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Abstract: In this paper a fractional-order bio-regulatory system is proposed. Stability and Hopf bifurcation of the systems have been

investigated. Several numerical examples are demonstrated to validate the theoretical results.
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1 Introduction

In order to understand the internal mechanism of the gene’s action, we need to first know what the term operon is [1],
which is used to explain the regulatory process of the gene. An operon is defined as a set of structural genes before which
there is a small portion of DNA that is known as an operator, and when repression occurs, mRNA polymerse bind in order
for transcription to begin.

The regulation process sometimes includes transcription attenuation or inhibition of the feedback and repression
enzyme. Operon suppression occurs when an active repressor part binds to the operator and blocks it, in addition to
preventing the binding of mRNA polymerse.

There are many important operon systems that are getting a lot of attention, such as lactose operons and operon-
tryptophan [1]. In this paper, we will direct our attention to operon-tryptophan for its ability to be suppressed, which is
known to be an amino acid containing five genes, in addition to the important role in the process of gene regulation.

Goodwin (1965) and Griffith (1968) developed a mathematical model for the operon based on negative feedback
see([1]-[5]).

In this paper stability analysis of the fractional order Goodwin-Griffith systems are studied, where fractional calculus
was applied as a powerful tool for mathematical modeling in various fields of science such as engineering, economics,
and biological systems [6]. Many applications show a great demand for the most realistic and sufficient mathematical
modeling of real phenomena using fractional calculus that provides one possible approach as such.

Definitions and properties of the fractional integrals and derivatives are given in [6].
Definition 1.1 The Caputo fractional derivative of order q > 0 of f (t), t > 0 is defined by

Dq f (t) =
1

Γ (n− q)

∫ t

0
(t − s)n−q−1 f (n)(s)ds,

where Γ (·) is the Gamma function and n− 1 < q ≤ n,n ∈ N.

2 The fractional Goodwin-Griffith system

Consider the fractional order model

DqM(t) =
1

1+Tn
−αM,

DqE(t) = M−β E,

DqT (t) = E − γT,
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where α,β ,γ are constants, Dq (0 < q ≤ 1) is the Caputo fractional derivative of order q, M denotes the operon related
mRNA concentration, E be the concentration of the enzyme produced by the operon genes, T is the concentration of the
end product of the reaction catalyzed by enzyme E and n is the cooperativity of the end production repression [7].

To evaluate the equilibrium points, let

DqM(t) = 0,

DqE(t) = 0,

DqT (t) = 0,

which yield
M = β E = β γT, (2)

and

T (1+Tn) =
1

αβ γ
(3)

if T0 is a root of equation (3), then the equilibrium point is (Meq,Eeq,Teq) = (β γT0,γT0,T0) where

T0(1+Tn
0 ) =

1

αβ γ

with T0 non-negative as it represents tryptophan concentration.
For the equilibrium point (β γT0,γT0,T0), we find that the characteristic polynomial is

p(λ ) = λ 3 + a1λ 2 + a2λ + a3 = 0,

where
a1 = (α +β + γ),a2 = (αβ +β γ +αγ),a3 = αβ γ (1+ nαβ γTn+1

0 )

and its discriminant D(P) is given as:

D(P) =−

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 a1 a2 a3 0
0 1 a1 a2 a3

3 2a1 a2 0 0
0 3 2a1 a2 0
0 0 3 2a1 a2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 18a1a2a3 +(a1a2)
2 − 4a3a3

1 − 4a3
2− 27a2

3. (4)

A sufficient condition for (β γT0,γT0,T0) to be locally asymptotically stable is ([8]-[11])

|arg(λi)|>
qπ

2
, i = 1,2,3. (5)

Proposition 2.1 [8]
(i) When D(P)> 0, then (β γT0,γT0,T0) is locally asymptotically stable if

(α +β + γ)(
1

α
+

1

β
+

1

γ
)> (1+ nαβ γTn+1

0 ). (6)

(ii) If D(P)< 0, then (β γT0,γT0,T0) is locally asymptotically stable for q < 2/3.

(iii) If D(P)< 0,(α +β + γ)( 1
α + 1

β
+ 1

γ ) = (1+nαβ γT n+1
0 ), then (β γT0,γT0,T0) is locally asymptotically stable for

all q ∈ (0,1).

2.1 Hopf bifurcation analysis versus the fractional order q

The fractional order q affects the stability of fractional order model. Therefore we can choose q as a bifurcation parameter
in the fractional order model.

Define a function f with respect to q

f (q) = qπ/2− min
1≤i≤3

|arg(λi)| .
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If f (q) < 0, then the equilibrium point is locally asymptotically stable; if f (q) > 0, then the equilibrium point is
unstable.
Theorem 2.1 ([12]; Existence of Hopf bifurcation) When a bifurcation parameter q passes through the critical value
q∗ ∈ (0,1), fractional order model (1) undergoes a Hopf bifurcation at (Meq,Eeq,Teq), if the following conditions hold:

(i) The Jacobian matrix of model (1) at (Meq,Eeq,Teq) has a complex conjugate eigenvalues λ1,2 = θ ± iω , where
θ > 0, and negative real root λ3,

(ii) f (q∗) = 0,(q∗ = 2
π |arg(λ1,2)|)

(iii)
d[ f (q)]

dq

∣

∣

∣

q=q∗
6= 0 (transversality condition).

So (Meq,Eeq,Teq) is locally asymptotically stable for q∈ (0,q∗) and is unstable when q∈ (q∗,1). Also Hopf bifurcation
occurs at q = q∗.

3 Control of the Goodwin-Griffith system

If we add the control term, the system (1) becomes

DqM(t) =
1

1+Tn
−αM,

DqE(t) = M−β E,

DqT (t) = E − γT +υ ,

(7)

where 0 < q ≤ 1, υ =−kM, and k is an appropriate gain.
To evaluate the equilibrium points, let

DqM(t) = DqE(t) = DqT (t) = 0,

which yield

M = β E =
β γT

1−β k
,

and

T (1+Tn) =
1−β k

αβ γ
,

if T0 is a root of equation (9), then the equilibrium point is ( β γT0

1−β k
, γT0

1−β k
,T0) where

T0(1+Tn
0 ) =

1−β k

αβ γ
,

and the characteristic polynomial is

λ 3 +(α +β + γ)λ 2 +(αβ +β γ +αγ − kτ)λ +(αβ γ + τ(1−β k)) = 0,

where

τ =
nα2β 2γ2T n+1

0

(1−β k)2
> 0.

A sufficient condition for the local asymptotic stability of ( β γT0

1−β k
, γT0

1−β k
,T0) is

|arg(λi)|>
qπ

2
, i = 1,2,3.

Proposition 3.1 [8]

(i) When D(P)> 0, then ( β γT0

1−β k
, γT0

1−β k
,T0) is locally asymptotically stable if

(αβ +β γ +αγ − kτ)> 0, (αβ γ + τ(1−β k))> 0,(α +β + γ)(αβ +β γ +αγ − kτ)> (αβ γ + τ(1−β k)). (10)

(ii) If D(P) < 0,(αβ +β γ +αγ − kτ) ≥ 0,(αβ γ+ τ(1− β k)) > 0, then ( β γT0

1−β k
, γT0

1−β k
,T0) is locally asymptotically

stable for q < 2/3.
(iii) If D(P) < 0,(αβ + β γ + αγ − kτ) > 0,(α + β + γ)(αβ + β γ + αγ − kτ) = (αβ γ+ τ(1 − β k)), then

( β γT0

1−β k
, γT0

1−β k
,T0) is locally asymptotically stable for all q ∈ (0,1).

(iv) The necessary condition for locally asymptotically stable to ( β γT0

1−β k
, γT0

1−β k
,T0), is (αβ γ+ τ(1−β k))> 0.
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4 Results and discussion

For solving nonlinear fractional differential equations we used the Adams method ([13]-[15]).
For system (1) approximate solutions are shown in Figs. 1-6 for α = 0.34,β = 0.27,γ = 0.38,n = 9 and

q = 1,0.95,0.9.
T0 = 1.3918 and the equilibrium point (β γT0,γT0,T0) = (0.142799,0.528884,1.3918) is locally asymptotically stable

where,

λ1 =−1,

λ2,3 = 0.00500125± 0.577562i,

|arg(λ1)|= π >
qπ

2
, |arg(λ2,3)|= 1.56214 >

qπ

2
, 0 < q < q∗ < 1,

and the bifurcation parameter q∗ is q∗ = 0.994487.
For q = 1 > q∗ the equilibrium point (β γT0,γT0,T0) = (0.142799,0.528884,1.3918) is untable since the condition (6)

is not satisfied.
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Fig. 1: Plot of M(t) of system (1) for q = 0.9,0.95,1.

For the system (7) the approximate solutions are displayed in Figs. 7-12 for α = 0.34,β = 0.27,γ = 0.38,n = 9,k =
−1.1.

T0 = 1.42997 and the equilibrium point ( β γT0

1−β k
, γT0

1−β k
,T0) = (0.113119,0.418958,1.42997) is locally asymptotically

stable where,

λ1 =−0.794114,

λ2,3 =−0.0979429± 0.643796i,

|arg(λ1)|= π >
qπ

2
, |arg(λ2,3)|= 1.72177 >

qπ

2
, 0 < q < 1,

and for q = 1 the equilibrium point ( β γT0

1−β k
, γT0

1−β k
,T0) = (0.113113,0.418938,1.4299) is locally asymptotically stable

since the condition (10) is satisfied. But for 0 < q < 1 the equilibrium point is more stable than for q = 1 see Fig. 13 for
calculating the time.
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Fig. 2: Plot of E(t) of system (1) for q = 0.9,0.95,1.
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Fig. 3: Plot of T (t) of system (1) for q = 0.9,0.95,1.
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Fig. 4: Phase portraits of system (1) for q = 0.9.
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Fig. 5: Phase portraits of system (1) for q = 0.95.
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Fig. 6: Phase portraits of system (1) for q = 1.
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Fig. 7: Plot of M(t) of system (7) for q = 0.9,0.95,1.
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Fig. 8: Plot of E(t) of system (7) for q = 0.9,0.95,1.
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Fig. 9: Plot of T (t) of system (7) for q = 0.9,0.95,1.
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Fig. 10: Phase portraits of system (7) for q = 0.9.
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Fig. 11: Phase portraits of system (7) for q = 0.95.
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Fig. 12: Phase portraits of system (7) for q = 1.
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Fig. 13: Time vs. fractional order.

5 Conclusion

We studied the fractional Goodwin-Griffith systems, stability and Hopf bifurcation of the models have been investigated.
Also, numerical solutions were presented.

From Figs. 1-6 the equilibrium point (β γT0,γT0,T0) is locally asymptotically stable for 0 < q < q∗ < 1 and unstable
for q = 1. Figs. 1-3 show M,E,T of system (1) for q = 0.9,0.95,1 and the phase portraits in Figs. 4-6.
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From Figs. 7-12 the equilibrium point ( β γT0

1−β k
, γT0

1−β k
,T0) is locally asymptotically stable for 0 < q ≤ 1 but for 0 < q < 1

the equilibrium point is more stable than q = 1 see Fig. 13 for computing the time with different fractional orders.
Figs. 7-9 show M,E,T of system (7) for q = 0.9,0.95,1 and the phase portraits in Figs. 10-12.
We would argue that fractional order equations are more appropriate than integer order equations in modeling

biological, economic, and social systems where memory effects are important.
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