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1 Introduction

Fractional derivatives and nonlocal operators are historically applied in the study of nonlocal or time-dependent
processes. The first and well established application of fractional calculus in physics was in the framework of anomalous
diffusion, which is related to features observed in many physical systems, for example; in dispersive transport in
amorphous semiconductor, liquid crystals, polymers, proteins, etc. [1], [2], [3], [4].

In 1996-1997, by applying the fractional variational principle, Riewe [5] derived the following Euler-Lagrange
equation

N

∑
i=1

tD
αi

b [∂iF ]+
Ñ

∑
i=1

aD
βi
t [∂i+NF]+ ∂Ñ+N+1F = 0, (1)

from the energy functional

I(y) =

∫ b

a
F(aD

α1
t y(t), · · · ,aD

αN
t y(t), tD

β1

b y(t), · · · , tD
βÑ

b y(t),y(t), t)dt,

where y : [a,b]→ Rn and αI,βI ∈ [0,1], i = 1 · · ·N, I = 1, · · · , Ñ and n,N, Ñ ∈ N.
If the Lagrangian function F has the form

F =
1

2
mẏ2 −B(y)+

1

2
γi

(
aD

1
2
t [y]

)2

, (2)

Riewe obtained the Euler-Lagrange equation

mÿ =−γi

(
tD

1
2
b ◦ aD

1
2
t

)
[y]− ∂B(y)

∂y
. (3)

Recently, several different approaches have been developed to generalize the least action principle and the Euler-Lagrange
equations to include fractional derivatives with singular and regular kernel, see for example [6], [7], [8].

∗ Corresponding author e-mail: ctl 576@yahoo.es, etorres@unitru.edu.pe

c© 2022 NSP

Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/pfda/080307


416 C. E. T.Ledesma: Fractional Hamiltonian Systems with Vanishing Potentials

Nowadays critical point theory and variational methods have also turned out to be very effective tools in determining
the existence of solutions for differential equations. The idea behind them is to try and find solutions of a given boundary
value problem by looking for critical points of a suitable energy functional defined on an appropriate function space, for
more details see [9], [10], [11], [12], and the references therein. Recently by using critical point theory and mountain
pass theorem, Jiao and Zhou [13], showed the existence of nontrivial weak solutions for the following fractional boundary
value problem

xDs
T (0Ds

xu(x)) = ∇F(x,u(x)), x ∈ [0,T ],

u(0) = u(T ) = 0.
(4)

In [14], Torres studied the fractional Hamiltonian systems

xDs
∞(−∞Ds

xu(x))+L(x)u(x) = ∇W (x,u(x)), x ∈ R

u ∈ Hs(R,RN),
(5)

where s ∈ (1/2,1), L : R→ RN×N is a continuous positive definite symmetric matrix and W ∈C1(R×RN ,R). Under the
following hypothesis

(L) there exists an l ∈C(R,(0,∞)) with l(x)→ ∞ as |x| → ∞ such that

(L(x)u,u)≥ l(x)|u|2 for all x ∈ R and u ∈ R
N . (6)

(FHS1) There is a constant θ > 2 such that

0 < θW (x,u)≤ (∇W (x,u),u) for all x ∈R and u ∈ R
N\{0},

(FHS2) |∇W (x,u)|= o(|u|) as |u| → 0 uniformly with respect to x ∈R.
(FHS3) There exists W ∈C(RN ,R) such that

|W (x,u)|+ |∇W (x,u)| ≤ |W (u)| for every x ∈ R and u ∈ R
N ,

and by using the Mountain pass theorem, the author showed that (5) possesses at least one nontrivial weak solution. For
more related works, the readers can see: [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36] and references therein. We point out that, these works considered the case s ∈ ( 1

2
,1).

The case s ∈ (0, 1
2
], is still an open problem.

Motivated by these previous works and by the fact that after a bibliography review we did not find in the literature any
paper dealing with the case s ∈ (0, 1

2
), in this work we deals with the existence of non zero weak solution for the following

fractional system 



xDs
∞(−∞Ds

xu)+B(x)u = Λ1(x) f (v), x ∈R

xDs
∞(−∞Ds

xv)+B(x)v = Λ2(x)g(u), x ∈ R

u,v ≥ 0
(u,v) ∈ Is

−(R)× Is
−(R),

(7)

where s ∈ (0, 1
2
), f , g : R→ R are continuous nonnegative functions and B, Λ1, Λ2 : R→ R are nonnegative functions.

Moreover, we suppose that f , g satisfy

f (s), g(s)> 0 for s > 0 and f (s) = g(s) = 0 for s ≤ 0,

and we assume the following conditions:

(H1) f (s) = o(|s|) and g(s) = o(|s|) as |s| → 0;
(H2)

lim
s→+∞

f (s)

s
=+∞, lim

s→+∞

g(s)

s
=+∞;

(H3) There exist constants
1

s+ 1
< τ1, τ2 < 1, c0 > 0 and R0 > 0 such that

f (s)τ1 ≤ c0sτ1 F̃(s), g(s)τ2 ≤ c0sτ2 G̃(s) for all s ≥ R0

and F̃(s), G̃(s)> 0 for s ∈ (0,R0), where

F(s) =

∫ s

0
f (t)dt, G(s) =

∫ s

0
g(t)dt, F̃(s) :=

1

2
f (s)s−F(s) and G̃(s) :=

1

2
g(s)s−G(s).
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We notice that in the case s ∈ ( 1
2
,1) the embedding of the fractional spaces Is

−(R) into C(R) play an important role, but

in the case s ∈ (0, 1
2
] this embedding is lost, so we need to show a new continuous embedding of Is

−(R) into some Lp(R)
spaces (for more details see section 2). In order to deal with the lost of compactness, through all the paper we suppose
that (B,Λ) ∈ E if the following conditions hold:

(E(i)) B(x), Λ(x)> 0 ∀x ∈ R are measurable in R and Λ ∈ L∞(R);

(E(ii)) For all δ ∈ (0,1], the function ω(x) :=
Λ(x)

Bδ (x)
> 0, satisfies

lim
|x|→∞

ω(x) = 0.

These conditions are crucial to introduce our new compact embedding theorem.
Now, we are in position to state our main result:

Theorem 1. If (B,Λ1) ∈ E , (B,Λ2) ∈ E and f , g satisfy ( f1)− ( f3), then, problem (7) possesses at least one pair (u,B)
of non negative weak solutions.

When s = 1, problem (7) reduce to the following differential systems




−u′′+B(x)u = Λ1(x) f (v), x ∈ R

−v′′+B(x)v = Λ2(x)g(u), x ∈ R

u,v ≥ 0

(u,v) ∈ H1(R)×H1(R).

(8)

Recently several authors studied problem (8) in its general presentation like
{
−∆u+B(x)u = Fv(x,u,v), x ∈ RN

−∆v+B(x)v = Fu(x,u,v), x ∈ RN ,
(9)

where N ≥ 3, F ∈C1(RN+2,R), by using variational tools such as reduction methods, generalized mountain pass theorem,
dual variational formulation, generalized fountain theorem and generalized linking theorems, see for instance [37], [38],
[39], [40], [41], [42], [43], [44].

We note that in the papers cited above with respect to the problem (7) with s ∈ ( 1
2
,1) and (9), the standard exercise

is to show the boundedness of the Palais-Smale or Cerami sequences and the main difficulty is to prove the convergence
of these sequences. Since we do not suppose the classical A-R condition, the most difficult part of our paper is to get the
boundedness of the Cerami sequence (see Lemma 4 below).

We organize the paper in the following way: In section 2 we consider some preliminary results and present our
variational framework. In section 3, by Linking theorem we show the existence and boundedness of a Cerami sequence
for the associated functional to system (7). Finally, in section 4 we give a prove of Theorem 1.

2 Preliminary results

In this section, for the reader’s convenience, firstly we introduce some basic definitions of fractional calculus, for more
details the reader’s can see [3], [45].

The Liouville-Weyl fractional derivatives of order 0 < s < 1 are defined as

−∞Ds
xu(x) =

d

dx
−∞I1−s

x u(x) and xDs
∞u(x) =− d

dx
xI1−s

∞ u(x), (10)

where −∞Iα
x and xIα

∞ are the left and right Liouville-Weyl fractional integrals of order 0 < s < 1 defined as

−∞Is
xu(x) =

1

Γ (s)

∫ x

−∞
(x− ξ )s−1u(ξ )dξ and xIs

∞u(x) =
1

Γ (s)

∫ ∞

x
(ξ − x)s−1u(ξ )dξ .

Furthermore, for u ∈ Lp(R), p ≥ 1, we have

F (−∞Is
xu(x)) = (iω)−sû(ω) and F (xIs

∞u(x)) = (−iω)−sû(ω), (11)

and for u ∈C∞
0 (R), we have

F (−∞Ds
xu(x)) = (iω)sû(ω) and F (xDs

∞u(x)) = (−iω)sû(ω). (12)
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Theorem 2. 1.Let s > 0 and u ∈C∞
0 (R) then

−∞Is
x−∞Ds

xu = u and xIs
∞xDs

∞u = u

2.Let s > 0 and u ∈C∞
0 (R), then −∞Ds

xu, xDs
∞u ∈ Lp(R) for any p ∈ [1,∞).

Theorem 3.Let p ∈ (1,∞] and s ∈ (0, 1
p
). Then the operators −∞Is

x, xIs
∞ : Lp(R)→ Lp∗s (R) are bounded, where p∗s =

p
1−ps

is called fractional critical exponent.

Proposition 1.Let s > 0, p > 1 and q > 1 with
1

p
+

1

q
= 1+ s.

Let u ∈ Lp(R) and B ∈ Lq(R), then

∫

R

u(x)−∞Is
xB(x)dx =

∫

R
xIs
+∞u(x)B(x)dx.

2.1 Fractional derivative spaces

Motivated by the definition of Sobolev spaces [46], in this section we introduce the notion of weak fractional derivative
and fractional space of Sobolev type, more precisely we have:

Definition 1.Let s > 0 and u,w ∈ L1
loc(R). The function w is called weak left fractional derivative of u, which is denoted

by −∞D s
xu = w, if and only if

∫

R

u(x)xDs
+∞ϕ(x)dx =

∫

R

w(x)ϕ(x)dx, ∀ϕ ∈C∞
0 (R). (13)

In a similar fashion, we say that w is called weak right fractional derivative of u, denoted by xD
s
∞u = w if and only if

∫

R

u(x)−∞Ds
xϕ(x)dx =

∫

R

w(x)ϕ(x)dx, ∀ϕ ∈C∞
0 (R). (14)

Lemma 1.[47] Let u ∈ L1
loc(R). If u has a weak left (or right) fractional derivative, then it is unique up to a set of zero

measure.

Lemma 2.Let u ∈ L1
loc(R). The weak left (right) fractional derivative of u is linear.

Proof. Let u,w ∈ L1
loc(R) and k ∈ R, then, for fixed ϕ ∈C∞

0 (R) we have

∫

R

(ku+w)(x)xDs
∞ϕ(x)dx = k

∫

R

u(x)xDs
∞ϕ(x)dx+

∫

R

w(x)xDs
∞ϕ(x)dx

=
∫

R

[k−∞D
s
xu(x)+−∞D

s
xw(x)]ϕ(x)dx.

Therefore, by definition of weak letf fractional derivative we get

−∞D
s
x(ku+w) = k−∞D

s
xu+−∞D

s
xw.

In the same way we can show for xD
s
∞. �

Proposition 2.If u ∈C∞
0 (R), then

−∞D
s
xu = −∞Ds

xu and xD
s
∞u = xDs

∞u.

Proof. Since u ∈C∞
0 (R), then

−∞Ds
xu(x) =

d

dx
−∞I1−s

x u(x) = −∞I1−s
x u′(x).
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So, for any ϕ ∈C∞
0 (R), by Proposition 1 we have

∫

R

u(x)xDs
∞ϕ(x)dx =−

∫

R

u(x)xI1−s
∞ ϕ ′(x)dx =−

∫

R
−∞I1−s

x u(x)ϕ ′(x)dx

=−
[
−∞I1−s

x u(x)ϕ(x)
∣∣∣
∞

−∞
−
∫

R

d

dx
−∞I1−s

x u(x)ϕ(x)dx

]

=
∫

R
−∞Ds

xu(x)ϕ(x)dx,

from which we get the desired result. �

Definition 2.For s ∈ (0,1) we define the fractional space −∞I
s
x(R) as

−∞I
s
x(R) = {u ∈ L2(R) : −∞D

s
xu ∈ L2(R)}

endowed with the norm

‖u‖l =

(∫

R

|u(x)|2dx+

∫

R

|−∞D
s
xu(x)|2dx

)1/2

.

In the same way, we define

xI
α
∞(R) = {u ∈ L2(R) : xD

s
∞u ∈ L2(R)}.

endowed with the norm

‖u‖r =

(∫

R

|u(x)|2dx+

∫

R

|xD s
∞u(x)|2dx

)1/2

.

Theorem 4.[47] Given s∈ (0,1), the fractional spaces −∞I
s
x(R), xI

s
∞(R) and Hs(R) are identical spaces with equal norms,

where Hs(R) is the classical fractional Sobolev spaces.

Remark.Since C∞
0 (R) is dense in Hs(R), then by Theorem 4, we have that C∞

0 (R) is dense in −∞I
s
x(R), xI

s
x(R).

Theorem 5.If u ∈ Is
−(R), then

F (−∞D
s
xu(x))(ξ ) = (iξ )sû(ξ ).

Proof. Since u ∈ Is
−(R), there exists (ϕn)n∈N ⊂C∞

0 (R) such that

‖u−ϕn‖l → 0 as n →+∞.

Then

‖u−ϕn‖L2(R) → 0 and ‖−∞D
s
xu−−∞D

s
xϕn‖L2(R) → 0 as n →+∞. (15)

Moreover, by (12) we have

F (−∞D
s
xϕn)(ξ ) = (iξ )sϕ̂n(ξ ) ∀n.

Hence, by Plancherel theorem and (15) we get

‖(iξ )sû− −̂∞D s
xu‖L2(R) ≤ ‖(iξ )s[û− ϕ̂n]‖L2(R)+ ‖(iξ )sϕ̂n − ̂−∞D s

xϕn‖L2(R)+ ‖ ̂−∞D s
x(u−ϕn)‖L2(R)

≤ ‖u−ϕn‖L2(R)+ ‖−∞D
s
x(u−ϕn)‖L2(R) → 0 as n →+∞

Therefore

F (−∞D
s
xu)(ξ ) = (iξ )sû(ξ ) a.e. ξ ∈R. �

As a consequence of this theorem we have the following result

Corollary 1.If u ∈ Is
−(R), then

u = −∞Is
x(−∞D

s
∞u) a.e. x ∈R.
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Proof. Since u ∈ Is
−(R), then −∞D s

xu ∈ L2(R) and by Theorem 5 we have

F (−∞D
s
xu) = (iξ )sû.

Hence, by (11) and (12) we get

F (−∞Is
x(−∞D

s
xu(x)))(ξ ) = (iξ )−s ̂−∞D s

x u(x)(ξ )

= (iξ )−s(iξ )sû(ξ ) = û(ξ ) a.e. ξ ∈ R.

By the inversion Fourier theorem we get the desired result. �

Remark.Note that, if u ∈ Is
−(R), then −∞D s

xu ∈ L2(R), moreover by Corollary 1 we get

−∞I1−s
x u(x) = −∞I1−s

x

(
−∞Is

x−∞D
s
xu(x)

)
=

∫ x

−∞
−∞D

s
σ u(σ)dσ . (16)

Hence, integrating by parts

∫ ∞

−∞
−∞I1−s

x u(x)ϕ ′(x)dx =
∫ ∞

−∞

d

dx

(∫ x

−∞
−∞D

s
σ u(σ)dσ

)
ϕ(x)dx

=

∫ ∞

−∞
−∞D

s
xu(x)ϕ(x)dx, ∀ϕ ∈C∞

0 (R).

So, by definition of weak derivative we get
d

dx
−∞I1−s

x u = −∞D
s
xu,

where d
dx

is understood in the weak sense. Moreover, as −∞D s
xu ∈ L2(R), then −∞I1−s

x u ∈ H1(R). Therefore, we can
characterize the fractional space Is

−(R) as:

I
s
−(R) =

{
u ∈ L2(R) : −∞D

s
xu ∈ L2(R)

}

=
{

u ∈ L2(R) : −∞I1−s
x u ∈ H1(R) and −∞D

s
xu =

d

dx
−∞I1−s

x u in the weak sense
}
.

2.2 Embedding results

Now we consider some embedding properties.

Theorem 6.If s ∈ (0, 1
2
), then the embedding Is

−(R) →֒ L2∗s (R) is continuous and there is a positive constant S such that

‖u‖
L2∗s (R) ≤ S ‖−∞D

s
xu‖L2(R) ∀u ∈ I

s
−(R),

where 2∗s =
2

1−2s
is called the fractional Sobolev exponent.

Proof. As u ∈ Is
−(R), then −∞D s

xu ∈ L2(R). So by Corollary 1 and Theorem 3 we get

‖u‖
L2∗s (R) = ‖−∞Is

x(−∞D
s
x)u‖L2∗s (R)

≤ S ‖−∞D
s
xu‖L2(R). �

As a consequence of this theorem, we have:

Corollary 2.If s ∈ (0, 1
2
) and 1

2∗s
= 1

2
− s, then

I
s
−(R)⊂ Lp(R)

with continuous embedding for every 2 ≤ p ≤ 2∗s . That is, there is a constant C > 0 such that

‖u‖Lp(R) ≤C‖u‖l, ∀u ∈ I
s
−(R).
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Proof. Let u ∈ Is
−(R), then u ∈ L2(R) and by Theorem 6 u ∈ L2∗s (R), thus u ∈ L2(R)∩L2∗s (R). Let θ ∈ (0,1) such that

1

p
=

θ

2
+

1−θ

2∗s
.

By Theorem 6, interpolation inequality and Young inequality we obtain

‖u‖Lp(R) ≤ ‖u‖θ
L2(R)

‖u‖1−θ

L2∗s (R)

≤ θ‖u‖L2(R)+(1−θ )‖u‖
L2∗s (R)

≤ ‖u‖L2(R)+S ‖−∞D
s
xu‖L2(R) ≤C‖u‖l,

where C = 1+S . �

Theorem 7.If α = 1
2
. Then

I
1/2
− (R)⊂ Lp(R),

with continuous embedding for all p ∈ [2,+∞).

Proof. Let ε > 0 and β = 1
2
− ε < 1

2
. Hence, by Theorem 6 with s replaced by β , we get

‖u‖
L

2∗
β (R)

≤ S ‖−∞D
β
x u‖L2(R).

Moreover, since 2∗β = 2

1−( 1
2−ε)

can be arbitrarily large and

‖−∞D
1
2−ε

x u‖L2(R) → ‖−∞D
1
2

x u‖L2(R)

as ε → 0, we conclude that I
1
2
−(R) is embedded into Lp(R) for every p ∈ [2,∞). �

For s ∈ (0,1) we introduce a new fractional space

Hs
B(R) :=

{
u ∈ I

s
−(R) :

∫

R

B(x)|u(x)|2dx < ∞

}

equipped with the inner product

〈u,w〉=
∫

R
−∞D

s
xu(x)−∞D

s
xw(x)dx+

∫

Rn
B(x)u(x)w(x)dx

and the norm

‖u‖2 =

∫

R

|−∞D
s
xu(x)|2dx+

∫

Rn
B(x)|u(x)|2dx.

Proposition 3.Let s ∈ (0,1). Suppose that (B,Λ1),(B,Λ2) ∈ E hold. Then the embedding

Hs
B(R

N) →֒ L
p
Λ1
(RN) and Hs

B(R
N) →֒ L

p
Λ2
(RN)

are continuous and compact for p ∈ [2,2∗s ).

Proof. Since p ∈ [2,2∗s ), then δ = 2∗s−p

2∗s−2
≤ 1. Then, for some R > 0 we have

∫

R

Λ(x)|u|pdx =

∫

R

Bδ (x)ω(x)|u|pdx

=

∫ R

−R
Bδ (x)ω(x)|u|pdx+

∫

(−R,R)c
Bδ (x)ω(x)|u|pdx.

For any p′ > p, we have by Hölder inequality

∫ R

−R
Λ(x)|u|pdx ≤

(∫ R

−R
|u|p′dx

) p

p′
(∫ R

−R
Λ r(x)dx

) 1
r

(17)
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where r is such that

r ≥ 2∗s
2∗s − p

and
1

r
+

p

p′
= 1. (18)

Note that (18) is satisfies if and only if p′ ≤ 2∗s . So for such p′ the embedding Is
−(−R,R) →֒ Lp′(−R,R) holds. Moreover,

if BR = inf(−R,R)B(x)> 0, then

‖u‖2
Is
−(−R,R) ≤

BR + 1

BR

‖u‖2
Hs

B(−R,R) (19)

Since Λ ∈ L∞(−R,R), then Λ ∈ L∞(−R,R) and

∫ R

−R
Λ r(x)dx ≤ 2R‖Λ‖r

L∞(−R,R). (20)

Therefore, by (17)-(20) we get

∫ R

−R
Λ(x)|u|pdx ≤

(∫ R

−R
|u|p′dx

) p

p′
(∫ R

−R
Λ r(x)dx

) 1
r

≤ 2R‖Λ‖r
L∞((−R,R)C

p

p′‖u‖p

Is
−(−R,R)

≤ 2R‖Λ‖r
L∞((−R,R))C

p

p′‖u‖p

(21)

On the other hand, since ω(x)→ 0 as |x| → ∞, then there exists M > 0 such that

ω(x)≤ M.

So by Hölder inequality and Theorem 6 we have

∫

(−R,R)c
Bδ (x)ω(x)|u|pdx ≤ M

∫

(−R,R)c
Bδ (x)|u|

2(2∗s −p)
2∗s −2 |u|

2∗s (p−2)
2∗s −2 dx

≤ M

(∫

R

B(x)|u|2dx

)δ (∫

R

|u|2∗s dx

) p−2

2∗s −2

≤ MC
2∗s (p−2)
2(2∗s −2) ‖u‖2δ‖u‖

2∗s (p−2)
2∗s −2 = C̃‖u‖p

(22)

Finally by (20) and (21)-(22), there exists a positive constant C̃ such that

∫

R

Λ(x)|u|pdx ≤ C̃‖u‖p,

which implies that the embedding Hs
B(R) →֒ L

p
Λ (R) is continuous for all p ∈ [2,2∗s ).

We now turn to compactness. Let (un)n∈N be a sequence of functions in Hs
B(R) with

un ⇀ 0 as n → ∞ and ‖un‖ uniformly bounded.

Since ω(x)→ 0 as |x| → ∞, given ε > 0, there is R > 0 such that

ω(x)< ε for all |x|> R.

Then as in (22) we get ∫

(−R,R)c
Bδ ω(x)|un|pdx ≤ εC̃‖un‖p. (23)

On the other hand, by (19) and Sobolev theorem, the embedding Hα
B (−R,R) →֒ Lp′(−R,R) is compact, where p′ is given

by (18). Then by (18) we get ∫ R

−R
Λ(x)|un|pdx ≤ εC̃. (24)

Using (23) and (24) we reach the desired conclusion. �
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Let E = Hs
B(R)×Hs

B(R) with the inner product on E given by

〈(u,v),(φ ,ψ)〉E =
∫

R
−∞D

s
xu(x)−∞D

s
xϕ(x)dx

∫

RN
B(x)uφdx

+

∫

R
−∞D

s
xv(x)−∞D

s
xψ(x)dx+B(x)vψdx,

and corresponding norm

‖z‖2
E =

∫

R

|−∞D
s
xu(x)|2dx+

∫

R

B(x)u2dx+
∫

R

|−∞D
s
xv(x)|2dx+

∫

R

B(x)v2dx,

with z = (u,v). The fractional space (E,〈·, ·〉) is a Hilbert space with dual E∗. We notice that we can decompose E =
E+⊕E−, where E+,E− are infinite dimensional and are defined as

E+ := {(u,u) ; u ∈ Hs
B(R)}, E− := {(u,−u) ; u ∈ Hs

B(R)}.

Moreover, for each z = (u,v) ∈ E can be written as z = z++ z− where

z+ =

(
u+ v

2
,

u+ v

2

)
, z− =

(
u− v

2
,−u− v

2

)
.

Hence ∫

R
−∞D

s
xu(x)−∞D

s
xv(x)dx+

∫

R

B(x)uvdx =
1

2
(‖z+‖2

E −‖z−‖2
E). (25)

The energy functional I : E → R associated to problem (1) is defined as

I(z) = I(u,v) =
∫

R
−∞D

s
xu(x)−∞D

s
xv(x)dx+

∫

R

B(x)uvdx−
∫

R

Λ1(x)F(v)dx−
∫

R

Λ2(x)G(u)dx, (26)

where z = (u,v). Moreover I ∈C1(E,R) and its Fréchet derivative is given by

I′(u,v)(φ ,ψ) =

∫

R
−∞D

s
xu(x)−∞D

s
xφ(x)dx+

∫

R

B(x)uφdx+

∫

R
−∞D

s
xv(x)−∞D

s
xψ(x)dx+

∫

R

B(x)vψdx

−
∫

RN
Λ1(x) f (v)ψdx−

∫

RN
Λ2(x)g(u)φdx

(27)

for every (u,v), (φ ,ψ) ∈ E . Thus, a pairs of weak solutions of (1) correspond to a critical points of the energy functional

I. Furthermore, equality (25), means that the quadratic part of I is given by
1

2
(‖z+‖E2 −‖z−‖2

E) and is strongly indefinite

since both E+ and E− are infinite dimensional.
Before proceeding, we consider some previos results introduced in [48], [49]. Set (X ,‖ · ‖) be a real Banach space,

I ∈C1(X ,R) and c ∈ R. We say that a sequence {xn} ⊂ X is a Cerami sequence at level c denote by (C)c, if

I(xn)→ c and (1+ ‖xn‖)‖I′(xn)‖∗ → 0 as n → ∞

where ‖ · ‖∗) denote the norm of the dual space X∗. Moreover, we say that I satisfies the Cerami condition if every (C)c

sequence has a strongly convergent subsequence in X .

Let H− be a closed subspace of a separable Hilbert space H with norm ‖ · ‖H and let H+ := (H−)⊥. For u ∈ H we
shall write u = u++ u−, where u± ∈ H±. On H we define a new norm

‖u‖τ := max

{
‖u+‖H ,

∞

∑
Λ=1

1

2Λ
|〈u−,eΛ 〉|

}
,

where {eΛ} is a total orthonormal sequence in H−. The topology induced by ‖ · ‖τ is called the τ-topology. We recall
from [48] that a homotopy h = I− g : A× [0,1]→ H is called admissible, with A ⊂ H, if

(i)h is τ-continuous, which means, h(un,sn)→ h(s,u) in τ-topology as n → ∞ whenever un → u in τ-topology and sn → s

as n → ∞;
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(ii)g is τ-locally finite-dimensional, i.e., for each (u,s) ∈ A× [0,1] there is a neighborhood U of (u,s) in the product
topology of (H,τ) and [0,1] such that g(U ∩ (A× [0,1])) is contained in a finite-dimensional subspace of H.

Notice that admissible homotopies are continuous in the strong topology. Also, if {um} is a bounded sequence in H,
then um → u in the τ-topology if, and only if, um ⇀ u in H− and um → u in H+.

To prove our main result we use the following proposition.

Proposition 4.[49, Theorem 2.1] Let H = H+⊕H− be a separable Hilbert space with H− orthogonal to H+ and Φ ∈
C1(H,R). Suppose

(i)Φ(z) =
1

2
(‖z+‖2 −‖z−‖)−Ψ(z), where Ψ ∈ C1(H,R) is bounded below, weakly sequentially lower semicontinuous

and Ψ ′ is weakly sequentially continuous.

(ii)There exist z0 ∈ H+ \ {0}, α > 0 and R > r > 0 such that Φ|Nr ≥ α and Φ|∂MR,z0
≤ 0, where

MR,z0
= {z = z−+ tz0 ; ‖z‖ ≤ R, t ≥ 0}, Nr = {z ∈ H+ ; ‖z‖= r}.

Then, there exists a (C)c sequence for Φ , where

c := inf
h∈Γ

sup
u∈M

Φ(h(u,1)),

and

Γ := {h ∈C(M× [0,1],H) ; h is admissible, h(u,0) = u and Φ(h(u,s))≤ max{Φ(u),−1} for all s ∈ [0,1]}.

Moreover, c ≥ α .

3 Cerami condition

In this section, we are going to show that the energy functional I satisfies the Cerami condition. Moreover, we show some
convergence results which will be essential in the proof of Theorem 1. We start with the following remark:

Remark. Suppose that (H3) holds, then for |s| large enough

| f (s)|τ1 ≤ 1

2
c0| f (s)||s|τ1+1.

Hence, combining (H1) with (H3), given ε > 0, there is Cε > 0 such that

0 < f (s) ≤ εs+Cε sp−1, for s > 0,

where p ∈ (2,2∗s ). The same holds for the function g, that is, under conditions (H1) and (H3), given ε > 0 there is Cε such
that

0 < g(s)≤ εs+Cε sq−1, for s > 0,

where q ∈ (2,2∗s ).

We notice that, by (25) the energy functional I satisfies Proposition 4 part (i). The following lemma shows that Proposition
4 part (ii) also is satisfies for the functional I.

Lemma 3.Under the assumptions of Theorem 1 we obtain:

(i)I|Nr ≥ α for some r, α > 0;

(ii)For any z0 = (u0,v0) ∈ E+ \ {0} with ‖z0‖= 1, there is R > r such that I|∂MR,z0
≤ 0, where r is given in (i).

Proof. (i) For each z ∈ Nr, there exists u ∈ Hs
B(R

N) with z = (u,u) and ‖z‖= r. By Proposition 3 and the previous remark,
we choose r > 0 small enough such that

I(z) =

∫

R

|−∞D
s
xu(x)|2dx+

∫

R

B(x)u2dx−
∫

R

Λ1(x)F(u)dx−
∫

R

Λ2(x)G(u)dx

≥ ‖z‖2
E − ε‖z‖2

E − cε

p
‖z‖p

E − cε

q
‖z‖q

E = (1− ε)‖z‖2
E − cε

p
‖z‖p

E − cε

q
‖z‖q

E ≥ α > 0.
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So (i) follows.

(ii) Let z ∈ ∂MR,z0
, then z = z−+ρz0 with ‖z‖E = R, ρ > 0 or ‖z‖E < R, ρ = 0. Suppose that ρ = 0, then z ∈ E−, that is,

z = (u,−u) and (E(i)), Remark 3 yield that

I(z) = I(u,−u) =−1

2
‖z−‖2

E −
∫

R

Λ1(x)F(−u)dx−
∫

R

Λ2(x)G(u)dx ≤ 0.

Now, we assume that ρ > 0. By contradiction, suppose that there is a sequence

{zn} ⊂ ∂MRn,z0
, zn = z−n +ρnz0, ρn > 0, ‖z0‖E = 1, ‖zn‖E = Rn → ∞,

such that

I(zn) = I(un,vn) =
1

2
(ρ2

n‖z0‖2
E −‖z−n ‖2

E)−
∫

R

Λ1(x)F(vn)dx−
∫

R

Λ2(x)G(un)dx > 0.

Let δn =
ρn

‖zn‖E

and w−
n =

z−n
‖zn‖E

. Hence,

I(zn)

‖zn‖2
E

=
I(un,vn)

‖zn‖2
E

=
1

2
(δ 2

n −‖w−
n ‖2

E)−
∫

R

Λ1(x)
F(vn)

‖zn‖2
E

dx−
∫

R

Λ2(x)
G(un)

‖zn‖2
E

> 0. (28)

Consequently

δn ≥ ‖w−
n ‖E . (29)

Note that

δ 2
n + ‖w−

n ‖2
E =

ρ2
n‖z0‖2

E

‖zn‖2
E

+
‖z−n ‖2

E

‖zn‖2
E

= 1 (30)

and then it follows from (29) and (30) that
1√
2
≤ δn ≤ 1 and w−

n is bounded. Hence, there is δ ≥ 0 such that up to a

subsequence, δn → δ and w−
n ⇀ w− = (φ ,−φ) in E as n → ∞.

Notice that if δ = 0, then (28) yields that

‖w−
n ‖E → 0,

∫

R

Λ1(x)
F(vn)

‖zn‖2
E

→ 0,

∫

R

Λ2(x)
G(un)

‖zn‖2
E

→ 0.

Thus,

1 = δ 2
n + ‖w−

n ‖2
E → 0

which is a contradiction.

Therefore, δ > 0, i.e.,
ρ2

n

‖zn‖2
E

→ δ 2 > 0 and as ‖zn‖E → ∞ as n → ∞, it follows that ρn → ∞. Notice that

un

‖zn‖E

=
ρnu0 +φn

‖zn‖E

⇀ δu0 +φ

and
Bn

‖zn‖E

=
ρnu0 −φn

‖zn‖E

⇀ δu0 −φ

in E . Hence, by Proposition 3, up to a subsequence we have

un(x)

‖zn‖E
=

ρnu0(x)+φn(x)

‖zn‖E
→ δu0(x)+φ(x)

a.e. in R and
Bn(x)

‖zn‖E

=
ρnu0(x)−φn(x)

‖zn‖E

→ δu0(x)−φ(x)

a.e. in R as n → ∞.
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Let us denote A1 = {x ∈R ; δu0(x)+φ(x) 6= 0}. Hence, for a.e. x ∈ A1

lim
n→∞

ρnu0(x)+φn(x)

‖zn‖E

= δu0(x)+φ(x) 6= 0,

which means that for a.e. x ∈ A1

un(x) = ρnu0(x)+φn(x)→+∞ as n → ∞. (31)

In the same way, if we denote A2 = {x ∈ RN ; δu0(x)−φ(x) 6= 0}, then for a.e. x ∈ A2 we have

vn(x) = ρnu0(x)−φn(x)→+∞ as n → ∞. (32)

Fatou’s lemma and (28), (31), (32), (H2) yield that

0 ≤ 1

2
(δ 2 −‖w−‖2

E)− liminf
n→∞

∫

R

Λ1(x)
F(vn)v

2
n

v2
n‖zn‖2

E

− liminf
n→∞

∫

R

Λ2(x)
G(un)u

2
n

u2
n‖zn‖2

E

≤ 1

2
(δ 2 −‖w−‖2

E)− liminf
n→∞

∫

A2

Λ1(x)
F(vn)v

2
n

v2
n‖zn‖2

E

− liminf
n→∞

∫

A1

Λ2(x)
G(un)u

2
n

u2
n‖zn‖2

E

≤ 1

2
(δ 2 −‖w−‖2

E)−
∫

A2

liminf
n→∞

Λ1(x)
F(vn)

v2
n

(δu0 −φ)2 −
∫

A1

liminf
n→∞

Λ2(x)
G(un)

u2
n

(δu0 +φ)2

=−∞

This is a contradiction and hence the Lemma 3 is proved. �

Lemma 4.Let {zn} ⊂ E be a (C)c-sequence of the energy functional I, then {zn} is bounded in E

Proof. Let {zn} ⊂ E such that

I(zn)→ c and (1+ ‖zn‖E)‖I′(zn)‖E∗ → 0 as n → ∞. (33)

Hence,
I(zn)→ c and I′(zn)zn → 0 as n → ∞. (34)

Denote zn = (un,vn). By (34), for n large enough,

c+ o(1) = I(zn)−
1

2
I′(zn)zn =

1

2

(∫

R

Λ1(x)F̃(vn)dx+

∫

R

Λ2(x)G̃(un)dx

)
. (35)

By contradiction, suppose that ‖zn‖E → ∞. Set

wn =
zn

‖zn‖E

=

(
un

‖zn‖E

,
vn

‖zn‖E

)
:= (w1

n,w
2
n).

So {wn} is bounded in E with ‖wn‖E = 1 and there is w := (w1,w2) ∈ E such that up to a subsequence we have

wn ⇀ w := (w1,w2).

By Proposition 3
wn(x)→ w(x) a.e. in R.

Since

I′(zn)(z
+
n − z−n ) =

∫

R

|−∞D
s
xun(x)|2dx+

∫

R

B(x)u2
ndx+

∫

R

|−∞D
s
xvn(x)|2dx+

∫

R

B(x)v2
ndx

−
∫

R

Λ1(x) f (vn)undx−
∫

R

Λ2(x)g(un)vndx

= ‖zn‖2
E −

∫

R

Λ1(x) f (vn)undx−
∫

R

Λ2(x)g(un)vndx.

Then
I′(zn)(z

+
n − z−n )

‖zn‖2
E

= 1−
∫

R

Λ1(x)
f (vn)un

‖zn‖2
E

dx−
∫

R

Λ2(x)
g(un)vn

‖zn‖2
E

dx. (36)
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As ‖zn‖E = ‖z+n − z−n ‖E , (34) and (36) yield that

lim
n→∞

(∫

R

Λ1(x)
f (vn)un

‖zn‖2
E

dx+

∫

R

Λ2(x)
g(un)vn

‖zn‖2
E

dx

)
= 1. (37)

Let 0 ≤ a < b ≤+∞ and consider the following sets

An(a,b) = {x ∈ R ; a ≤ vn(x)< b},

Bn(a,b) = {x ∈ R ; a ≤ un(x)< b}.
From (35), for n sufficiently large we have

c+ o(1) =
∫

An(0,a)
Λ1(x)F̃(vn)dx+

∫

An(a,b)
Λ1(x)F̃(vn)dx+

∫

An(b,+∞)
Λ1(x)F̃(vn)dx

+

∫

Bn(0,a)
Λ2(x)G̃(un)dx+

∫

Bn(a,b)
Λ2(x)G̃(un)dx+

∫

Bn(b,+∞)
Λ2(x)G̃(un)dx

(38)

Set C3 > 0 such that ‖w‖2
Lt

Λ1
(R)

≤C3‖w‖2 for each w ∈ Hs
B(R) and t ∈ [2,2∗]. By ( f1), there exists a > 0 such that

| f (s)| ≤ |s|
12C3

, for each |s| ≤ a.

Hence, for all n ∈ N, we have

∫

An(0,a)
Λ1(x)

un f (vn)

‖zn‖2
E

dx ≤
∫

An(0,a)
Λ1(x)

un f (vn)

‖zn‖2
E

dx

≤ 1

12C3

∫

An(0,a)
Λ1(x)w

1
nw2

ndx

≤ 1

12C3

(∫

An(0,a)
Λ1(x)|w1

n|2dx

) 1
2
(∫

An(0,a)
Λ1(x)|w2

n|2dx

) 1
2

≤ 1

12
‖w1

n‖‖w2
n‖ ≤

1

12

In the same way, we get ∫

Bn(0,a)
Λ2(x)

vng(un)

‖zn‖2
E

dx ≤ 1

12

for all n ∈ N.
Now we consider the sets An(b,+∞) and Bn(b,+∞). By (38) we obtain

c+ o(1)≥
∫

An(b,+∞)
Λ1(x)F̃(vn)dx ≥ inf

|v|≥b
F̃(v)

∫

An(b,+∞)
Λ1(x)dx.

Since lim
b→+∞

inf
|v|≥b

F̃(v) = +∞, it follows that

lim
b→+∞

∫

An(b,+∞)
Λ1(x)dx = 0. (39)

Hence,
∫

An(b,+∞)
Λ1(x)|w2

n|s1dx =

∫

An(b,+∞)
Λ

2∗s −s1
2∗s

1 (x)Λ

s1
2∗s

1 (x)|w2
n|s1dx

≤
(∫

An(b,+∞)
Λ1(x)dx

) 2∗s −s1
2∗s
(∫

An(b,+∞)
Λ1(x)|w2

n|2
∗
s dx

) s1
2∗s

≤C

(∫

An(b,+∞)
Λ1(x)dx

) 2∗s −s1
2∗s → 0

(40)
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as b → ∞ uniformly in n, where

s1 =
1

3
2
− 1

τ1

,

τ1 is given in hypothesis ( f3) and the last inequality follows from the facts that ‖w1
n‖ ≤ 1 and Λ1 ∈ L∞(R). In the same

way we can show that

lim
b→+∞

∫

Bn(b,+∞)
Λ2(x)|w1

n|s2dx = 0 (41)

uniformly in n, where

s2 =
1

3
2
− 1

τ2

and τ2 is given in hypothesis ( f3). Thus, Hölder’s inequality, ( f3), (40), (38) and (40) yield that

∫

An(b,+∞)
Λ1(x)

f (vn)un

‖Ezn‖2
E

dx =

∫

An(b,+∞)
Λ

1
τ1

1 (x)Λ
1
s1

1 (x)Λ
1

2∗s
1 (x)

f (vn)un

‖zn‖2
E

dx

=

∫

An(b,+∞)
Λ

1
τ1

1 (x)Λ
1
s1

1 (x)Λ
1

2∗s
1 (x)

f (vn)w
1
n

‖zn‖E

dx

=

∫

An(b,+∞)
Λ

1
τ1

1 (x)Λ
1
s1

1 (x)Λ
1

2∗s
1 (x)

f (vn)

vn

w1
nw2

ndx

≤
(∫

An(b,+∞)
Λ1(x)

( | f (vn)|
|vn|

)τ1

dx

) 1
τ1
(∫

An(b,+∞)
Λ1(x)|w1

n|s1dx

) 1
s1

(∫

An(b,+∞)
Λ1(x)|w2

n|2
∗
s dx

) 1
2∗s

≤
(

c0

∫

An(b,+∞)
Λ1(x)F̃(vn)dx

) 1
τ1

(∫

An(b,+∞)
Λ1(x)|w1

n|s1dx

) 1
s1

(∫

An(b,+∞)
Λ1(x)|w2

n|2
∗
s dx

) 1
2∗s

≤C

(∫

An(b,+∞)
Λ1(x)|w1

n|s1dx

) 1
s1

<
1

12

for b large enough uniformly in n, where we can take b large independent of
1

12
. Analogously, using generalized Hölder

inequality and (41), one can show that
∫

Bn(b,+∞)
Λ2(x)

g(un)vn

‖zn‖2
E

dx <
1

12
.

Finally, we deal with the sets An(a,b) and Bn(a,b), where a,b were chosen when we dealt with the sets An(0,a) and
Bn(0,a) and the sets An(b,+∞) and Bn(b,+∞) respectively.

Firstly, notice that by Remark 3 there exist constants, which we denote by the same letter C independent of n which
depends on a and b, such that

| f (vn)| ≤C|vn| (42)

for all x ∈ An(a,b) and

|g(un)| ≤C|un| (43)

for all x ∈ Bn(a,b). Thus, from E(ii), (42) and (43), for every η ∈
(

1
48
, 1

24

)
, there is a N0 ∈ N large enough such that

f (s)

s
≤ η

B(x)

Λ1(x)
(44)

and
g(s)

s
≤ η

B(x)

Λ2(x)
, (45)

for s ∈ (a,b) and |x|> N0.

c© 2022 NSP

Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl. 8, No. 3, 415-433 (2022) / www.naturalspublishing.com/Journals.asp 429

So, we have ∫
An(a,b)
|x|>N0

Λ1(x)
f (vn)un

‖zn‖2
E

dx =
∫

An(a,b)
|x|>N0

Λ1(x)
f (vn)w

1
n

‖zn‖E

dx

=

∫
An(a,b)
|x|>N0

Λ1(x)
f (vn)

vn

vn

‖zn‖E

w1
ndx

=
∫

An(a,b)
|x|>N0

Λ1(x)
f (vn)

vn

w2
nw1

ndx

≤
∫

An(a,b)
|x|>N0

ηB(x)w2
nw1

ndx ≤
∫

R

ηB(x)w2
nw1

ndx

≤ η

(∫

RN
B(x)|w1

n|2dx

) 1
2
(∫

R

B(x)|w2
n|2dx

) 1
2

≤ η‖w1
n‖‖w2

n‖ ≤ η <
1

24
.

Analogously, we have ∫
Bn(a,b)
|x|>N0

Λ2(x)
g(un)vn

‖zn‖2
E

dx <
1

24
.

Now, since Λ1 ∈ L∞(R) then Λ1 ∈ L1(An(a,b)∩BN0
(0)) and since ‖Ezn‖E → ∞ as n → ∞, we get

∫
An(a,b)
|x|≤N0

Λ1(x)|w2
n|2dx =

1

‖zn‖2
E

∫
An(a,b)
|x|≤N0

Λ1(x)v
2
ndx ≤ b2

‖zn‖2
E

∫
An(a,b)
|x|≤N0

Λ1(x)dx → 0 (46)

as n → ∞. In the same way we have ∫
Bn(a,b)
|x|≤N0

Λ2(x)|w1
n|2dx → 0 (47)

as n → ∞.
Consequently, by (42) and (46) we have

∫
An(a,b)
|x|≤N0

Λ1(x)
f (vn)un

‖zn‖2
E

dx =

∫
An(a,b)
|x|≤N0

Λ1(x)
f (vn)w

1
n

‖zn‖E

dx ≤C

∫
An(a,b)
|x|≤N0

Λ1(x)
vnw1

n

‖zn‖E

dx

= C

∫
An(a,b)
|x|≤N0

Λ1(x)w
1
nw2

ndx ≤C‖w1
n‖H1

B(R
N )

(∫
An(a,b)
|x|≤N0

Λ1(x)|w2
n|2dx

)1/2

<
1

24
,

Analogously we see that ∫
Bn(a,b)
|x|≤N0

Λ2(x)
g(un)vn

‖zn‖2
E

dx <
1

24
.

Therefore, we obtain ∫

An(a,b)
Λ1(x)

f (vn)un

‖zn‖2
E

dx <
1

12

and ∫

Bn(a,b)
Λ2(x)

g(un)vn

‖zn‖2
E

dx <
1

12
.

Gathering all these informations, we obtain

∫

RN
Λ1(x)

f (vn)un

‖zn‖2
E

dx+
∫

RN
Λ2(x)

g(un)vn

‖zn‖2
E

dx <
1

2
< 1,

which is a contradiction with (37). Therefore, {zn} is bounded in E . �
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Lemma 5.Let (B,Λ1) ∈ E , (B,Λ2) ∈ E , f , g satisfy (H1)− (H3) and {zn} ⊂ E be a bounded sequence. If zn = (un,vn) is

such that zn ⇀ z = (u,v) in E, then ∫

R

Λ1(x) f (vn)undx →
∫

R

Λ1(x) f (v)udx

and ∫

R

Λ2(x)g(un)vndx →
∫

R

Λ2(x)g(u)vdx

as n → ∞.

Proof. We only show the second part of the lemma. By Remark 3, for all ε > 0, there is cε > 0 large enough such that

g(t)≤ ε|t|+ cε |t|q−1. (48)

Since (un,vn) = zn ⇀ z = (u,v) in E , Proposition 3 implies that un(x) → u(x) a.e. in R and un → u in Lt
Λ2
(R) for all

t ∈ [2,2∗). Thus,

∫

R

Λ2(x)g(un)|vn − v|dx ≤ ε‖un‖L2
Λ2

(R)‖vn − v‖L2
Λ2

(R)+ cε‖un‖q−1

L
q
Λ2

(R)
‖vn − v‖L

q
Λ2

(R) → 0 as n → ∞. (49)

Moreover, since un → u in Lt
Λ2
(R) for all t ∈ [2,2∗), we have

∫

R

|Λ
1
t

2 (x)un −Λ
1
t

2 (x)u|tdx → 0 as n → ∞.

So, by [46, Theorem 4.9], there is a subsequence of Λ
1
t

2 (x)un which we still denote by Λ
1
t

2 (x)un and a function h ∈ Lt(R)

such that Λ
1
t

2 (x)un(x)→ Λ
1
t

2 (x)u(x) a.e. on R and |Λ
1
t

2 (x)un(x)| ≤ h(x), for all n, a.e. on R. This facts combines with (48)
yield that

|Λ2(x)g(un)v| ≤ εΛ2(x)|un|v+ cεΛ2(x)|un|q−1v

= εΛ
1
2

2 (x)|un|Λ
1
2

2 (x)v+ cε(Λ2(x)|un|q)
q−1

q Λ
1
q

2 (x)v

≤
(

εh1(x)Λ
1
2

2 (x)v+ cεh
q−1
2 (x)Λ

1
q

2 (x)v

)
∈ L1(R),

where h1 ∈ L2(R) and h2 ∈ Lq(R) were obtained by [46, Theorem 4.9].
Therefore, by the Lebesgue dominated convergence theorem we obtain

∫

R

Λ2(x)g(un)vdx →
∫

R

Λ2(x)g(u)vdx (50)

as n → ∞.
Combining (49) and (50) we obtain

∫

R

Λ2(x)g(un)vndx →
∫

R

Λ2(x)g(u)vdx

as n → ∞. In the same way, we can show that

∫

R

Λ1(x) f (vn)undx →
∫

R

Λ1(x) f (v)udx

as n → ∞. The Lemma is proved. �

4 Proof of theorem 1

In this section we are going to prove Theorem 1 . Notice that E = E+⊕E−, where

E+ = {(u,u) ; u ∈ Hs
B(R)} and E− = {(u,−u) ; u ∈ Hs

B(R)}.
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Moreover, for z = (u,v) ∈ E , we have

I(z) =
1

2
(‖z+‖E −‖z−‖E)−

∫

R

Λ1(x)F(v)dx−
∫

R

Λ2(x)G(u)dx.

Note that the functional

Φ(z) = Φ(u,v) =
∫

R

Λ1(x)F(v)dx+
∫

R

Λ2(x)G(u)dx

is of class C1(E,R). Moreover, by Proposition 3 and Fatou’s lemma we have that Φ(z)≥ 0 is weakly lower semicontinuous
and Φ ′ is weakly sequentially continuous in E∗. By Lemma 3, there exist r > 0, α > 0 such that I|Nr ≥ α , where Nr =
{z ∈ E+ ; ‖z‖E = r} and for such r, there exist R > r and a z0 ∈ E+ \ {0} with ‖z0‖E = 1 such that I|∂MR

≤ 0, with

MR = {z = z−+ρz0 ; z− ∈ E−, ‖z‖E ≤ R, ρ ≥ 0}.
Therefore, by Proposition 4 there is a (C)c-sequence {zn} ⊂ E for I which is bounded in E by Lemma 4. Then, up to

a subsequence, we may assume that zn ⇀ z in E .

Since ‖I′(un,vn)‖E∗ → 0, we have

‖zn‖2
E −

∫

R

Λ1(x) f (vn)un −
∫

R

Λ2(x)g(un)vn = I′(un,vn)(vn,un) = on(1)

and hence

lim
n→∞

‖zn‖2
E = lim

n→∞

(∫

R

Λ1(x) f (vn)undx+

∫

R

Λ2(x)g(un)vndx

)
.

By Lemma 5,

lim
n→∞

∫

R

Λ1(x) f (vn)undx =

∫

R

Λ1(x) f (v)udx

and

lim
n→∞

∫

R

Λ2(x)g(un)vndx =
∫

R

Λ2(x)g(u)vdx,

then,

lim
n→∞

‖zn‖2
E =

∫

R

Λ1(x) f (v)udx+

∫

R

Λ2(x)g(u)vdx. (51)

Also, since I′(un,vn)(v,u) = on(1), we obtain

‖z‖2
E =

∫

R

[
Λ1(x) f (v)u+Λ2(x)g(u)v

]
dx. (52)

Hence, by (51) and (52),

lim
n→∞

‖zn‖2
E = ‖z‖2

E

which shows that zn → z in E .

So, z = (u,v) is a weak solution pair of problem (1) such that I(u,v) = c ≥ α > 0. �

5 Conclusion

The aim of this paper was to study the existence of weak solution for a class of fractional Hamiltonian system in R with
potentials vanishing and order s ∈ (0, 1

2
). By introducing new compact embedding result, we are able to get our result by

using generalized linking theorem.
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[13] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurc. Chaos 22(4),

1-17 (2012).

[14] C. E. T. Ledesma, Existence of solution for fractional Hamiltonian systems, Electr J. Differ. Equ. 259, 1-12 (2013).
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