1) 2Px (1)) = ¢ (1,x() 2Py (1))]]]

)
_ 1 (1) (r)
=Joos (5) [(26) - (63)]
0.016¢2sin P2, (t) — 0.016¢2sin P2y, (1)
- e éfiijfg))))z - ol )’)’2 +0.0163sin® Z7x, (1) — 0.016¢3sin” 23y, (1)
- max{ 0.047 (x; () — y1 (1)) +0.016¢%sin (C@%xl (t)) —0.016¢%sin (C@%yl (t)) ‘ :
e (i () +x(0)” e (1) +32 (1)
00 2 ()= D+ L O T 0r ) n (0
+0.016%in (732 (1)) — 0.016rsin (<753, (1) ‘
< be ™ +2(0.04)max {|x; (t) — y1 (t)], |x2 (1 ) y2 (6]}
40.016 max § 7> ‘sin (C.@%xl (t)) — s1n( ) ‘ N ‘Sin (C@%xz (t)) —sin (C.@%yz (t)) ’}
o

2 1+

< 142(0.04) [x— y|| +8(0.016) [ Z7x— © %
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Assume that

Hence

Simple calculations lead to

1o 1 10
1G2)l=5===]( )

1 5
K = ‘19] ||b]||:§,1('2:4,9| :2,9215,

t0 1o
_2(2 _
(0 f> (0 %)H 202
4

= max max <|t 1],
r€[0,2]

O

and

6y = max
1€(0,2]

(6:°%)]
0r—3%

Also, we have

maxd 2O+ D (T—10) +abb) (t—10)"" B+6)(T—10)" "
r'(a+1) " I'(a—p+1)

5

£3)21 8(0.016)(3) (21)
r(3)
= max{0.836,0.97} =0.97 < 1.

Theorem 1 implies that the BVP has at least one solution on [0,2].
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8 Conclusion

In this paper, we study some qualitative properties for a type of semi linear fractional differential system. Precisely
speaking, properties like the existence and uniqueness, priori bounds and the dependence on parameters (order, initial
function, right-hand function) of initial and boundary value problems for fractional differential systems have been under
consideration. We employ fixed point theorems and Pachpatte inequality to prove the main results. Fractional differential
systems are rarely used in the literature. The main existence theorem is conducted within non—Lipscitzian condition. We
believe that the current results of this paper are of great significance for relevant audience.
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